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Abstract. Synthetic aperture radar (SAR) images are subject to prominent speckle noise, which is 
generally considered a purely multiplicative noise process. In theory, this multiplicative noise is 
that the ratio of the standard deviation to the signal value, the “coefficient of variation,” is 
theoretically constant at every point in a SAR image. Most of the filters for speckle reduction are 
based on this property. Such property is irrelevant for the new filter structure, which is based on 
directional smoothing (DS) theory, the enhanced directional smoothing (EDS) that removes 
speckle noise from SAR images without blurring edges. We demonstrate the effectiveness of this 
new filtering method by comparing it to established speckle noise removal techniques on SAR 
images. 
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1. Introduction 
 
Synthetic aperture radar (SAR) imaging of the earth’s surface is a valuable modality for remote 
sensing in Argentina, since SAR is able to penetrate cloud cover and is independent of solar 
illumination. However, speckle noise generated from the coherent imaging technique of SAR is a 
serious impediment to computer interpretation of SAR images. This speckle noise can be 
successfully modelled as a purely multiplicative noise process, and as a result several interesting 
properties of the noise can be exploited to help reduce the noise without blurring or distorting 
edges [1]. In theory, the ratio of the standard deviation to the signal value, the “coefficient of 
variation,” is constant at every point in an image corrupted by purely multiplicative noise [1]. 
This property is not true in all the possible used images [2]. We use a new filter structure 
independent of such property which is based on directional smoothing (DS) theory [3], the 
enhanced directional smoothing (EDS) that removes speckle noise from SAR images without 
blurring edges. The new filter structure is able to direct a filtering operation to act over the 
complete image. By directing the smoothing operation away from edges, the filter reduces noise 
while sharpening edges. 
 
Methods used previously to reduce noise in images include speckle filters such as Median, Lee, 
Kuan, Frost, enhanced Lee, enhanced Frost, Gamma or MAP [4-13], morphology-based 
nonlinear filter [14], and DS [15,16]. Another possibility is de-noising a SAR image via wavelet 
shrinkage with a considerable computational complexity [17-24], based on wavelets properties 
[25-38]. 
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2. Methods 

2.1. Speckle Model 
 
Speckle noise in SAR images is usually modelled as a purely multiplicative noise process of the 
form given in Eq.(1) below. The true radiometric values of the image are represented by u, and 
the values measured by the radar instrument are represented by v. The speckle noise is 
represented by s. 

 
v(r,c) = u(r,c) s(r,c)                   (1) 

 
For single-look SAR images, s is Rayleigh distributed (for amplitude images) or negative 
exponentially distributed (for intensity images) with a mean of 1. For multi-look SAR images 
with independent looks, s has a gamma distribution with a mean of 1. Further details on this noise 
model are given in [39].  
 
2.2.  Speckle Reduction via Enhanced Directional Smoothing 

2.2.1 Theory of Enhanced Directional Smoothing 
 
To protect the edges from blurring while smoothing, a directional averaging filter can be useful. 
Spatial averages û(r, c:Θ) are calculated in several directions as 

 

û(r, c:Θ) = 
ΘN

1   v(r-k, c-l)                           (2) ∑
Θ∈Wk

∑
Θ∈Wl

 
- which excludes to v(r, c) - and a direction Θ* is found such that | v(r, c) - û(r, c:Θ*) | is 
minimum. Then 

 
û(r,c) = û(r,c:Θ*)                 (3) 

 
gives the desired result for the suitably chosen window W  and a NΘ  number of directions, and 
where k and l depends on the size of such windows (kernel). 
 
The EDS filter has a speckle reduction approach that performs spatial filtering in a square-
moving window know as kernel. The EDS filtering is based on the statistical relationship 
between the central pixel and its surround-ding pixels as shown in Figure 1.  
 

