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1. Introduction – Sources of Variability

I am often presented with a question what it was like after I left the Institute of Measurement Science
more than 10 years ago and became a biostatistician, whether it was like switching jobs. Here I try to
present ideas and illustrate that both in biostatistics and in some areas of measurement science the same
statistical methods are used, and hence developing fundamentals for statistical methodology is important
and useful for many seemingly different areas of application. I don’t have any ambitions to present here
a list of all statistical methods that may find their applications in both areas, in biomedical as well as
in technical settings. Just to mention some – in medical setting and in actuarial science we talk about
survival analysis or time-to-event models and in technical areas exactly the same statistical models are
used in reliability theory; in developing diagnostic tests we talk about sensitivity and specificity and the
same probabilistic approach is used in, say, laboratory settings when examining assays. In this paper
we try to focus only on mixed linear models, and show their already wide use in metrology or theory of
measurement.

Generally, statistics plays an essential role as soon as we start to deal with observed values -
measurements - data - and we want to make reasonable inference from them, draw a more or less general
conclusion based on observations. Hence, statistics is essential in measurement science particularly in
metrology and theory of measurement, including data and error analysis, standards and calibration. These
include also problems that are related to identifying, estimating, and combining uncertainties, combining
and/or comparing results of measurements from different sources (measurement equipments/systems,
laboratories, etc.), as well as developing methods for designing quality control procedures and establishing
the reliability of measuring systems.

Biostatistics is essentially statistics. It concerns the development of statistical methods and plays a key
role in design and analysis of studies in public health and biomedical research. In analyzing biological
experiments we face several independent sources of variability. Usually the study (experiment) is
designed so that the effectiveness of a certain intervention, say treatment, is to be established (i.e., Phase
II Clinical Trials). For that, a set of markers (variables) is chosen that would be measured. Often the
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subjects are followed for a certain period of time and the same quantity (variable) is measured repeatedly
at predetermined time intervals, say, every month for 2 years. Obviously the measurement is carried out
with some uncertainty (variability) that characterizes the measurement error of the measurement system.
The efficacy of the treatment needs to be tested and conclusions are supposed to be made for a certain
well-specified population. For that, a sample from the population under investigation is taken. In order
to minimize the sampling bias, randomization is carried out, i.e., each individual from the sample is
randomly assigned into, say, two groups – the intervention and the control group. The control group
serves then as a standard, a reference for comparisons and for establishing efficacy of treatment (over
time). When handling each individual measurement separately we can see that in this setting there are at
least three potential sources of error (variability) that we may observe - the biological “between” subject
effect, the “within” subject effect that characterizes the variability of an individual when observed over
time, and the “measurement” error that characterizes the behavior of the equipment that is used in order
to obtain the observed datum.

In technical areas, say when observing the unit under test (UUT), the three potential sources of error
(the between system (unit) effect, the within system (unit) effect, and the measurement error) are also
present, although under reasonable assumptions the between system error is negligibly small compared
to the measurement error, and the within system error is essentially nonexistent since often the system test
is performed at a given real time. On the other hand, in biomedical settings the biological variabilities,
the between and within subject effects, are much higher than the measurement error, which in most cases
is negligibly small.

2. Mixed Linear Model – Two-Way Heteroscedastic Mixed Model

The effects and possible sources of variability are usually modeled such that the sampling design is taken
closely into consideration. Here we assume that the observations on different sampling units (subjects,
etc.) are independent. As soon as the model is set up, it dictates the dependencies between observations,
the covariances (correlations) between each two. Formalizing the above described setting, we may
observe the following. Any single measurement is a function of a subject (unit), treatment, time, and
possibly replication. The simplest model that takes all that into consideration is expressed as:

yijkl = µ + αi + βij + γijk + εijkl . (1)

