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Abstract: The results of the simulation study on the differential algorithm of the correction of 
the dynamic error by the „blind” method are presented in the paper. The study was carried out 
for measurement channels modelled as first- and second-order systems. The results confirmed 
the suitability of computer simulation for determining the condition for the practical 
applicability of the discussed correction method. 
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1. Introduction 
 
In cases when where the model of dynamics of measurement channel is known and stationary 
the dynamical correction problem is solved both theoretically and practically. 
The „blind” dynamic error correction may by practically applied when the dynamic properties 
of sensors or transducers slowly changes over time or under various environmental factors. 
The method may also be applied when laboratory determination of the coefficients of an 
equation describing the model of analogue dynamics of a part of the measurement channel is 
impossible. Possible applications of the dynamic correction method can be as follows: 
− Measurement of time-variable temperatures when the coefficient of heat exchange 

between the medium under study and the temperature sensor depends on the physical 
properties of the medium; 

− Measurement of time-variable high voltage when the dynamic properties of the divider 
depend on undetermined parasitic capacitances; 

− Measurement of highly-variable electrical signals with the use of a low-band 
measurement amplifier (e.g., measurement of non-sinusoidal currents with a shunt). 

The idea behind this method has been known for a long time, but the possibility to use fast 
real time digital computation allowed for it's practical use. 
 
1.1 Correction method 
 
The method consists in employing two parallel measurement channels to measure the same 
quantity. To ensure the validity of correction, both measurement channels should have the 
same gain value and different dynamic properties. Although not meeting these conditions 
does not make correction impossible, it may however result in the ambiguity of the solution or 
increase the calculation results. [1,2] 
The „blind” method of correction algorithm uses the results of both measurement channels 
and consists of two stages. The first stage is identification of the dynamic properties of the 
measurement channels, the second one is the correction itself. In practice, the algorithm can 
be realised in a signal processor, which requires that the measurement channels are completed 
with a/d converters. Taking into account the applied identification method, various algorithms 
implementing the „blind” method can be applied. Three algorithms are described in the 
literature [2]: an algorithm optimising the conditioning index value, an algorithm based on 
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relationships among harmonics, and an algorithm based on minimisation of the differential 
error. Of the afore-mentioned algorithms, the third is applied and described in the paper: an 
identification algorithm based on parameter optimization of correctors connected in series to 
both measurement channels, in the way the difference between the results of both 
measurement channels with correctors are zero. 
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Fig. 1. Schematic diagram of the “blind” dynamic error correction system. 
 
According to this algorithm, the dynamic correction method can be performed in a system 
whose structure is presented in Fig. 1. Two measurement channels measuring the same output 
quantity u(t) are used in the system. The dynamic properties of the channels are determined 
by their transfer functions G1(s) and G2(s). Corrupted by errors, the output signals of the 
analogue channels, denoted x1(t) and x2(t), respectively, are converted to digital forms x1,i and 
x2,i at sampling time instants ti. The signals are converted in the signal processor by corrector 
algorithms into the signals y1,i and y2,i, which represent the instantaneous values of the 
quantity measured by the first and the second channel, respectively. Finally, the output 
quantity yi is defined at every moment of sampling as an arithmetic average of y1,i and y2,i  –   
yi =( y1,i + y2,i )/2. The difference δi = y1,i – y2,i is the basis for defining an index of the 
criterion minimised in the corrector parameter optimization algorithm. 
 
1.2 Correction assessment criteria 
 
Measurement system dynamic errors with or without correction were estimated initially, using 
standard norms ||ε||1, ||ε||2 and ||ε||∞ defined for vector ε with coordinates equal to the 
instantaneous values of dynamic error at sampling moments. Because the norm ||ε||∞ 
introduces assessment criteria more stringent than the previous ones, it was accepted as the 
sole assessment criterion in all subsequent simulation study. 
An index Q for estimating the correction effectiveness was introduced and defined as a 
quotient of the norm of the dynamic error vector, determined for the faster measurement 
channel without correction to the value of the norm of the dynamic error vector of the system 
with correction. The index shows how many times dynamic errors will be decreased upon 
correction. 
 