 

Fig. 1. 3x3 kernel 
 

The typical size of the filter window can range from 3-by-3 to 33-by-33, the size of the window 
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must be odd. A larger filter window means that a larger area of the image can be used for 
calculation and possibly requires more computation time depending on the complexity of the 
filter’s algorithm. If the size of filter window is too large, the important details will be lost due to 
over smoothing. On the other hand, if the size of the filter window is too small, speckle reduction 
may not be very effective. In practice, a 3-by-3 or a 7-by-7 filter window usually yields the best 
results. 
 
EDS performs the filtering based on either local statistical data given in the filter window to 
determine the noise variance within the filter window, or estimating the local noise variance 
using the effective equivalent number of looks (ENL) of a SAR image [24]. The estimated noise 
variance is then used to determine the amount of smoothing needed for each speckle image. The 
noise variance determined from the local filter window is more applicable if the intensity of an 
area is constant or flat whilst ENL is suitable if there are difficulties determining if an area of the 
image is flat. 
 
 
2.2.2.  Algorithms 
 
Algorithm I represents EDS function for four directions and a 3x3 kernel 

1  function v = eds(v,ROW,COL) 
2  for r = 2:ROW-1 
3    for c = 2:COL-1 
4      d(1) = (v(r,c-1)  +v(r,c+1)  )/2; 
5      d(2) = (v(r-1,c)  +v(r+1,c)  )/2; 
6      d(3) = (v(r-1,c-1)+v(r+1,c+1))/2; 
7      d(4) = (v(r+1,c-1)+v(r-1,c+1))/2; 
8      for n = 1:4 
9        D(n) = abs(d(n)-v(r,c)); 
10     end 
11     [Dmin,aDmin] = min(D); 
12     v(r,c) = d(aDmin); 
13   end 
14 end 

 
Algorithm I 

 
where:  

v represents the bitmap matrix of the image 
eds(•) is the function that calculate the enhanced directional smoothing of (•) 
ROW is the number of rows and COL is the number of columns of v.  
d represents the vector of directions 
D represents the vector of absolute differences 
abs(•) is the function that calculate the absolute value of (•) 
min(•) is the function that calculate the minimum of vector (•) and its location 
Dmin is the minimum of vector D 
aDmin is the location of Dmin 

 
Algorithm II represents the homomorphic filter that calls to the EDS function. 

1  [v,map] = imread('namefile.bmp'); 
2  v = double(v); 
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3  [ROW,COL] = size(v); 
4  v = v + ones(ROW,COL); 
5  v = log(v); 
6  v = eds(v,ROW,COL); 
7  v = exp(v); 
8  v = round(v); 
9  v = v - ones(ROW,COL); 
10 v = uint8(v); 
11 imwrite(v,map,'namefileeds.bmp') 

 
Algorithm II 

 
where:  

[v,map] = imread('namefile.bmp'); reads the indexed image in namefile.bmp (Windows 
bitmap) into v and its associated colormap into map. Colormap values in the image file are 
automatically rescaled into the range [0,1].  
double(•) returns the double precision value for (•) 
size(•) is the function that calculate the dimensions of matrix (•) 
ones(ROW,COL) is an ROW-by-COL matrix of ones. 
log(•) is the natural logarithm of the elements of (•) 
exp(•) is the exponential of the elements of (•), e to the (•) 
round(•) is the function that round towards nearest integer of (•) 
uint8(•) converts the elements of array (•) into unsigned 8-bit integers. 
imwrite(v,map,namefileeds.bmp) writes the indexed image in v, and its associated colormap 
map, to namefileeds.bmp 

 
In Algorithm II, the code line “v = v + ones(ROW,COL);” is for avoiding log(0) = - ∞. 
EDS is applied after chirp scaling algorithm [40] or any algorithm for SAR image generation, 
so [41]. 

