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Abstract: Quantitative assessment of trabecular bone structure based on magnetic resonance 
microimages requires a segmentation step, which is difficult to perform because of low signal-to-noise 
ratio and spatial signal inhomogeneities in these images. In this paper, we present the design of voxel 
classifiers based on statistical mixture models and classifiers using the feed-forward artificial neural 
networks (ANN). In both cases a Markov random field (MRF) prior model is used to enhance the 
reliability of the segmentation process. 
 
Introduction 
 The most commonly used criterion for the fracture risk prediction has been based on bone 
mineral density (BMD) measurements. Several studies have shown, that this measure alone typically is 
the best predictor of trabecular bone strength, anyhow the density measurements explain just 30%-80% 
of the variation in Young’s modulus [1, 2]. It has been suggested, that morphologic features of 
trabecular bone may help improve the assessment of the bone strength. 
 Magnetic resonance microscopy or µMRI is capable of providing ex-vivo 3D MR images of 
trabecular bone with resolutions below 50 µm, however, the low signal-to-noise ratio and the signal 
inhomogeneities make an accurate segmentation of these images a demanding task [3]. When in-vivo 
MR images are processed, the corresponding lower resolution and resulting partial volume effect makes 
this task even harder. 

 In this work, we describe the construction of two different voxel classifiers. The first one is 
based on a density function mixture model, whereas the other is using an artificial neural network to 
estimate the conditional probabilities of obtaining the input patterns if given voxel belongs to the bone 
or to the bone marrow. The Markov Random Field prior model is used to express the belief, that 
clusters of voxels belonging to the same class have a higher probability than configurations with many 
isolated voxels. This prior belief is incorporated into the segmentation method using the Bayes’ rule. 
 
MATERIALS AND METHODS 
Sample 

A trabecular bone sample of bovine origin was investigated by means of 3D X-ray computed 
micro-tomography. The voxel resolution of the images was 14x14x14 µm3, each slice contained 
2048x2048 pixels and the image consisted of 505 slices. The experiment was performed at the 
SYRMEP beamline of Elettra Synchrotron Light Source (Trieste). 

The mixture model 

The conditional model (likelihood function) is based on the probability of acquiring a 
brightness value x, when the voxel in the measured specimen actually belongs to the class k (in the case 
of trabecular bone image segmentation the voxel can be marked as bone or marrow voxel). In our 
model we assumed, that the probability distribution of brightness values ( )xpI  in an ideal “noise free” 
image is characterized as a mixture of three different probability distributions: i) the distribution of pure 
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bone voxels, modeled as a Dirac Delta function with zero brightness value, ii) the pure marrow voxels, 
following the Gaussian distribution with mean marrowµ  and a small variance 2

marrowσ , iii) the distribution 
of boundary voxels, derived from bone and marrow voxels density functions, assuming the uniform 
distribution of marrow volume fraction in boundary voxels. Since after some initial tests we found out 
that it is impossible to estimate all parameters controlling these distributions from a single 
measurement, we use a fixed mean value marrowµ  and variance 2

marrowσ  for the distribution of marrow 
voxels. These values were estimated through the analysis of a typical trabecular bone MR microimage, 
which was filtered using a nonlinear diffusion filter. In this way we formed a model of brightness 
distribution in an image non corrupted by noise. The probability density function ( )xpN  of voxel 

brightness in the noisy image is derived as the integral ( ) ( )∫
1

0

,| αασα dpxp Irice , where ( )σα ,|xprice  

is the Rice probability distribution and 2σ  is the noise variance estimated from image regions 
containing no signal. The model probability density function ( )xpN  was fitted to the histogram of the 
acquired image using the steepest gradient optimization procedure in order to estimate the unknown 
parameters (the weighting coefficients) (Fig. 1a). When all the parameter of the mixture model are 
known, it is possible to estimate the conditional probabilities of measuring the given brightness value of 
the classified voxel assuming the voxel belongs to a given class (Fig. 1b). 

MRI intensity inhomogeneities are modeled with a spatially varying factor called the gain field. 
In order to estimate the gain in some voxel, the average brightness value in k-pure marrow voxels 
(which is not corrupted by the partial volume effect), which are spatially nearest to the evaluated voxel, 
is computed. The ratio between this value and the average brightness value of pure marrow voxels in 
the whole image gives the gain estimate. The constant k should be large enough to obtain the gain 
estimate with a low variance, but small enough to incorporate even the fastest spatial gain changes. The 
pure bone voxels are selected using an auxiliary segmentation procedure (simple thresholding after 
nonlinear diffusion filtration) as marrow voxels with all neighbors belonging to the marrow. The 
estimated gain is used to scale the probability density function ( )xpN  (it would be more correct to 
weight the value marrowµ  however this computation would be very demanding). 

