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Abstract. In this paper we consider the Kenward-Roger method for interval estimation of the
common mean — the problem which appears in interlaboratory studies but is also closely related to
the multicenter clinical trials and meta-analysis. Here we present the statistical properties (based
on large simulation study) of the proposed Kenward-Roger confidence intervals. The method is also
illustrated by two examples.
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1. Introduction

In interlaboratory trials we consider that the measurements on virtually the same object of interest

are made by k£ > 2 laboratories. The ith laboratory repeats its measurements n; times, n; > 2.

The laboratories may exhibit the between laboratory variability, as well as different within-laboratory

variances (heteroscedasticity). Here we will assume that the measurements follow normal distribution.
We consider the following random effects model:

Yij = p+ Bi + €4, (1)

with mutually independent errors, ;; ~ N(0,02),i = 1,...,kand j = 1,...,n;. We assume that
the laboratory random effects 3; ~ N(0,0%) are mutually independent and independent with all ¢;;.
The variance components o2 and % are the nuisance parameters: the within-laboratory and between-
laboratory variances. The parameter of interest is the (unknown) common mean p. We will use the
following notation: 7; = (1/n;) 352, wijy s7 = (1/(ni — 1)) 52, (yij — 9i)*.

The results of typical interlaboratory studies are presented in Table 1 and Table 2, see also e.g. lyer
et al. (2002) and Rukhin and Vangel (1998).
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Table 1. Selenium in Non-fat Milk Powder Data

Method Ui 512 n; Method Ui 522 n;
A 105.00 85711 8 C 10950 2729 14
B 109.75 20.748 12 D 11325 33640 8

Table 2. Arsenic in Oyster Tissue Data

3 2 3 2

1 978 030 5 8 1288 029 5 15 1348 047 5 22 1398 080 5
2 1018 046 5 9 1296 052 5 16 1355 006 5 23 1422 088 5
3 1035 004 2 10 1300 08 5 17 1361 036 5 24 1460 043 5
4 1160 078 5 11 1308 043 5 18 1378 061 5 25 1468 033 5
5 1201 262 5 12 1330 016 S5 19 1382 033 5 26 1500 071 5
6 1226 083 5 13 1346 021 5 20 138 028 5 27 1508 018 5
7 1288 059 5 14 1348 041 5 21 1394 015 5 28 1548 164 5

If the variance components ¢% and o2 would be known the optimal estimator for the unknown com-
mon mean p would be the generalized least squares estimator (GLS estimator) which is under given
assumptions MVUE — minimum variance unbiased estimator, that is

Y willi

fGLs = 59—, )
i=1 Wi

where w; = 1/Var(y;) with Var(y;) = 0% + o7 /n;. The exact distribution of the estimator is known:
fars ~ N(p, 1/ w;). From that the standard statistical inference on x could be performed.

If the variance components are unknown the feasible estimator, typically considered in applications,
is that given in (2) with the unknown variance components (consistently) estimated. However, it was
demonstrated that the variance of the estimator of the common mean is underestimated by the plug-in
statistic leading to too narrow confidence intervals.

The problem considered here is not new and the literature goes back to Cochran (1937). Currently,
the problem was studied in details by Rukhin and Vangel (1998), Rukhin, Biggerstaff, and Vangel (2000),
lyer, Wang, and Mathew (2002), and Witkovsky and Wimmer (2003).

In this paper we suggest to use a general purpose method for small sample inference for fixed effects
in mixed effects models based on restricted maximum likelihood (REML) suggested by Kenward and
Roger (1997) and based on the results by Harville and his co-workers, see e.g. Kackar and Harville
(1984), Harville and Jeske (1992). Kenward and Roger proposed to use an adjusted F'-statistic (in our
problem it reduces to the ¢-statistic) that reduces small sample bias. Its distribution is approximated by
F-distribution (¢-distribution) with estimated approximate denominator degrees of freedom (DDF). The
method could be easily implemented following the calculations detailed by Kenward and Roger (1997).
The method was implemented in commercial statistical packages, and hence, it is widely available for
applications.

