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 Abstract: Synchronisation appears if two frequency generators are coupled. Because this coupling is 
inevitable a frequency shifting even outside the synchronisation range leads to errors as investigated in detail in 
the paper. Especially the errors caused by this effect were investigated and consequences for the praxis of high-
precision frequency measurement are deduced.  
 
 INTRODUCTION 
 
 Frequency measurement normally compares two frequencies: the unknown frequency Ω1 and the reference 
frequency Ω0 using converter (mixer) principle. The reference frequency Ω0 in most cases is quartz-generated, e.g. 
this frequency may be assumed to be constant. 
Because of the inevitable coupling of the two frequency sources the problem is described by a differential 
equation of Hills type (rheolinear system) leading to two effects: a synchronization – often desirable – and an 
inevitable frequency shifting ∆Ω∗  outside of the synchronization range. In the literature the last mentioned effects 
and therefore these errors are neglected that means the difference frequency is assumed to be 
 
                                                                             ∆Ω = Ω1 - Ω                                                                           (1) 
 
 The paper deals especially with these problems and leads to new results important for praxis of high-precision 
measurements.  
 

1. SUBJECT & METHODS   
 

1.1 Theory of linear system with time-variable parameters (rheolinear systems) 
 
 Because there are always capacitances between the two frequency sources of the mixer coupling between both 
is inevitable. Due to this fact the coupled voltage leads to two consequences: the amplification of the frequency 
generator Ω1 and due to the varactor effect of the transistor the frequency deciding capacitance is varied. 
Therefore the differential equation is 
 
                                                               y`` (t) + a1(t) y`(t) + a2(t) y(t)  = x(t)                                                (2) 
 
where  a1(t) considers the variation of the damping because of the varying amplification and a2(t) the variation of 
the capacitance because of the varactor effect.  
For we are only interested in the Eigenvalues the solution of the homogenous Hill equation is sufficient [1] 
 
                                                                           z(t)`` + Φ(t) z(t) = 0                                                               (3) 
 
To a theorem of Floquet  [2] the following solutions are existing     
 
                                                                        z(t) = eµt f(t) + e-µt g(t)                                                                      (4) 
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The mathematical treatment is very difficult even for the special case of a periodic Φ(t), the so-called Mathieu  
differential equation [3]. Here the Diagram of Ince and Strutt as shown in Figure 1 demonstrates instable regions 
with real parts of the exponent µ  in eq. (4). 
 
 
 

 
 

Figure 1. Diagram of Ince and Strutt 
 
 
 
 We will use another approach to get informations of the behaviour of the system and especially of the 
characteristic exponent µ based on physical considerations and approximations as in principle described in [4]. 
 
2.1.  Investigations using physical considerations 

 
 To apply energy and phase investigations instead of equation (3) we use the so-called Mathieu-equation 
 
                                                          z(t)`` + Ω0

2(1+σ sinω t) z(t) = 0                                                               (5)  
 
describing an oscillator with time-varying capacitance. Following investigations given by Wenke [5] and Erdelyi 
[6] we get a current in phase with the voltage and one with 90o  phase difference leading to a negative damping 
and   to an   additional   capacitance.   This additional capacitance generates a frequency shift, the  possible 
maximum  yields  the  so-called  locking or synchronization range ∆Ωo. Because this parameter may be easily 
measured we will use him to describe the problem instead of σ  in equation (5). As given in details in [7] the 
exponent µ  is 
 

                                                                     22
0 ∆Ω4/∆Ωµ −=                                                                (6) 

 
           ___ 
where ∆Ω means the deviation to the resonance frequency Ωo. 
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Fig. 2. Course of the characteristic exponent µ 
 
 
 Figure 2. shows the course of µ as a function of the normalized difference frequency. Inside the 
synchronisation range ∆Ωo the exponent µ is real, that means a negative damping and not a frequency difference 
(synchronization). Outside this range µ is imaginary, that means a frequency deviation (error) in comparison with 
the ideal difference frequency ∆Ω = Ω1  -  Ω0. 
 
 

2. RESULTS AND DISCUSSION 
 
To gain the error between the ideal difference frequency ∆Ω adequate to equation (1) and the real difference 
frequency we use equation  (6) with ∆Ω=∆Ω  
                                                                   ____________         ____________                                                
                                                        µ = √ ∆Ωo

2/4 - ∆Ω 2 =  j√  ∆Ω 2  - ∆Ωo
2/4                                                       (7) 

 
So the real difference frequency follows 
                                                         ____________  
                                               √ ∆Ω 2  -  ∆Ωo

2/4 = ∆Ω [1– 0,5(∆Ωo
2/4 ∆Ω 2)]                                                  (8) 

 
and  the relative error is 
 
                                                                   – 0,5(∆Ωo

2/4 ∆Ω 2)                                                                          (9) 
 
 That means: If for instance the difference frequency is by the factor 100 greater than the synchronization 
range ∆Ω0  the relative error still runs to 0,125 ⋅ 10 – 4 ! In praxis the permissible error in high precision frequency 
or time measurement may be less than 10 – 10 to 10 –12 [8]. From this fact it follows that the synchronization range 
has to be smaller than 0,3∗ 10–4 to 0,3∗ 10-5 of the difference frequency.  
 In praxis the synchronization range should be measured before frequency measurement. If ∆Ωo is known 
equation (7) can be used for error-correction. 
 If it is not possible to know the synchronization range ∆Ωo one can use the measurement of the distortions to 
gain ∆Ωo, because there exists a relationship between the distortion factor and the synchronization range. The 
reasons for the distortion are relaxations in the neighbourhood of the synchronization border [9]. Here further 
investigations are necessary. 
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3. CONCLUSION 
 
At the beginning an introduction to the theory of systems with time varying parameters – so-called rheolinear 
systems – is given. It is shown that a characteristic exponent µ appears meaning either a negative damping or a 
frequency deviation depending on the value of µ. Using phase and energy investigations the course of this 
parameter in relation to the difference frequency can be gained. From these results follows a frequency error even 
outside the synchronization range. This result is of great importance for high-precision frequency or time 
measurement. The relation of this error with the synchronization range is gained and so it is possible to correct 
this error if the synchronization range is known. If it is not possible to measure the synchronization range the 
distortion factor can be used to gain the frequency error for there exists a connection between both. Here further 
investigations are useful as well as concerning consequences to other fields of measurement.  
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