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Abstract. In this paper we consider the Kenward-Roger method for interval estimation of the
common mean — the problem which appears in interlaboratory studies but is also closely related to
the multicenter clinical trials and meta-analysis. Here we present the statistical properties (based
on large simulation study) of the proposed Kenward-Roger confidence intervals. The method is also
illustrated by two examples.

Keywords: Interlaboratory study; Common mean; Kenward-Roger Confidence Interval.

1. Introduction

In interlaboratory trials we consider that the measurements on virtually the same object of interest

are made by k ≥ 2 laboratories. The ith laboratory repeats its measurements ni times, ni ≥ 2.

The laboratories may exhibit the between laboratory variability, as well as different within-laboratory

variances (heteroscedasticity). Here we will assume that the measurements follow normal distribution.

We consider the following random effects model:

yij = µ + βi + εij , (1)

with mutually independent errors, εij ∼ N(0, σ2
i ), i = 1, . . . , k and j = 1, . . . , ni. We assume that

the laboratory random effects βi ∼ N(0, σ2
B) are mutually independent and independent with all εij .

The variance components σ2
i and σ2

B are the nuisance parameters: the within-laboratory and between-

laboratory variances. The parameter of interest is the (unknown) common mean µ. We will use the

following notation: ȳi = (1/ni)
∑ni

j=1 yij , s2
i = (1/(ni − 1))

∑ni
j=1(yij − ȳi)2.

The results of typical interlaboratory studies are presented in Table 1 and Table 2, see also e.g. Iyer

et al. (2002) and Rukhin and Vangel (1998).
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Table 1. Selenium in Non-fat Milk Powder Data
Method ȳi s2

i ni Method ȳi s2
i ni

A 105.00 85.711 8 C 109.50 2.729 14
B 109.75 20.748 12 D 113.25 33.640 8

Table 2. Arsenic in Oyster Tissue Data

Lab ȳi

√
s2

i ni Lab ȳi

√
s2

i ni Lab ȳi

√
s2

i ni Lab ȳi

√
s2

i ni

1 9.78 0.30 5 8 12.88 0.29 5 15 13.48 0.47 5 22 13.98 0.80 5
2 10.18 0.46 5 9 12.96 0.52 5 16 13.55 0.06 5 23 14.22 0.88 5
3 10.35 0.04 2 10 13.00 0.86 5 17 13.61 0.36 5 24 14.60 0.43 5
4 11.60 0.78 5 11 13.08 0.43 5 18 13.78 0.61 5 25 14.68 0.33 5
5 12.01 2.62 5 12 13.30 0.16 5 19 13.82 0.33 5 26 15.00 0.71 5
6 12.26 0.83 5 13 13.46 0.21 5 20 13.86 0.28 5 27 15.08 0.18 5
7 12.88 0.59 5 14 13.48 0.41 5 21 13.94 0.15 5 28 15.48 1.64 5

If the variance components σ2
B and σ2

i would be known the optimal estimator for the unknown com-

mon mean µ would be the generalized least squares estimator (GLS estimator) which is under given

assumptions MVUE — minimum variance unbiased estimator, that is

µ̂GLS =
∑k

i=1 wiȳi
∑k

i=1 wi

, (2)

where wi = 1/Var(ȳi) with Var(ȳi) = σ2
B + σ2

i /ni. The exact distribution of the estimator is known:

µ̂GLS ∼ N(µ, 1/
∑

wi). From that the standard statistical inference on µ could be performed.

If the variance components are unknown the feasible estimator, typically considered in applications,

is that given in (2) with the unknown variance components (consistently) estimated. However, it was

demonstrated that the variance of the estimator of the common mean is underestimated by the plug-in

statistic leading to too narrow confidence intervals.

The problem considered here is not new and the literature goes back to Cochran (1937). Currently,

the problem was studied in details by Rukhin and Vangel (1998), Rukhin, Biggerstaff, and Vangel (2000),

Iyer, Wang, and Mathew (2002), and Witkovský and Wimmer (2003).

In this paper we suggest to use a general purpose method for small sample inference for fixed effects

in mixed effects models based on restricted maximum likelihood (REML) suggested by Kenward and

Roger (1997) and based on the results by Harville and his co-workers, see e.g. Kackar and Harville

(1984), Harville and Jeske (1992). Kenward and Roger proposed to use an adjusted F -statistic (in our

problem it reduces to the t-statistic) that reduces small sample bias. Its distribution is approximated by

F -distribution (t-distribution) with estimated approximate denominator degrees of freedom (DDF). The

method could be easily implemented following the calculations detailed by Kenward and Roger (1997).