 
2.2.3. Statistical Measurement 
 
In this work, the assessment parameters that are used to evaluate the performance of speckle 
reduction are Noise Variance, Mean Square Difference [15,16], Equivalent Number of Looks and 
Deflection Ratio [24], where:  
 
 
2.2.3.1. Noise Variance (NV) 
 
NV determines the contents of the speckle in the image. A lower variance gives a “smoother” 
image as more speckle is reduced, although, it not necessarily depends on the intensity. The 
formula for calculating the variance is given in Eq. (4) 

   =  2σ
N
1  u∑

−

=

1

0

N

j
j
2                                               (4) 

2.2.3.2. Mean Square Difference (MSD) 
 
MSD indicates average difference of the pixels throughout the image where uj is the denoised 
image, and vj is the original image. A higher MSD indicates a greater difference between the 
original and denoised image. This means that there is a significant speckle reduction. 
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Nevertheless, it is necessary to be very careful with the edges. The formula for the MSD 
calculation is given in Eq.(5) 
 

 MSD =  
N
1

 (u∑
−

=

1

0

N

j

j – vj )2                           (5) 

where N is the size of the image. 
 
2.2.3.3. Equivalent Numbers of Looks (ENL) 
 
Another good approach of estimating the speckle noise level in a SAR image is to measure the 
ENL over a uniform image region [17]. A larger the value of ENL usually corresponds to a better 
quantitative performance. The value of ENL also depends on the size of the tested region, 
theoretically a larger region will produces a higher ENL value than over a smaller region but it 
also trade-off the accuracy of the readings. Due to the difficulty in identifying uniform areas in 
the image, we proposed to divide the image into smaller areas of 25 x 25 pixels, obtain the ENL 
for each of these smaller areas and finally take the average of these ENL values. The formula for 
the ENL calculation is given in Eq. (6) 
 

ENL = (µ /σ)2                          (6) 
 
where µ is the mean of the uniform region and σ  is the standard deviation of a uniform region 
The significance of obtaining both MSD and ENL measurements in this work is to analyze the 
performance of the filter on the overall region as well as in smaller uniform regions. 
 
2.2.3.4. Deflection Ratio (DR) 
A third performance estimator that we used in this work is the DR proposed by H. Guo et al 
(1994), [17]. The formula for the deflection calculation is given in Eq. (7) 
 

M =  (vr,c – v µ ) / v σ                         (7) 
 

where vr,c  is the scalar pixel value of the image, v µ  is the estimated mean of vr,c  and v σ  is the 
estimated standard deviation of vr,c . The ratio M should be higher at pixels with stronger reflector 
points and lower elsewhere. In H. Guo et al ‘s paper, this ratio is used to measure the 
performance between different wavelet shrinkage techniques on the diagonal subband only. We 
instead apply the ratio approach to the same area for wavelet and a kernel that we identify in 
Fig.1 for our and standard speckle filters. 
 
3. Results 
 
3.1. Performance evaluation 
The simulations demonstrate that EDS algorithm improves the speckle reduction performance to 
the maximum, for single polarization SAR image like fully polarimetric SAR images (when 
available).  
Here, we present a set of experimental results using one ERS SAR Precision Image (PRI) 
standard of Buenos Aires area. Such image was converted to bitmap file format for its treatment 
[42]. 
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3.2. Measurements 

Fig.2 shows a noisy image used in the experiment from remote sensing satellite ERS-2, with a 
540x553 (pixels) x 256 (gray levels) bitmap matrix. Table I summarizes the assessment 
parameters vs. 11 filters for Fig.2, where En-Lee means Enhanced Lee Filter, and En-Frost means 
Enhanced Frost Filter. Fig.3 shows the filtered images in the experiment, processed by using 
eleven speckle reduction schemes: Median, Lee, Kuan, Gamma, Enhanced Lee, Frost, Enhanced 
Frost, Symlet Wavelets basis 4 and 1 level of decomposition, Daubechies 15 wavelet basis and 1 
level of decomposition (improvements were not noticed with other wavelets) [38], DS and EDS 
filters, respectively. 
 
Fig.3 summarizes the edge preservation performance of EDS vs. the rest of the filters with a 
considerably smaller computational complexity.   
 
