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Abstract

The paper shows a calibration model where a set of weights is calibrated in terms of the mass of
a single reference weight. It is proved that under satisfying a simple condition the uncertainty of the
reference mass value does not influence the mass values of the unknown weights, i.e. the calibration
procedure is equivalent to a weighted least squares analysis. A simplified example demonstrates this
calibration process.

1. Introduction

Estimated values of individual weights and their uncertainties are presented in a calibrating certificate
of a set of weights. Covariances among estimated mass values of individual weights are quoted rarely.
This fact does not introduce any problem for the use of individual weights but it can bring many
problems in the common use of a calibrated set of weights. Namely, by common use of weights some
new values can be realized (e.g. the sum of individual weights). Uncertainty of such a sum is then
represented by uncertainties of the weights used, as well as by the covariances among them. Neglection
of covariances is quite often explained by the orthogonality of the experiment’s design. At the same
time it is obvious that the use of an experiment with an orthogonal design matrix does not imply zero
covariances (diagonal covariance matrix of the weights masses estimations) in the case of a common

1This paper was created under the support of Slovak Scientific Grant Agency (VEGA), grants 1/7077/20 and 1/7295/20.
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influence to all measurements. Although this facts has been extensively reported in the literature, and
even in written standards (see e.g. [1], [5], [7], [8], [9]), the paper will present a new aspect in the
assignment of mass values and associated covariances to a set of weights in term of the mass of a single
reference weight. Under satisfying a simply condition the uncertainty of the reference mass value does
not influence the mass values of the unknown weights, but only has to be taken into consideration, when
calculating the covariance matrix of the estimated mass values. In Appendix is given the mathematical
proof of this fact. So it is shown that a intuitively correct widely used procedure is in fact equivalent

to a weighted least squares analysis, in which the variance of the mass value of the reference weight
is included in the covariance matrix of the observations. On a simplified example dealing with the
subdivision of the kilogram according to a specific design we demonstrate above mentioned facts.

2. Preliminary considerations

National standards laboratories need to perform calibration of the mass scale for a minimum range from
1mgto 10kg. The task is performed by the calibration of a set of weights using a one- kilogram standard
(compared with a copy of the International Prototype). This procedure (so calibdating methodlis

based on the performing of more comparisons than is the number of weights calibrated and the task can be
solved using a mathematical statistics method (least-squares method). In the further standardization we
can utilize the calibration method (using some of the standards) or the direct comparison of the calibrated
weight with the standard. In this paper only calibration of the set of weights, not the calibration of
individual weights will be discused.

3. Calibration model

A set of k weights with masses;, -, . . ., B is considered. They are to be calibrated by the standard
with the massn g usingn comparative weightingé&: > k) with different combinations of all weights

from the set, according to the a priori selected calibration scheme. Values of the mass differences
aremp,ma, ..., my,. Further letKg, Kg,,..., Kg, are the buoyancy corrections of the standard and
calibrated weights, respectively. Of course,

K =Vepa, Kg, =Vg,pa, 1=1,2,...,k,

whereVg, Vs, , ..., Vg, are the volumes of the standard and calibrated weights, respectivey,aisd
the air density.
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For example let us have calibration scheme as follows

my +mp—Kg=01+ 02+ 03+ 4 — Kp, — Kp, = Kp; — Kp,

my +mp— Kg =01+ 032+ 3 + 05 — K, — K, — Kp, — Kp;
m3 =01 — 02— 03— B — Kg, + K, + Kp;, + Kp,

my =01 —B2— B3 — Bs — Kp, + Kp, + Kp, + K,
ms = B2 — B3+ Ba— B5 — K, + K, — K, + Kp,
me = B2 — B3 — Bs+ B5 — K, + K, + K, — Kp;
my = B2 — B3 — Kp, + Kp, 1)
msg = B2 — B3 — K, + K,

mg = B2 — B1—PBs — K, + Kp, + Kp,
mio = B2 — 01— D5 — K, + K, + Kp;
myy = B3 — Ba— Bs — K, + Kp, + Kp;
mia = B3 — Ba— Bs — Ky + Kpg, + Kp;
mis = Ba — Ps — K, + K,
mia = B1 — Bs — K, + Kp;