The method was implemented in commercial statistical packages, and hence, it is widely available for

applications.

The statistical properties (the empirical coverage probabilities) of the Kenward-Roger confidence

intervals derived based on large simulation study could be compared with the properties of the other

known methods, like e.g. the method suggested in Iyer et al. (2002) or in Rukhin and Vangel (1998).

2. Simulation study

In our simulation study we have examined the coverage probabilities of the Kenward-Roger confidence

intervals for the common mean µ in model (1). The design of the simulation study is similar to that
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Figure 1: The empirical coverage probabilities of the 95% Kenward-Roger confidence intervals based on

10,000 Monte Carlo runs for each specific design. Here we use the symbol � for designs with σ2
k = 1,

✷ for designs with σ2
k = 2, ✸ for designs with σ2

k = 3, and © for designs with σ2
k = 4.

presented in Iyer et al. (2002).

Assuming that model (1) is true, we have used the following values of the unknown parameters

in the simulation study: µ = 0, k ∈ {21, 11, 5, 2}. Given k, four patterns of ni were used: ni =
{2, 10, 2, 10, . . .}, i = 1, . . . , k, further ni = 2 for all i = 1, . . . , k, ni = 10 for all i and ni = 30 for

all i. The within laboratory variances were equally spaced values of {σ2
1, . . . , σ

2
k}, where σ2

1 = 1 and

σ2
k ∈ {1, 2, 3, 4}. The values for σ2

B were taken to be {0, 1/4, 1/2, 1, (1 + σ2
k)/2, σ2

k, 2σ2
k, 4σ2

k}.

For each combination of parameters, 10,000 independent realizations of ȳ1, . . . , ȳk and s2
1, . . . , s

2
k

were generated and the 95% Kenward-Roger confidence interval for µ was calculated. The relative

frequency of cases such that the Kenward-Roger confidence interval contained the true value µ = 0 was

recorded and plotted in Figure 1.

The presented simulation study was performed by using our own MATLAB algorithm, developed for

computing the Kenward-Roger confidence intervals for the common mean. In our calculations, we have

used the inverse of the Fisher information matrix as an estimate of the covariance matrix of the variance

components estimators, as suggested by Kenward and Roger (1997). In the case when the calculated

denominator degrees of freedom, the DDF, was less than 1 we have used DDF=1. Further, if REML

55



Theoretical Problems of Measurement • A. Savin, G. Wimmer and V. Witkovský

estimate of any variance component was close to zero, i.e. σ̂2 < 10−6, we have changed the elements of

the corresponding row and column of the covariance matrix of the REML variance components estimators

to zeros.

3. Examples

In Table 3 we present the 95% Kenward-Roger confidence intervals for the common mean of the Selenium

in Non-fat Milk Powder Data, see Table 1, and for the common mean of the Arsenic in Oyster Tissue

Data, see Table 2, calculated by the MATLAB algorithm. The REML estimates of variance components

are: σ2
B = 0.0000, σ2

i = {96.1276, 19.2132, 2.7051, 43.0776} for Selenium in Non-fat Milk Powder

Data and σ2
B = 1.9142 and σ2

i = {0.0911, 0.2160, 0.0016, 0.6114, 6.5210, 0.6830, 0.3454, 0.0839,

0.2687, 0.7274, 0.1841, 0.0256, 0.0441, 0.1674, 0.2197, 0.0036, 0.1292, 0.3693, 0.1087, 0.0783, 0.0225,

0.6332, 0.7675, 0.1849, 0.1089, 0.5079, 0.0324, 2.8683} for the Arsenic in Oyster Tissue Data.

Table 3. 95% Kenward-Roger Confidence Intervals for Common Mean

Data Mean Std Error DDF Lower Upper

Selenium 109.5788 0.4244 17.5252 108.6854 110.4722

Arsenic 13.2237 0.2686 26.7840 12.6723 13.7752

4. Discussion

In this paper we have suggested to use the Kenward-Roger confidence intervals for the common mean in

interlaboratory trials. The presented simulation study shows that the suggested confidence intervals have

good coverage properties whenever the number of observations in one laboratory is sufficiently large (say

10 observations per one laboratory). The Kenward-Roger method has comparable properties with the

more sophisticated method based on the generalized p-values suggested by Iyer et al. (2002). Moreover,

the Kenward-Roger method has been implemented into the standard statistical software packages like

e.g. SAS. The MATLAB algorithm and its R (S-plus) version is available on request from the authors.
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