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Abstract. In this paper we consider the various methods for interval estimation of the common mean
— the problem which appears in interlaboratory studies but is also closely related to the multicenter
clinical trials and meta-analysis. Here we present the statistical properties (based on large simulation
study) of the proposed confidence intervals.
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1. Introduction

In interlaboratory studies we suppose that the measurements on virtually the same object of interest
are made by fixed (k) number of laboratories. The i-th laboratory repeats its measurements ni times,
ni ≥ 2. The laboratories may exhibit different within-laboratory variances (heteroscedasticity). Here we
will assume that the measurements follow normal distribution. We consider the following fixed effects
model:

Yij = µi + εij , (1)

with mutually independent errors, εij ∼ N (
0, σ2

i

)
, for i = 1, . . . , k and j = 1, . . . , ni. The (unknown)

variance components σ2
i are the nuisance parameters: the within-laboratory variances. The parameter

of interest is the (unknown) expected value µ = (µ1, . . . , µk)
′. We can make some inferences about

the expected value µ. The most useful inference is testing about the homogenity of expected value,
i.e. whether the expected values are equal in each class (laboratory).

H0 : µ1 = µ2 = · · · = µk = µ vs. H1 : ∃ such i, j that µi 6= µj . (2)

Interest is about the common mean µ, the common value of the laboratory measurements after
not rejecting the hypothesis H0. In this case we get model:

Yij = µ + εij , (3)

where εij ∼ N (
0, σ2

i

)
, for i = 1, . . . , k and j = 1, . . . , ni are mutually independent.

2. Methods

The task is to make inference about the common mean µ, esp. confidence intervals for µ, so we
need an estimator of µ. Consider an unbiased estimator µ̂ of the common mean µ with variance
Var (µ̂) =

∑k
i=1 λiσ

2
i , where λi > 0. If the variance components σ2

i are known then the pivot

Z =
µ̂− µ√
Var (µ̂)

∼ N (0, 1) (4)
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follows a normal distribution and its derived (1− α) 100% confidence interval is:

µ̂− u (1− α/2)
√

Var (µ̂) ≤ µ ≤ µ̂ + u (1− α/2)
√

Var (µ̂), (5)

where u (.) is quantile function of normal distribution. If the variance components σ2
i are unknown then

we don’t know the exact distribution of Z.
So we want to compare some approximate confidence intervals for common mean derived from

the simple t-statistic, the t-statistic with Satterthwaite’s degrees of freedom, the t-statistic derived
from Kenward-Roger method and by Welch’s quantile approximation.

Interval derived from simple t-statistic.

The simple t-statistic T is given by

T =
Ȳn − µ√
̂Var

(
Ȳn

) (6)

with ̂Var
(
Ȳn

)
= S2/N , where N =

∑k
i=1 ni, Ȳi. = n−1

i

∑ni
j=1 Yij , Ȳn = N−1

∑k
i=1 niȲi., S2

i =

(ni − 1)−1 ∑ni
j=1

(
Yij − Ȳi.

)2
, S2 = (N − k)−1 ∑k

i=1 (ni − 1) S2
i .

This statistic was derived under the assumption of the variance homogenity and has a t distribution with
N − k degrees of freedom. So the (1− α) 100% confidence interval is:

Ȳn − tN−k (1− α/2)
√

̂Var
(
Ȳn

) ≤ µ ≤ Ȳn + tN−k (1− α/2)
√

̂Var
(
Ȳn

)
, (7)

where tdf (.) is quantile function of Student’s t distribution with df degrees of freedom. It is not correct
to use this confidence interval with respect to heterogenity in the error variances.

Interval derived from t-statistic with Satterthwaite’s degrees of freedom.

The t-test, TS , is given by

TS =
Ȳn − µ√
̂Var

(
Ȳn

) (8)

with ̂Var
(
Ȳn

)
= N−2

∑k
i=1 niS

2
i . Satterthwaite approximated in [2] the sum of χ2 random variables

to derive the null distribution of the statistic TS as a t random variable with approximately ν degrees of

freedom: ν̂ =
(∑k

i=1 niS
2
i

)2
/

(∑k
i=1 (ni − 1)−1 n2

i S
2
i

)
. The (1− α) 100% confidence interval is

Ȳn − tν̂ (1− α/2)
√

̂Var
(
Ȳn

) ≤ µ ≤ Ȳω + tν̂ (1− α/2)
√

̂Var
(
Ȳn

)
. (9)

Welch’s quantile approximation.