 
ε
ε

=
=

k

2,1k
minQ           (1) 

 
where: k – channel index, εk = U(ti) - Xk (ti) , ε = U(ti) - Yi 
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The first stage of the discussed dynamic correction differential algorithm was the 
identification carried out in this case as an optimum selection of the parameters of the in 
series correctors, e.g. time constants which according to the “blind” correction rule should be 
equal to the time constants of the measurement channels corrected. The quality of 
identification influences essentially on the correction effectiveness. A mean-square type 
identification quality index, BI, was accepted (2). For example, the BI index for first-order 
inertia channels is of the following form: 
 

  ;[%]100)b1()a1(BI 22 ⋅−+−=          (2) 
 

where: a -  is the ratio of the time constant of corrector to the measurement channel’s time 
constant in the first channel, b – the same for the second channel. 
 
2. Simulation study results 
 
Determination of the effectiveness of the correction made and, consequently, determination of 
the range of the practical applicability of correction to measurement channels with different 
types of dynamics was the main aim of the simulation study carried out and described in the 
paper. 
 
2.1. Simulation parameters 
 
The initial simulation study carried out for first-order inertia measurement channels [1] 
confirmed in general, the suitability of computer simulation for determining the conditions of 
the practical applicability of the “blind” dynamic correction method, and enabled common 
simulation methods and parameters to be determined. It was, therefore, accepted as follows: 
 
− measured signal, sinusoidal, undisturbed, of 50 Hz frequency, Ts = 0.02 s 
− a/d converter is modelled through the quantization operation  
− sampling operation is modelled through the simulation step 
− operations used in the algorithm realized in DSP are modelled through the adequate 

operations of a simulation language 
− sampling frequency is 40 times greater than the measured signal frequency fp = 2 kHz 
− optimization method: Monte Carlo 
− optimization criterion: ||δ ||1 
− simulated optimization time is equal to one period of the measured signal. 
 
2.2. Simulation study on first-order inertia measurement channels 
 
The measurement channels are modelled as the first-order transfer functions 

2
2

1
1 Ts1

1)s(G,
Ts1

1)s(G
+

=
+

=        (3) 

Correctors were modelled in the following form: 
 

sbT1)s(G,saT1)s(G 22k11k +=+=        (4) 
 
The criterion ||δ ||1 used during optimization was the function of the coefficients a and b.  
A 12-bit word length A/D converter ( range: ±1V ) was modelled. 

 35



Theoretical Problems of Measurement  •  J.Nalepa 
 

 

ig. 2. Quality of identification index BI in function α for three values β for the first-order 

rst-order 
ertial measurement channel. 

ed for determining the relationship between the identification 
rror, BI, correction effectiveness, Q, and time constants of both channels are presented in 

awn: 
 The correction effectiveness Q is high (reaches values above 130) when the identification 

error, BI, is less than 1%. It seems that 3% is the limit value of that error.  

the first-order 

rst-order 
ertial measurement channel. 

ed for determining the relationship between the identification 
rror, BI, correction effectiveness, Q, and time constants of both channels are presented in 

awn: 
 The correction effectiveness Q is high (reaches values above 130) when the identification 

error, BI, is less than 1%. It seems that 3% is the limit value of that error.  

0

2,5

5

7,5

10

12,5

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2

α

BI [%]

β = 0.1 β = 1 β =1.5

F
inertial measurement channel. 
 
inertial measurement channel. 
 

Fig.3. Correction effectiveness index Q in function α for three values β for the fiFig.3. Correction effectiveness index Q in function α for three values β for the fi

0

25

50

75

100

125

150

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

α

Q

β = 0.1 β = 1 β =1.5

inin
 
The simulation study results us
 
The simulation study results us
ee
Fig. 2 through 5. To generalise the conclusions, α denotes in the figures the ratio of the time 
constant T1 to the period of the measured signal Ts; analogically β is defined for the time 
constant T2. The fundamental conclusion from the study undertaken [3,4] is that for the 
measurement channels with time constants of the ratio to the period of the measured signal 
not exceeding 1.5, the dynamic correction by the “blind” method always “improves” i.e. the 
correction effectiveness is greater than unity. 
 