(mg ~ 1kg, 81 ~ 50040, B2 ~ 20049, B3 ~ 20049, 84 ~ 1009, 55 ~ 100g). Generally is assumed that

all weights as well as measuring standard are manufactured from different materials. Practically set of
weights is manufactured from one material and measuring standard from the different one most often.
Then corrections on the air buoyancy are presented only in first two equations of (1). For set of weights
and measuring standard being produced from the same material correction on the air buoyancy will not
be presented in any equation (see example). Denoting

B mi 1 Kﬁl
B2 ma 1 Kpg,

/3 = ﬂ?) , M= ms y Cn,1 = 0 P kﬁ = KﬁB 3 (2)
ﬂk mny 0 Kﬁk
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and

1 1 1 0
1 1 1 0

1 -1 -1 -1 0
1 -1 -1 0 -1
0 1 -1 1 -1
0 1 -1 -1 1

A= , 3)

0 1 -1 0
0 1 0o -1 -1
0 1 0o -1 -1
0 0 1 -1 -1
0 O 1 -1 -1
00 0 1 -1
00 0 1 -1

(A beingn x k design matrix with only elements 1, or —1, for calibration scheme () = 14, k = 5),
above mentioned mathematical (theoretical) model of calibration can be written as

m+cmgp — cKgp = Aﬂ*AK/g.
In general, for an arbitrary x k design matrixA andn x 1 vectore
m+C(mE—KE)+AKg:A,3 (4)

is themathematical modedf calibration (no randomness in model (4) is supposed). It is seen that (4)
is a little simplified model of calibration involving only buoyancy correction. Other influences e.g. heat
expansion etc. are here neglected.

The values of the mass differences, mo, . .., m,, are estimated as results of weighting. Def ;
be the random vector which realizatiomis= (x1, 2, ..., 2,)", z; being the result of—th weighting,
i1=1,2,...,n. We suppose the mean value

E(X)=m
and its covariance matrix

cov(X) = o2diag(u?, ..., u2) = 0> H,, p,

r'n

o? is not required to be knowd,, ,, is n x n known diagonal matrix (measurements are uncorrelatéd),
is the square of uncertainty of thieth used weighting (stated e.g. in the certificate). Further we consider
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independent unbiased measurements of the volpess , . . ., Vs, (€.9. hydrostatic weightings) and of
pa. If we denotet = (¢, €1, . .., &)T the random vector which realizationds= (vg, vg,, . . .,vs,)7,
wherevg, vg,, . .., vg, are the measured values of volumés Vs, , ..., V3, ), then

Vi AZ 0 0

Vs, 0 A% 0

E¢=| . | and cog) = L =A

Vﬂk A%k

(Ae, Ag,,...,Ag, are known or estimated standard uncertainties). Finally ls¢ a random variable

which realizatiory is the measured value pf;, i.e. E() = p4 and its dispersion iﬁ% (known). As¢
and(¢ are uncorrelated, we can (e.g. using [3] or [10]) establish the mean value and covariance matrix of
the random vecton = (£g¢, 61¢, ..., &¢)T as

VEpa Kg
Vs, pa K K
E(n) = 61. = .ﬁl = < KE ) , cov(n) = AIQ)’U’UT +p*A = N.
B
Va,paA Kp,

The set of weightg, 5o, . . ., B is calibrated by the standard weight. Value reproduced by the standard
weight is referred to asg (known) with given standard uncertainty (standard deviatign) Sox g can
be considered as the realization of the random varidljevith E(Xg) = mg and its dispersion ia%.

For our calibration are available
realization of the random vectdf
realization of the random vectgrand
realization of the random variabl€g.

We only note thafX, n and Xz are uncorrelated.