Consider this probability equation:

Pr

[
Ȳn − µ < u (ξ)

√
Var

(
Ȳn

)]
= ξ. (10)

If the variance components σ2
i are known then equation (10) holds true. If the variance components are

unknown we have only estimators S2
i . Welch’s approach (see [3]) was to approximate the distribution,

i.e. to find such a quantile function h

Pr
[
Ȳn − µ < h

(
S2

1 , . . . , S2
k , ξ

)]
= ξ (11)

that the equation (11) holds true. The (1− α) 100% confidence interval is:

Ȳn − h
(
S2

1 , . . . , S2
k , 1− α/2

) ≤ µ ≤ Ȳn + h
(
S2

1 , . . . , S2
k , 1− α/2

)
, (12)
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where the approximated function h is

h
(
S2

1 , . . . , S2
k , ξ

)
= uξ

√√√√
k∑

i=1

λiS2
i


1 +

1 + u2
ξ

4

∑k
i=1 λ2

i S
4
i /fi(∑k

i=1 λiS2
i

)2 −
1 + u2

ξ

2

∑k
i=1 λ2

i S
4
i /f2

i(∑k
i=1 λiS2

i

)2

+
3 + 5u2

ξ + u4
ξ

3

∑k
i=1 λ3

i S
6
i /f2

i(∑k
i=1 λiS2

i

)3 −
15 + 32u2

ξ + 9u4
ξ

32

(∑k
i=1 λ2

i S
4
i /fi

)2

(∑k
i=1 λiS2

i

)4


 , (13)

where fi = ni − 1, λi =
ni

N2
, for i = 1, . . . , k.

Interval derived by Kenward Roger method

Kenward and Roger in [1] derived the method to estimate the variance of the generalized least square
estimator (GLSE) and derived a test statistic for inference about expected values.

TKR =
Ȳω̂ − µ√
̂Var

(
Ȳω̂

) (14)

with ̂Var
(
Ȳω̂

)
=

(∑k
i=1 ω̂i

)−1
+ 2Λ̂, where ω̂i = ni/S2

i , Ȳω̂ =
(∑k

i=1 ω̂i

)−1 ∑k
i=1 ω̂iȲi. and Λ̂

is penalty derived from Kenward-Roger method in [1]. The statistic TKR has a t distribution with
approximately m̂ degrees of freedom, where degrees of freedom m̂ are derived by Satterthwaite’s
method (see [1, 2]). The (1− α) 100% confidence interval is

Ȳω̂ − tm̂ (1− α/2)
√

̂Var
(
Ȳω̂

) ≤ µ ≤ Ȳω̂ + tm̂ (1− α/2)
√

̂Var
(
Ȳω̂

)
. (15)

3. Simulation Study

In our simulation study we have examined the coverage probabilities of the confidence intervals for the
common mean µ in the model (3). The design of the simulation study is similar to that presented in [4]
by Savin, Wimmer and Witkovský. Assuming that model (3) is true, we have used the following values
of the unknown parameters in the simulation study: µ = 0, k ∈ {2, 5, 10, 21}. Given k, four patterns of
ni were used: ni = 5, i = 1, . . . , k, further ni = {5, 10, 5, 10, . . . } for all i, ni = 10 for all i and further
ni = 30 for all i. The within-laboratory variances were equally spaced values of

{
σ2

1, . . . , σ
2
k

}
, where

σ2
1 = 5 and σ2

k = 5 in first (homoscedatic) pattern and σ2
1 = 1 and σ2

k = 10 (or σ2
1 = 10 and σ2

k = 1 only
in case if ni are not equal) in second (heteroscedastic) pattern. For each combination of parameters, 5,000
independent realizations of ȳ1, . . . , ȳk and s2

1, . . . , s
2
k were generated and the 95% confidence intervals

for µ were calculated and compared. The relative frequency of cases such that the particular confidence
interval contained the true value µ = 0 was recorded and plotted in Figure 1.

4. Discussion and conclusions

In this paper we have suggested to use confidence intervals for the common mean in interlaboratory
trials based on various methods. The presented simulation study shows that the suggested confidence
intervals based on simple t-statistic and Welch’s method have very good coverage properties for almost all
cases. The method based on Satterthwaite’s degrees of freedom has good coverage properties whenever
the number of observations in one laboratory is sufficiently large (say 10 observations per one laboratory)
or number of laboratories is increasing. The method based on Kenward and Roger [1] does not have
good properties for this model with small number of observations in one laboratory.
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The method based on Welch quantile approximation has the best properties, but also the simple t-
statistic gives very good results, except for the case with small number of laboratories and small number
of observations in one laboratory in heteroscedastic case (k = 2 and ni = 5 for all i). In addition this
method is very easily computable.
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Fig. 1. The empirical coverage probabilities of the 95% confidence intervals based on 5,000 Monte Carlo runs
for each specific design, where methods are simple t-statistic ◦, Satterthwaite 2, Welch 3 and Kenward-
Roger4. The letter “a” represents that number of laboratories is ni = 5, “b” represents ni = 5, 10, “c”
represents ni = 5, 10 with alternative pattern of variances only in heteroscedastic case, “d” represents
ni = 10 and “e” ni = 30.
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