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Abstract

In the paper we describe a new application of the ε-proper rounding method to measured values

and their uncertainties and describe exactly the probability properties of the rounded measured values

and their ”ε-proper confidence intervals”. We propose general rules for proper rounding of the

measurement results under uniform distribution assumptions.
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1. Introduction

Let us consider the result of the measurement given in the form

x± s, (1)

where x is a realization of a continuous random variableX with mean µ (the unknown measured quantity)

and dispersion σ2, s2 is the estimate of dispersion σ2. If σ, the standard deviation is known, instead of

(1) we will use the notation x± σ. According to [1], σ is also called standard uncertainty.

In this paper we study from a probabilistic point of view the effect of rounding the measured values and

their uncertainties. Throughout the paper we will assume that the measurement errors follow a uniform
1The paper was supported by grant from Scientific Grant Agency of the Slovak Republic VEGA 1/7295/20.
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distribution. Our aim is to give mathematically correct answer to the following question: How to suitably

round and report the result of measurement, given in the form (1), in such a way that the approximation

error caused by the rounding procedure leads at most to small, well defined and controlled deviation,

say ε, from the nominal probability (significance level) if the standard statistical inference is applied.

The solution to this problem is of special interest for the producers of the measurement devices as well

as for the experimenters who report the results of measurement which are to be implemented in further

measuring process or analysis. The concept called ”ε-properly rounded result” was first introduced in [3]

where the probability properties of the rounded measured values and their ε-proper confidence intervals

were derived under normality assumptions on the distribution of the measurements. The properties of

the rounded measured values under triangular distribution are studied in [4].

2. ε-properly rounded result

Consider a continuous random variable X with mean µ and dispersion σ2. So

ξ =
X − µ
σ

is the standardized continuous random variable with zero mean and unit dispersion.

If the continuous random variableX is uniformly distributed within an arbitrary finite interval (a, b),

i.e. X ∼ Un(a, b), then the random variable ξ has uniform distribution with an expectation value

E(ξ) = 0 and variance Var(ξ) = 1, i.e. ξ ∼ Un(−
√

3,
√

3).

Further, for α ∈ (0, 1) we have

P
{
aα

2
< ξ < a1−α

2

}
= 1− α (2)

where aα
2

, a1−α
2

are α
2 and 1− α

2 quantiles, respectively, of the distribution of ξ. So,

P

{
aα

2
<
X − µ
σ

< a1−α
2

}
= 1− α,

or

P
{
X − σ a1−α

2
< µ < X − σ aα

2

}
= 1− α.

The (1− α)-confidence interval for µ is then defined as a random interval〈
X − σ a1−α

2
, X − σ aα

2

〉
. (3)

If x is a realization of the continuous random variable X then the interval〈
x− σ a1−α

2
, x− σ aα

2

〉
(4)
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is the interval estimate for µ and is a realization of the (1 − α)-confidence interval (3). Note that the

interval (3) is a random interval (the interval estimator) and that the interval (4) is a nonrandom interval

(the interval estimate). For more details see e.g. [2].

The cummulative distribution function (cdf) of ξ is given by

Fξ(x) =


0 if x ≤ −

√
3,

x+
√

3
2
√

3
if −

√
3 < x <

√
3,

1 if x ≥
√

3.

(5)

On the other hand, for α ∈ (0, 1) the inverse of Fξ(a) (the quantile function) is given by

aα = F−1
ξ (α) =

√
3(2α− 1). (6)

First, we introduce two different types of rounding. In the following we will assume standard decimal

notation.

Definition 1. We say that w∗ is rounded to n significant digits (or n significant digit rounding) of the

value w, where n ∈ {1, 2, . . .}, if the following rules apply:

1. If the (n + 1)-st digit in the decimal notation of w is 0, 1, 2, 3 or 4 then the first n digits in the

notation of w∗ remain unchanged, and the remaining digits are zero.

2. If the (n+1)-st digit in the decimal notation ofw is 5, 6, 7, 8 or 9 then the n-th digit in the notation

of w∗ is increased by 1 and the remaining digits are zero.