From the mathematical model of calibration (4) we obtain uskKign and X instead ofm,
(Kg, Kg)T andm g so calledstochastic modedf calibration, where the observed random vector

Y =X +cXg+(—ciA)n (5)

has its mean value
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and covariance matrix

I
o’H 0 o T
C c
coWY) = (I,,ic—cA) 0 wi 0 T
T
o 0 N AT
: —c’
= o’H +u%ec! + (—ciA)N ar ) Uy . (6)

(We only note that this stochastic model corresponds to model (3.1) in [4].)

4. Estimation of the mass values, their uncertainties and the covariances among them

According to [10], (see also e.g. in [2], [4]) the BLUE (best linear unbiased estimat@tjof
Z=(ATu,tA)'ATu Y
(obtained by weighted least squares method). Its covariance matrix is
Uz = (AU, 'A)
If the measurement model (calibration model) fulfils the condition
c= Agq, (7)
according to Corollary 2 in Appendix the BLUE of 3 is
Z=(ATH'A)ATH 'Y (8)
(uncertainty of the reference mass value does not influence the estimates of the unknown weights) and
T
Uz =*(A"H ' A)™ +uhqq" + (—qiTix)N ( I:'k ) : (9)
If o2 is unknown, it is estimated according to Lemma 5 in Appendix as

o (X-AATH'A)T'TATH'X)TH (X - A(ATH'A)'ATH 1 X) (10)
g =
n—=k

and so

T
. 14— : —q
HATH A +ubqq” + (—¢iT )N ( ) (11)
k,k

is the unbiased estimator of the covariance mdifix of the estimatolZ.
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5. Example

It is assumed that the calibration model is in the form (1) and the buoyancy correction is equal to zero
(all weights as well as standard are made from the same material) and all uncertainties of weightings are
equal, i.e.H = I. In this caseKr and Kz in (4) are zero and also so argand N. The observed
random vectoly” (see (5)) is

Y =X+ cXg

(cis givenin (2)). Its mean value and covariance matrix are
E(Y)=AB, cov(Y) = oI +uec

(A is givenin (3), san» = 14 andk = 5).
As for g = (5/10,2/10,2/10,1/10,1/10)" is Aq = ¢, the calibration model fulfils the condition
(7). According to (8) the BLUE o8 is Z = (AT A)T ATY’, so the estimators of individual weights are

Z = 0.25(X) + Xa+ X3+ X4+ 2Xp)

Zy = 0.1(X1+ X — X3 — Xy + X5+ Xe + X7+ Xg + Xg + X190 +2Xp)

Zz = 01(X1+Xo—X3—Xy— X5 —X¢— X7 — Xg+ X11 + X12+2XEg)

Zy = 0.1(X;— X3+ X5 — Xo — Xo — X10 — X11 — X12 + X13 + X1a + Xg)

Zs = 01(X2— X4— X5+ Xe— Xo— X10— X11 — X2 — X3 - Xuu+ Xg). (12)

The standard uncertainties of the calculated values of the masses and their covariances, i.e. the covariance
matrix Uz is (according to (9) withV = o)

Uz = o?(ATA)™ +uqq”.

For givenA andgq it holds

25 0 0 0 O 25 10 10 5 5

010 0 0 O 10 4 4 2 2
o2 u?, -

Ur = — —&

Z =700 0 0 10 0 O |+ 100 10 4 4 2 2 (13)

0 0 0 10 O 5 2 2 11

0 0 0 0 10 5 2 2 11

If o2 is unknown, it is estimated from (10). In this case
T
~2 v\ 2

=— X, — X%, 14
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where X; is thei—th element of the random vectetZ — ¢Xp (according to (10) and Lemma 4 in
Appendix).