Moreover, the following conclusions can be dr

Fig. 2 through 5. To generalise the conclusions, α denotes in the figures the ratio of the time 
constant T1 to the period of the measured signal Ts; analogically β is defined for the time 
constant T2. The fundamental conclusion from the study undertaken [3,4] is that for the 
measurement channels with time constants of the ratio to the period of the measured signal 
not exceeding 1.5, the dynamic correction by the “blind” method always “improves” i.e. the 
correction effectiveness is greater than unity. 
 
Moreover, the following conclusions can be dr
−−
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− The identification error, BI, depends on the values of the ratio of time constants to the 

riod of the measured signal, the better 

 

α, 

α, 

period of the measured signal (α and β), in such a way that if at least one of these ratios is 
less than 0.7 then BI does not exceed 3% (Fig. 2). 

− The correction effectiveness Q depends on the ratios α and β in such a way that the 
greater value of α or β the smaller Q. Q reaches its maximum for α smaller than 0.5 (Fig. 
3). The smaller the time constant related to the pe
the correction effectiveness. We can say therefore that the best effects can be obtained for 
the channels with “good” dynamic properties. But: a “good” measurement channel can be 
corrected effectively with the “blind” method by a “bad” channel (Fig. 5: Q greater than 
60) or a “bad” channel can be corrected by another “bad” channel (Fig. 4: Q greater than 
10). 

70

 
Fig. 4. Correction effectiveness index Q and quality of identification index BI in function 
for β=1.5 for the first-order inertial measurement channel. 
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Fig. 5. Correction effectiveness index Q and quality of identification index BI in function 
for β=0.1 for the first-order inertial measurement channel. 
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- The applicability range of the “blind” method dynamic correction can be defined through 
e 

ume that the require correction 
effectiveness Q is greater than 50 then, based on Figs. 2 through 5, the applicability range 

2.3. Simulation study on double-inertia measurement channels 
 
The me nctions: 

the limit values of the dynamic properties of both channels, ensuring the acceptabl
correction effectiveness. For example, if we ass

of the “blind” method dynamic correction can be determined through the limit values of α 
and β: 
9 if β equals 0.1 then α can be arbitrary up to 1.2; 
9 if β equals 1 then α cannot exceed 0.5; 
9 if β equals 1.5 then α cannot exceed 0.3. 
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he function of coefficients a, b, g and d. 
he initial simulation study results showed that the minimum length of the a/d converter word 

is 22 bits. So a 24-bit word length A/D converter ( range ±1V ) was modelled. 
aking into account the various possible realizations of the measurement channels and 

the 

ptimization of 

The results of the simulation study are presented accordingly in Figs. 6, 7 and 8.  

The correction effectiveness for two-inertia channels with double time constants is very high: 
a

 error were 
r optimization, however, 

nnel is changing from 0.2 to 10 for three different values of β2 (0.05, 

 
Correctors were modelled in the following form: 

)1)(1()(,)1)(1()( 422311 sgTsbTsGsdTsaTsG kk ++=++=  
 
The criterion ||δ ||1 used during optimization was t
T

T
methods of optimization algorithm implementations differing in calculation accuracy, 
following cases were investigated: 
− measurement channels with a double time constant (T1 = T3 and T2 = T4), o

two parameters 
− measurement channels with a double time constant (T1 = T3 and T2 = T4), optimization of 

four parameters 
− measurement channels with four time constants and optimization of four parameters. 