Corollary 1. If w is rounded to 1 significant digit then

2
3
<
w∗
w
≤ 4

3
. (7)

If w is rounded to 2 significant digits then

20
21

<
w∗
w
≤ 22

21
. (8)

If w is rounded to 3 significant digits
200
201

<
w∗
w
≤ 202

201
. (9)

Definition 2. Let . . . d2102 + d1101 + d0100 + d−110−1 + d−210−2 . . . be the decimal expansion of

|w|. We say that w∗ is rounded to order m of the value w, where m ∈ {. . . ,−2,−1, 0, 1, 2, . . .}, if the

following rounding rules apply:
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1. If the digit dm in the decimal notation of |w| is 0, 1, 2, 3 or 4 then all digits dn of |w∗| with n ≤ m
are equal to zero and the remaining digits are unchanged.

2. If the digit dm in the decimal notation of |w| is 5, 6, 7, 8, or 9 then all digits dn of |w∗| with n ≤ m
are equal to zero, the dm+1 digit is increased by one (with necessary carry over).

Corollary 2. If w is rounded to order m then

|w∗ − w| < 5× 10m. (10)

Assume that the standard uncertainty σ is known and let σ∗ be the approximate value of σ rounded

to n significant digits (according to Definition 1), then we denote

γ =
σ∗
σ
.

Let x be a realization of continuous random variable X and x∗ be the rounded value to order m of x

(according to Definition 2). Let us introduce X∗ the random variable whose realization is x∗. We shall

say that X∗ is the rounded value to order m of X .

The approximate standardized continuous random variable is defined as ξ∗ = (X∗−µ)/σ∗. However,

the probability P{aα
2
< ξ∗ < a1−α

2
} is no more equal to 1 − α as is given in (2). The true probability

will be denoted as 1− α∗ and the following relations hold true:

1− α∗ = P

{
aα

2
<
X∗ − µ
σ∗

< a1−α
2

}
= P

{
γaα

2
+
X −X∗
σ∗

γ < ξ < γa1−α
2

+
X −X∗
σ∗

γ

}
= P

{
γaα

2
+ ∆ < ξ < γa1−α

2
+ ∆

}
, (11)

where ξ is the standardized continuous random variable and ∆ = X−X∗
σ = X−X∗

σ∗
× σ∗

σ .

Definition 3. Let fixed (small) ε > 0 be the allowed maximum deviation from the nominal significance

level 1 − α due to rounding. We say that the rounded result of the measurement experiment x∗ ± σ∗ is

ε-properly rounded if 1−α∗ ≥ 1−α−ε for all α ∈ (0, 1) and α∗ given in (11). The ε-properly rounded

result will be denoted by εx± εσ.

It follows from (11) that for arbitrary α ∈ (0, 1) the random interval

〈εX − εσa1−α
2
, εX − εσaα

2
〉 (12)

(where εX is the continuous random variable whose realization is εx) contains the true value of µ with

probability 1− α∗ where 1− α∗ ≥ 1− α− ε. We shall call it ε-proper (1− α)-confidence interval for

the (true) value µ.
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From the inequality 1− α∗ ≥ 1− α − ε it follows that the random interval (12) contains the (true)

value µ with probability at least 1− α− ε.
The interval

〈εx− εσa1−α
2
, εx− εσaα

2
〉 (13)

is a realization of the ε-proper (1− α)-confidence interval (12).

For given α ∈ (0, 1), γ ∈ (2
3 ,

4
3) (see Corollary 1) and δ ≥ 0 the function

λ(γ, α, δ) = P
{
γaα

2
+ δ < ξ < γa1−α

2
+ δ

}
(14)

is a non-increasing continuous function of δ ≥ 0 (where ξ is the standardized continuous random variable)

attaining its maximum at δ = 0 (note, that the maximum could be attained at many different points) with

λ(γ, α, 0) = Fξ(γa1−α
2
)− Fξ(γaα

2
), (15)

where Fξ denotes the cdf of the standardized uniform distribution. Furthermore,

lim
δ→∞

λ(γ, α, δ) = 0.

In order to derive the ε-properly rounded result in this situation we compute λ(γ, α, 0). According

to (15) for arbitrary γ ∈ (2
3 ; 1〉 we obtain

sup
α∈(0,1)

{(1− α)− (1− α∗)} ≥ sup
α∈(0,1)

{(1− α)− λ(γ, α, 0)} = λ(γ) = 1− γ, (16)

(see Appendix, sup means the supremum operator).