Presented procedure can be illustrated using data in Table 1. The calibration certificate introduces
following values for the mass standard;z = (1000 — 2.82 - 1073) g, standard uncertaintyy =
0.07-103g.

i 1 2 3 4 5 6 7
xz; (mg) -480 -3.94 4.07 330 -4.77 -3.06 -3.95
i 8 9 10 11 12 13 14

z;(mg) -3.95 -464 4.66 -073 -0.73 -0.76 -0.77

The estimated mass values (i.e. realizatos (z1, 22, . .., z5) of the estimatoZ) are

z1 = 500g+ 1.067mg, zo = 2009 — 3.550mg, z3 = 200 g + 0.380 mg,

z4 = 1009+ 0.147mg, z5 = 1009 + 0.958 mg (calculated from (12)).
For our measured values is the estimaterd{its numerical value, i.e. the realization of the estimator
(14)) equal ta0.0361 mg)2. So from (11) we obtain the covariance matrix of the estimated mass values
for a reference mass uncertainty = 0.07 mg ando? = (0.0361 mg)? as

25 0 0 0 0 25 10 10 5 5
010 0 0 0 10 4 4 2 2
U = 0, 03617 0 0 10 0 O 0.07° 10 4 4 2 2
Z 7 7100 100
0 0 0 10 0 5 2 21 1
0 0 0 0 10 5 2 21 1

1551 4.90 4.90 2.45 2.45
4.90 226 1.96 0.98 0.98
= 107%| 490 1.96 3.26 0.98 0.98
2.45 0.98 0.98 1.79 0.49
2.45 0.98 0.98 0.49 1.79

(In fact it is the estimate of the covariance matlik .)
Uncertainties of the estimated masses (calibrated weights) are:

us00 = 0.040 mg, uz00 = 0.018 Mg, ugpo= = 0.018 Mg, w190 = 0.014 Mg, u19p+ = 0.014 mg.
Covariances among the estimated masses are:

500,200 = 0.000 49 M@?, 500,200+ = 0.000 49 Mg?, us00.100 = 0.000 245 mg?,

500,100+ = 0.000 245 mg?,

200,200 = 0.000 196 MgP, u200,100 = 0.000 098 M@?, 200,100+ = 0.000 098 mg?,
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200+ 100 = 0.000 098 M@?, u200+ 100+ = 0.000 098 mg?,

100,100+ = 0.000 049 mg?.

Calculated covariances are important and cannot be neglected. Even when the orthogonal calibration
scheme has been used (orthogonal matijxthe covariance matrix of the calibrated weights estimations
is not diagonal so that estimations are correlated. It is caused by the use of the same standard for the
calibration of each weight in the set. When three calibrated weights from the set are used (for example
500, 200, 100), value of the sum of the weights will be

250042004100 = 5009+ 1.067mg+ 200g — 3.550 mg+ 100+ 0.147 mg
= 800g— 2.336mg

and the resulting uncertainty (calculated from the law of the uncertainties propagation)

U500-+200+100 = \/ u§00 + ugoo + “%00 + 2u500,200 + 2u500,100 + 2U200,100
= 1/0,0402 10,0182 + 0, 0142 + 2(0.000 49 + 0.000 245 + 0.000 098)
= 0.062mg.

Inthe case that covariances among the weights values are neglected, the resulting uncertainty is as follows

U5004-200+100 = \/ Ugoo + u%oo + U%oo
1/0.0402 4 0.0182 + 0.0142
= 0.046 mg.

6. Discussion and conclusion

The presented contribution shows an evaluation procedure used for the calibration of a set of weights
(similar considerations have been done by the authors in [9]). It respects uncertainties and covariances
presented in the calibration process. The procedure can be used for any set of measurement standards, not
only for a set of weights. The (estimated) covariance matrix of the estimated weight masses (expression
(11)) can be divided into two parts. The matrix

T

G2ATH 'A)! + (—¢' Ty )N ( 1 )
I,

is evaluated by the type A method, if the volumgs, V3, , ..., Vg, and density 4 are measured. If all
guantities are obtained from certificates or tables, the second matrix of the sum is evaluated by the type
B. It is also possible that some quantities are measured and others are obtained from certificates, tables,
etc. The matrix

u%,qq”
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is always evaluated by the type B method (see [6], [7], [8]). The presented numerical example shows the
known fact that covariances calculated using described procedure can obtain non neglectable values and
they should be introduced in the calibration certificates. But the contribution will focus reader’s attention

to condition (7). When the measuring model (calibration model) fulfills this condition, the uncertainty of
the reference mass value does not influence the estimate of the unknown mass values, i.e. the calibration
procedure is equivalent to weighted least squares analysis. It is easy to see that condition (7) could be
without any problems generalized €, , = A,, »Q} , in the case of using reference weights for the
calibration.