A 3x3 kernel was employed for all statistic speckle filters including EDS. 
 
The assessment parameters NV, MSD, ENL and DR were applied to the whole image. 
For Lee, Enhanced Lee, Kuan, Gamma, Frost and Enhanced Frost filters the damping factor is set 
to 1, see [5-12]. The quantitative results of Table I show that the EDS can eliminate speckle 
without distorting useful image information and without destroying the important image edges. 
 
In the experiment, EDS outperformed the conventional and no conventional speckle reducing 
filters in terms of edge preservation measured by Pratt figure of merit [3]. In nearly every case in 
every homogeneous region, EDS produced the lowest standard deviation and were able to 
preserve the mean value of the region. The numerical results are further supported by qualitative 
examination (see Fig. 3).  
In the experiment, the filters was applied to complete image, however, only a selected 128x128 
pixels windows is showed for image resolutions considerations.  
 
All filters were implemented in MATLAB® (Mathworks, Natick, MA) on a PC with an Athlon 
(2.4 GHz) processor. 
 
 
4. Conclusions 

In this paper we have developed a new DS algorithmic version based techniques for removing 
multiplicative noise in SAR imagery. We have shown that with a special filter window (3x3 
kernel), the comparison with most commonly used filters (used for SAR imagery [4-38], 
including wavelets) show lower performance than the EDS for the studied benchmark 
parameters. This observation has directed us to formulate a new adaptive edge-preserving 
application of EDS tailored to speckle contaminated imagery. On the other hands, identical 
results obtained with Symlet wavelet basis 4 and 1 level of decomposition were obtained with the 
Daubechies wavelet basis 15 and 1 level of decomposition for the experiment. 
 
The EDS exploits the local coefficient of variations in reducing speckle. The performance figures 
obtained by means of computer simulations reveal that the EDS algorithm provides superior 
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performance in comparison to the above-mentioned filters in terms of smoothing uniform regions 
and preserving edges and features. The effectiveness of the technique encourages the possibility 
of using the approach in a number of ultrasound and radar applications. Besides, the method is 
computationally efficient and can significantly reduce the speckle while preserving the resolution 
of the original image. Considerably increased deflection ratio strongly indicates improvement in 
detection performance. Also, cleaner images suggest potential improvements for classification 
and recognition.  
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Fig. 2. The white square represents the perimeter of the selected windows (128x128 pixels)  
of the ERS-2 image for the experiment. 
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Table I. Assessment Parameters vs. Filters for Fig. 2 
 

Assessment Parameters Filter 
NV MSD ENL DR 

Original noisy image 1.0048e+004 - 7.6266 -4.6797e-004 
Wavelet (sym4) 8.3954e+003 888.5013 21.3135 0.0031 

Wavelet (db15) 8.4049e+003 885.6094 21.2480 3.8729e-005 

En-Frost 7.9526e+003 931.0141 43.6911 -0.0014 
En-Lee 7.9521e+003 930.8242 43.6627 -0.0014 
Frost 8.1157e+003 649.7037 36.3795 -9.4558e-004 
Lee 7.9489e+003 939.4810 43.9331 -0.0014 

Gamma 7.9452e+003 932.9512 43.3836 -0.0016 
Kuan  8.3265e+003 406.7207 23.1285 -0.0013 

Median 7.9524e+003 931.3837 43.6835 -0.0014 
DS 8.8840e+003 255.1525 14.4673 -0.0011 

EDS 8.5924e+003 525.7491 19.0819 -0.0012 
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Fig. 3. (a) Original noisy image (Fig. 2). Filtered images from (b) Median, (c) Lee, (d) Kuan, (e) Gamma, (f) 
Enhanced Lee, (g) Frost, (h) Enhanced Frost, (i) Symlet Wavelets basis 4 and 1 level of decomposition, (j) 

Daubechies 15 Wavelets basis and 1 level of decomposition, (k) DS and (l) EDS filters. 
 

 11