If λ(γ) > ε for chosen (small) ε > 0 and given γ ∈ (2
3 ; 1) then, according to (15) and Definition 3,

there does not exist the ε-properly rounded result even in the case X∗ = X (i.e. if we always use the

exact, not a rounded result x).

The threshold value γ∗ε of γ, for the given ε > 0, is given as a solution of λ(γ∗ε ) = ε, i.e.

γ∗ε = 1− ε. (17)

Further, if we get λ(γ) ≤ ε, for given (small) ε > 0 and γ ∈ 〈γ∗ε ; 4
3〉, then can we compute δε,γ,α,

which is a solution of

Fξ(γa1−α
2

+ δε,γ,α)− Fξ(γaα
2

+ δε,γ,α) = 1− α− ε. (18)

Finally, we also get

δε,γ,max = inf
α∈(0,1)

δε,γ,α = δε,γ,0, (19)
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(inf means the infimum operator). In particular, setting α = 0 and for γ ∈ 〈γ∗ε ; 4
3〉, γ

∗
ε = 1 − ε, from

(18) we have

Fξ(γ
√

3 + δε,γ,max)− Fξ(−γ
√

3 + δε,γ,max) = 1− ε,

and we get the solution

δε,γ,max = γ
√

3− F−1
ξ (1− ε) =

√
3(γ + 2ε− 1). (20)

Let X be rounded to order m such that using (10) the following holds true

|∆| = |X −X∗|
σ∗

γ < 10m
5γ
σ∗

< δε,γ,max. (21)

In this case

10m
5γ
σ∗

< δε,γ,max,

and so, the proper order m of rounding X , for given (small) ε > 0 and for given γ = σ∗
σ , is

m < log10

σ∗δε,γ,max
5γ

. (22)

In fact, for such m and for all α ∈ (0, 1) we get

1− α∗ = P
{
γaα

2
+ ∆ < ξ < γa1−α

2
+ ∆

}
≥ P

{
γaα

2
+ δε,γ,max < ξ < γa1−α

2
+ δε,γ,max

}
≥ 1− α− ε.

In such a way we have obtained the ε-properly rounded result, where εx is x rounded to the above

mentioned proper order m and εσ = σ∗. Then the interval estimate

〈εx− εσa1−α
2
;ε x− εσaα

2
〉

is a realization of the interval estimator (12).

3. Conclusion

The ε-properly rounded result, under the assumption of a uniform distribution of the measured values,

can be obtained by simple two-step procedure:

Step 1

For given (small and positive) ε and γ = σ∗/σ compute the value δε,γ,max according to (20).

(Note that for given ε the values δε,γ,max are defined for γ greater than the threshold value γ∗ε as

defined in (17). Moreover, note that if γ = 1 we do not round the value of σ, i.e. σ∗ = σ.)
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Step 2

Round x to order m to get x∗ where m is given by (22). So we get εx = x∗ and εσ = σ∗, i.e.

the ε-properly rounded result εx± εσ and also the ε-proper confidence interval estimate (13) for

measured µ and arbitrary α ∈ (0, 1).

4. Appendix

Lemma 1. Let ξ ∼ Un(−
√

3,
√

3), α ∈ (0, 1), γ ∈ (2
3 , 1〉, and λ(γ, α, 0) = P

{
γaα

2
< ξ < γa1−α

2

}
,

where aα
2

, a1−α
2

are α
2 and 1− α

2 quantiles, respectively, of the distribution of ξ, then

λ(γ) = sup
α∈(0,1)

{(1− α)− λ(γ, α, 0)} = 1− λ(γ, 0, 0) = 1− γ. (23)

Proof. Using (5) and (6) the following relations hold true:

λ(γ) = sup
α∈(0,1)

{(1− α)− λ(γ, α, 0)}

= sup
α∈(0,1)

{
(1− α)− P

{
γaα

2
< ξ < γa1−α

2

}}
= sup

α∈(0,1)

{
(1− α)−

[
Fξ(γa1−α

2
)− Fξ(γaα

2
)
]}

= sup
α∈(0,1)

{
(1− α)−

[
γ(1− α) + 1

2
− γ(α− 1) + 1

2

]}
= sup

α∈(0,1)
{(1− α)− γ(1− α)}

= sup
α∈(0,1)

{(1− α)(1− γ)}

= 1− γ.
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