Appendix: Mathematical — statistical assertions

Lemma 1. If the mean of the random vect®,, ; is (W) = A3 (A is a knownn x k matrix of rank
k, k < n, B8 is an unknowrk x 1 vector of parameters) and the covariance matrix of the vel&ois of
the form coyW) = Uy = 02Hn7n + ARAT with diagonal matrixel and nonsingular matrixR then

(ATU\XllA)flATU\Xll _ (ATHflA)flATHfl

and
(ATUR A =0*(ATH'A) ' + R.

Proof. It is valid that for nonsingular matriceS, D
(C+BDBY '=c'-c'B(B'c'B+D ) 'BTC!

and
(Cc-BDBT)'=c'-c'B(B"c'B-D ) 'BTC™!

(see e.g. Exercise 2.9, paragraph 1b, in [10]). So
Uy =0 H '~ o *H'A(c?ATH'A+ R ) 'ATH,
AU A=07A"TH'"A—0c?A"TH 'A(c P A" H'"A+ R"') "A"H 'Ac™?

and
(A"Uy A =0 (ATHTA) T + R

Finally

(ATuytAa)tATo,) =

18
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= [02(ATH'A) '+ RIAT[0 *H ' — 0 "H'A(c ?ATH'A+ R°H)TATH Y]
= (ATH'A)'ATH + 0 ?RATH ' — 6 %(c ?ATH'A+ R 'ATH™!
—0'RATH 'A(c ?ATH'A+ R°H)1ATH!
= (ATH'A)'ATH '+ 0 ?RATH ' — 6730 2ATH'A+ R°H1ATH!
—0?R(c?ATH'A+R'-R Y0 2ATH'A+ R ) 1ATH!
= (ATH'A)'ATH!. O
Corollary 2. LetY given in (5) be the observed vector in (stochastic) calibration model which fulfils
condition (7). The BLUEZ of B is

(ATH'A)1ATH Y.
and its covariance matrix is

s/
Uz =c*(ATH A +uiqq” + (—¢I)N < ;] > .

Proof. The mean of the vectd” is A3. Its covariance matrix is (according to (6) and (7))
. —CT

Uy = o’H+ukec! +(—cA)N ( AT )
) _qTAT

= o0’H +u%Aqq" AT + (—~Ag:A)N ( T )

= o’H+ A

. *qT
u%qu + (—q:I)N ( s )] AT
= o’H + ARAT

The regularity of the matrixR is guaranted by the regularity of the matiX = AZvv” 4 p?A. The
assertion is now an easy consequence of Lemnma 1.

Lemma 3. Let Y given in (5) be the observed vector in (stochastic) calibration model which fulfils
condition (7) andZ is the BLUE of3. The random vectok” — AZ has the mean value and the
covariance matrix?(H — A(ATH 1A)~1AT).

Proof. Using Lemma 1 and condition (7) the proof can be easily obtained.
Following assertions can also be proved similarly.

Lemma 4. Let Y given in (5) be the observed vector in (stochastic) calibration model which fulfils
condition (7) andZ is the BLUE of3. Then

Y -AZ=X-AATH'A)'ATH'X.
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Lemma 5. Let Y given in (5) be the observed vector in (stochastic) calibration model which fulfils
condition (7) Then

L (X - A(ATH'A)ATH'X)TH (X - A(ATH'A)TATH'X)
g

n—=k
XT(H_1 — H_lA(ATH_lA)_lATH_l)X
n—k

is an unbiased estimator of.
Lemma 6. Let Y given in (5) be the observed vector in (stochastic) calibration model which fulfils
condition (7) andZ is the BLUE of3. Then

2 (Y —-AZ)Y'TH YWY - AZ)
N n—~k

is an unbiased estimator of.
When the vectoX is normally distributeds? haso?x? _, /(n — k) distribution.
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