The β and α in Figs. 6 and 7 are defined as for first-order channels.  

alw ys over 100 as far as up to 3, and this is clearly better than for first-order channels.  
In changing the order of optimised parameters, similar values of identification
obtained for systems with a double time constant and four-paramete
effectiveness values were different (double at maximum). The maximum effectiveness values 
are presented in Fig. 7. 
In Fig. 8, the results of the simulation study on the “blind” method dynamic correction for 
two-inertia channels at four different optimised time constants are presented. The results refer 
to the case when the first channel time constants are fixed and constant (α1= 0.2 and β1=0.6), 
and α2 of the second cha
0.5, 1). The obtained correction effectiveness is even five times smaller than in the case of 
double time constant channels with four-parameter optimization, but this refers to the 
particular case under study. 
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Fig. 6. Correction effectiveness index Q for second-order inertial measurement channels with 
a double time constant, optimization of two parameters. 
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Fig. 7. Correction effectiveness index Q for second-order inertial measurement channels with 
a double time constant, optimization of four parameters. 
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Fig. 8. Correction effectiveness index Q for second-order inertial measurement channels with 
four time constants and optimization of four parameters. 
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Summarizing the obtained results of the simulation study, it can be stated that the correction 
effectiveness of the “blind” method dynamic correction obtained for two-inertia systems is 
quite satisfactory despite larger numerical errors (also double differentiation errors). The lack 
of influence of the enlarged numerical errors on the obtained effectiveness values may follow 
from using the 24-bit a/d converter and also from the correction method rule itself 
(optimization based on differential error) as calculation errors can counterbalance. The value 
of correction effectiveness Q depends clearly on the dynamic parameters of the measurement 
channels under correction. However, special attention should be paid to the high effectiveness 
values obtained when for one channel, the ratio of time constant to the period of the measured 
signal (α) is large (between 1.5 and 5). So a „very bad” dynamically, two-inertia 

easurement channel may be even better corrected , in wider range of time constants, than it 

nt channels 
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where:  ω0 = 2πf0 – natural frequency, 

 
Correctors were modelled in the following form: 
 

      

 

   z – damping factor 
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ed 
were obtained for a sampling frequency of 2.5 kHz. It was noted that increasing the sampling 
frequency increases the “sensitivity” of the obtained extreme values of the effectiveness Q. 
Based on the obtained results, it can be stated that the “blind” method dynamic correction for 
oscillation channels is effective within a wide range of measurement channel parameters and 
the highest values of the effectiveness Q are similar as for two-inertia channel with four-

 
The criterion  ||δ ||1 used during optimization was the function of coefficients a, b, g and d. 
A ±1V, 24-bit word length A/D converted was modelled. 
The possible variability of the four parameters dictated a method for the simulation study 
similar to that of the two-inertia channels. The dynamic properties of the one channel were 
fixed, whilst the properties of the second one were changed. Additionally, as in previous 
investigations, the parameter, the natural frequency, was referred to the measured signal 
pulsation - ωs. Parameter –omega1-  is defined as the ratio of a pulsation ω01 to ωs and 
parameter –omega2-  is defined as the ratio of a pulsation ω02 to ωs . In Figs. 9 and 10, the 
results of the simulation study for two cases are presented. The first case (Fig. 9) refers to a 
channel with fixed parameters: omega1 = 1, z1 = 0.6, while the second case (Fig.10) refers to 
a channel with parameters: omega1 = 2, z1 = 0.15. Such a choice results from an observation 
on the results of the simulation study that the channels with a large phase error can be 
corrected differently, as can the channels with a large amplitude error. The results present
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parameter optimization. Similarly, the best effects are obtained for the channels with large 

Fig. 9. Correction effectiveness index Q for second-order oscillation measurement channels in 
function damping factor z2 for various values omega2 for one channel; parameters of second 
channel: omega1=1, z1=0.6. 
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Fig.10. Correction effectiveness index Q for second-order oscillation measurement channels 
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3. Summary and conclusions 
 
The results of the simulation study on the differential algorithm of the dynamic correction 
rror by the „blind” method for the models of first- and second-order measurement channels 

results presented concerned one type of measured signal only, 
ut the initial study for other signal types were made as well [3]. 

orithm is the possibility of 

ptimization. 
presented in the paper, can be an effective 

 conditions for the practical applicability of the dynamic error 
measurement channel. 
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