 
Fig. 1a. Normalized intensity histogram 

of the acquired image and the estimated 
probability distribution 

 
Fig. 1b. Conditional probabilities for voxels 
belonging to the bone or to the marrow 
classe
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Artificial neural network 

 The feed-forward artificial neural network with a single hidden layer can be used as a classifier 
estimating the posterior probabilities of input patterns being of given class, assuming the noise present 
in target values of training data, the sum-of-squares error function and the one-of-k encoding of 
network outputs [4]. In our work we apply such a network with input given by brightness values of the 
classified voxel and voxels lying in defined neighborhood of the classified voxel (typically 6- or 26-
neighborhood). 

The training set is generated using the X-ray computed micro-tomography (µCT) trabecular 
bone images with a low noise level and high spatial resolution (14×14×14µm). Because of these 
properties the segmentation of µCT images is accurate. The segmented images are downsampled to the 
resolution level of microMRI images (from 42×42×42µm for modeling the in-vitro measurements to 
126×126×126µm for in-vivo measurements). In this way also the partial volume effect is simulated. 
The input patterns are picked up from the downsampled image after adding the Rice noise and the 
target vectors are given by the brightness of the classified voxel without noise. The backpropagation 
learning algorithm is applied. 

In this case the noise is present in input patters and not in the target values of training data. 
However, for the sake of simplicity, we still assume that the neural network estimates the posterior 
probabilities. The training set is generated using just the voxels lying in the boundary between the bone 
and marrow. Then the probabilities of a voxel being classified as bone or marrow (class probabilities) 
are equal, and the estimated posterior probability is equal to the conditional probability. 

The resistance of the designed classifier to the spatial signal inhomogeneities is enhanced 
through varying the marrowµ  values in the training sample. In this way we would like to emphasize the 
edge information contained in the input pattern and suppress the importance of the brightness value of 
the classified voxel in the classification process.  

The prior model 

The Bayesian segmentation method incorporates a prior model, which should express the belief 
that clusters of voxels belonging to the same class have higher probability than configurations with a 
large number of isolated voxels. The probability of any configuration of the segmented image is given 
by the Gibbs distribution [5,6], which is a function of potential energies assigned to local voxel 
configurations (therefore this prior model is a MRF). We use the simple Ising model to define these 
energies [5]. 

The Gibbs distribution is controlled by a parameter τ, which measures the rigidity of the 
configuration. The higher τ, the steeper is this distribution, leading to a “smoother” segmentation of the 
image (Fig. 2). Estimation of this parameter is thus an important point in the design of the Bayesian 
segmentation algorithm. 

The posterior probability of a segmented image configuration is proportional to the product of a 
given configuration’s prior probability and likelihood value. A Monte Carlo method with a Metropolis 
stochastic sampler, which takes advantage from the Gibbs distribution properties, is used to find the 
configuration of the segmented image according to the Maximum Marginal Posterior (MMP) rule [5]. 

 
RESULTS AND DISCUSSION 

The evaluation of the designed image segmentation algorithms is based on the comparison of 
trabecular bone morphologic parameters [2] estimated from the segmented and downsampled µCT 
images and from the corresponding MR phantoms processed by both designed methods. The synthetic 
images (phantoms) derived from µCT images present a realistic representation of trabecular bone 
structure and simulate the noise distribution and intensity inhomogeneities typical of the MR images. 
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Until now only a few samples were processed in this way, therefore no reliable quantitative 
comparison of both designed methods with more classical approaches (e.g. nonlinear diffusion filtration 
followed by a simple thresholding procedure) could be done. However some preliminary results have 
shown, that implemented algorithms can be useful in the trabecular bone structure analysis. In the 
future, we intend to estimate the robustness of designed methods to the various levels of noise and 
signal inhomogeneities in processed images, as well as try to investigate the influence of the MRI data 
acquisition process (resolution, number of averages, spin warp or backprojection image encoding etc.) 
on the morphologic parameters estimated from processed images. 
 

 
 
Fig. 2a. A single slice of a MR phantom. 

Resolution 84×84µm. 

 
 
Fig. 2b. A single slice of the image after 

segmentation using the mixture model classifier 
(the same slice as in Fig. 2a). 
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