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Abstract. Digital Signal Processing techniques constitute the basic scientific approach used 
in most of the current advances in medicine. In particular, the development of algorithms in 
order to extract, predict and model raw biomedical data series has revolutionized many 
routine, but data-intensive, areas of current medical practice. In this contribution, we present 
an evolutionary technique for modelling and analysing Non-linear Time Series (NLTS). The 
proposed methodology has been already used in two cases with great biomedical importance 
and we therefore explore its effectiveness on other biomedical signals.  
 
 
1.   Introduction 
 
The central issue in all system identification problems, including non-linear signal processing, 
consists of identifying the optimal model order and computing its parameters, taking real 
observation data as input signals. Going from linear to non-linear system identification makes 
the problem much harder since the set of non-linear models is larger and more complicated 
than the linear one. Therefore, it is important to take into consideration the attributes and 
constraints of each signal, in order to design reliable, accurate and cost effective (real-time) 
applications. 
 
The subject of Non-linear Time Series modelling has attracted considerable attention during 
the last years. So it has been studied extensively from different points of view including 
statistics and identification theory, approximation theory, signal processing, information 
theory, physics and optimisation theory among others and a large number of numerous 
approximate non-linear estimation algorithms, have been proposed for certain data models in 
the relative literature [1-5]. 
 
 
2.   Materials and methods  

 
In our approach, we initially reformulate the problem in the standard state space form and 
implement a bank of extended Kalman filters, each one fitting a different model. In order to 
select the best model, of the bank of candidate models, we use a Genetic Algorithm to give 
optimum estimations of the noise sequences, the variances and the initial conditions of the 
filters [6]. The final selection of the model is based on the maximum a posteriori probability 
criterion, using the Multi-model Partitioning theory [7]. The sequential flow of the proposed 
methodology is shown in the following figure (Figure 1). 
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Figure 1. Sequential flow of the proposed methodology. The Extended Kalman Filter (EKF), Genetic Algorithms 
and the Multi Model Partitioning (MPP) theory are well known signal-processing techniques.  

 
 

 
Taking an observation signal sequence and a noise sequence  from a  
process, as input, where  (N is the number of observations), we firstly implement a 
Genetic Algorithm in order to estimate the unknown values of the noise sequence, the 
variances and the initial conditions. After that, we select the order of the predictor and 
compute the signal  and the predictor coefficients. The population of the Genetic 
Algorithm consists of Extended Kalman Filters, (numbered from EKF(1) (first individual) to 
EKF(max) (last individual) as shown in the above figure). The best model is selected using as 
fitness function for the GA the a posteriori probability, according to the Multi-Model 
Partitioning theory.  
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Specifically, the variables used in the model identification procedure are divided in three 
categories:  

a. The previous values of the dependent variable which lead to autoregressive 
(AR) terms;  

b. Sequences of independent random processes (white noise not necessarily 
Gaussian) which lead to moving average (MA) terms;  

c. Input variables, which are called external inputs and lead to exogenous (X) 
terms.  

 
Therefore, the non-linear autoregressive moving average with exogenous input (NARMAX) 
model can be written as:  

                             ( ) )()(),()1( tetthftx T
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where  is the signal produced by the pure dynamics of the system, is the ambient 
dynamical noise of the system,  is the observation data and  is the external 
(observation) noise. Furthermore,  
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In addition,  and  are known matrix-valued non-linear functions and  is 
the order of the NARMAX model. In the general case,  and are uncorrelated zero 
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mean white noise processes, not necessarily Gaussian, with variances R  and V  respectively; 
ekujxi nkcnjbnia ,...,1:  ,,...,1:  ,,...,1: ===  are the predictor coefficients. The coefficients 

 and  can been replaced by  and  to reflect the possibility that the 
coefficients are subject to random perturbations. This fact can be modelled by assuming that:  
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where  is also a zero mean white noise process not necessarily Gaussian with 
variance W (we assume that processes ,  and  are independent). 
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The NLTS model identification problem is translated to the determination of the unknown 
parameter vector:   
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3.   Results and discussion 
 
Simulations have shown that the proposed methodology selects the correct model order and 
computes the model parameters in real time. In [8] the same methodology was used for the 
modelling and analysis of the Magneto Cardiogram (f-MCG) while in [9] the methodology 
was applied on the Magneto Encephalogram (MEG) of epileptic patients. In the first 
application, the f-MCG signals were generated from the ionic microcurrents of the fetal heart 
recorded with the use of specific Superconductive Quantum Interference Devices (SQUIDs). 
SQUIDs are very sensitive superconductive magnetometers with the ability to detect and 
measure very weak magnetic fields, of the order of fT (= 10-15T) and they can be used ideally 
for the recording of f-MCG, since they do not emit any radiation and they are totally non 
invasive [10]. On the other hand SQUIDs are extremely sensitive and they provide high 
spatial and temporal resolution and therefore they can account as a promising diagnostic 
technique in gynaecology and obstetrics [11]. The derived model can be used for the 
monitoring of pregnancy. 
 
 In the second application, the addressed problem involved the choice of the model structure 
and computation of the coefficients of the system, namely brain structures, which generate 
epileptic behaviour. The observation data consisted of the Magneto Encephalogram (MEG) of 
epileptic patients also recorded with the use of specific totally non-invasive Superconductive 
Quantum Interference Devices (SQUIDs). SQUIDs are considered as a promising diagnostic 
technique for the investigation of neurological diseases and the exploration on normal brain 
function [12], [13], complementary to the EEG method and other brain functioning techniques 
[14], [15]. In general the MEG signals are generated from the ionic micro-currents of the 
brain, originated at the cellular level [16], [17]. The MEG analysis can provide information of 
vital importance for the monitoring of brain dynamics in both normal and pathological 
conditions of the Central Nervous System [18]. Our methodology was used for the analysis 
and classification of the epileptic MEG signals. Using the resulted model, neurologists are 
considerably assisted in order to interpret the information provided, detecting correlation with 
the clinical status of the epileptic patients.  

 
 

4.   Conclusion 
 

The proposed method selects the correct model structure, identifies the model parameters, in a 
sufficiently small number of iterations, and tracks successfully changes in the signal, in real 
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time. Moreover, the algorithm is able to model the ambient as well as the extraneous noise 
that is incorporated in the pure dynamics of the system. Also, it would be of great interest to 
apply the proposed methodology on other biomedical signals. Results of these investigations 
will be presented in the future. Finally, the algorithm can be parallel implemented and also a 
VLSI implementation is feasible which raises its value in practical applications.  
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