The statistical properties (the empirical coverage probabilities) of the Kenward-Roger confidence
intervals derived based on large simulation study could be compared with the properties of the other
known methods, like e.g. the method suggested in lyer et al. (2002) or in Rukhin and Vangel (1998).

2. Simulation study

In our simulation study we have examined the coverage probabilities of the Kenward-Roger confidence
intervals for the common mean p in model (1). The design of the simulation study is similar to that
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Figure 1: The empirical coverage probabilities of the 95% Kenward-Roger confidence intervals based on
10,000 Monte Carlo runs for each specific design. Here we use the symbol 5/ for designs with o7 = 1,
O for designs with o7 = 2, © for designs with o7 = 3, and O for designs with o7 = 4.

presented in lyer et al. (2002).

Assuming that model (1) is true, we have used the following values of the unknown parameters
in the simulation study: p© = 0, &k € {21,11,5,2}. Given k, four patterns of n; were used: n; =
{2,10,2,10,...},i =1,...,k, further n; = 2 foralli = 1,...,k, n; = 10 for all < and n; = 30 for

all <. The within laboratory variances were equally spaced values of {c%,..., 0%}, where o7 = 1 and
o? € {1,2,3,4}. The values for o% were taken to be {0,1/4,1/2,1, (1 + 02)/2, 02,202, 402 }.
For each combination of parameters, 10,000 independent realizations of 4y, ..., 9 and s3,...,s7

were generated and the 95% Kenward-Roger confidence interval for n was calculated. The relative
frequency of cases such that the Kenward-Roger confidence interval contained the true value ¢ = 0 was
recorded and plotted in Figure 1.

The presented simulation study was performed by using our own MATLAB algorithm, developed for
computing the Kenward-Roger confidence intervals for the common mean. In our calculations, we have
used the inverse of the Fisher information matrix as an estimate of the covariance matrix of the variance
components estimators, as suggested by Kenward and Roger (1997). In the case when the calculated
denominator degrees of freedom, the DDF, was less than 1 we have used DDF=1. Further, if REML
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estimate of any variance component was close to zero, i.e. 52 < 1075, we have changed the elements of
the corresponding row and column of the covariance matrix of the REML variance components estimators
to zeros.

3. Examples

In Table 3 we present the 95% Kenward-Roger confidence intervals for the common mean of the Selenium
in Non-fat Milk Powder Data, see Table 1, and for the common mean of the Arsenic in Oyster Tissue
Data, see Table 2, calculated by the MATLAB algorithm. The REML estimates of variance components
are: 0% = 0.0000, 02 = {96.1276, 19.2132, 2.7051, 43.0776} for Selenium in Non-fat Milk Powder
Data and 0123 = 1.9142 and a? = {0.0911, 0.2160, 0.0016, 0.6114, 6.5210, 0.6830, 0.3454, 0.0839,
0.2687,0.7274, 0.1841, 0.0256, 0.0441, 0.1674, 0.2197, 0.0036, 0.1292, 0.3693, 0.1087, 0.0783, 0.0225,
0.6332, 0.7675, 0.1849, 0.1089, 0.5079, 0.0324, 2.8683} for the Arsenic in Oyster Tissue Data.

Table 3. 95% Kenward-Roger Confidence Intervals for Common Mean
Data Mean Std Error DDF Lower Upper
Selenium  109.5788 0.4244 17.5252 108.6854 110.4722
Arsenic  13.2237 0.2686 26.7840 12.6723  13.7752

4. Discussion

In this paper we have suggested to use the Kenward-Roger confidence intervals for the common mean in
interlaboratory trials. The presented simulation study shows that the suggested confidence intervals have
good coverage properties whenever the number of observations in one laboratory is sufficiently large (say
10 observations per one laboratory). The Kenward-Roger method has comparable properties with the
more sophisticated method based on the generalized p-values suggested by lyer et al. (2002). Moreover,
the Kenward-Roger method has been implemented into the standard statistical software packages like
e.g. SAS. The MATLAB algorithm and its R (S-plus) version is available on request from the authors.
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