Here yijkl is the l-th observation (measurement) at the k-th time point on the j-th subject (entity,
concentration, etc.) in the i-th treatment group (by measurement system, laboratory, etc.). µ represents
the common unknown population mean and αi is the fixed effect, say the treatment effect that we would
like to test. All the other terms in the model represent random effects. βij is the random between subject
effect with mean zero and population variance σ2

b ; γijk is the random within subject effect again with
zero mean and with variance σ2

g , and finally εijkl denotes the measurement error that has zero mean, too,
and variance σ2

e . In the special case that we have only one observation at each time point, within-subject
error becomes γijk + εijkl, and the two terms are not separately identifiable. All random variables in the
model representing random effects are mutually independent, that’s how the model is set up. Hence the
variance of a single observation Yijkl, denoted by σ2

y , is then

var (Yijkl) = σ2
y = σ2

b + σ2
g + σ2

e for all i, j, k, l. (2)

The covariances between different replications on the same subject at the same time point are

cov (Yijkl, Yijkl′) = σ2
b + σ2

g for all i, j, k, and l 6= l′. (3)
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Similarly, the covariances between observations on the same sampling unit (subject) at different time
points are

cov (Yijkl, Yijk′l′) = σ2
b for all i, j, l, l′, k 6= k′, (4)

and the covariances between any two observations on different sampling units are 0. If we arrange the
observations in lexicographic order (the indices from the right move the fastest) then we end up with a
covariance matrix that has a block diagonal form, and the resulting covariance matrix for each sampling
unit can be expressed as a linear combination of known matrices and unknown parameters known as
variance components. Our model, since it contains fixed (nonrandom) and random effects, is an example
of a mixed linear model and particularly model (1) represents a two-way mixed linear model.

There are obviously possible variations of model (1). For example, it is often reasonable to assume
that the replications of measurements taken at the same time point on the same subject are independent
and they are carried out in order to increase the precision of each measurement entering the final analysis,
i.e., to decrease the variance of the measurement error. Then after averaging over replications the model
takes the form

ȳijk. = µ + αi + βij + γijk + ε̄ijk.. (5)

Depending on what level of complexity the model has to achieve, we take the investigation further. If,
e.g., the number of replications at each time point for all subjects (units) is the same then if we combine
the last two terms in expression (5) into one, say ε∗ijk, and reparametrize its variance we get

var (ε∗ijk) = σ2
g +

σ2
e

n
= σ2

e∗ , (6)

where n is the number of replicates. If it is not the case and the number of replications is, say njk, then
we end up with different variance components for different sets of measurements. Then we talk about
heteroscedasticity.

The theory of mixed linear models is pretty well developed and has been around for more than 50
years. The origins and motivation for development of these models dates back to late thirties and early
forties. Methods for estimation of fixed effects, for prediction of random effects as well as for estimation
of variance components are implemented in many statistical software packages such as SAS, SPSS, Stata
or S+. In applications, though, there are unaccountable situations and special cases for which the general
approach gives unsatisfactory results due to poor properties of approximations or restrictions on the
model. As an example we can mention an application in medical research that involves, e.g., comparison
of several measurement/calculation methods of certain quantity such as percent body fat, blood pressure,
etc.. Similarly, if combining experiments from different trials or, in other words, applying a meta-analysis
approach to several sets of data, there are questions that have to be addressed very specifically (see, e.g.,
[5] or [7]). If we change a setting and talk about theory of measurement then the same can be said about
comparing or combining measurements from, say, different laboratories or measurement systems (see,
e.g., [14], [20], or [19]).

3. Measurement Methods Comparisons

Let’s look closely at one particular application of mixed linear models that is developed in the biomedical
area and is used also in metrology.

In several of their papers, J.M. Bland and D.G.Altman, see, e.g. [1], [2], and [3], propose a graphical
method for comparison of two different methods of measurement of some quantity and assessment of an
agreement of the two methods of measurements. Their paper in Lancet is as of March 2005 cited more

3



MEASUREMENT SCIENCE REVIEW, Volume 5, Section 1, 2005

Figure 1: Graph of original data; four-compartment calculated vs. DXA % body fat with the regression
line. The estimated regression equation is 4c = 5.076 + 0.872DXA, the correlation coefficient is
ρ = 0.975.

than 9000 times. Their graphical approach is extremely popular in medical applications because of its
simplicity and transparency. Still this topic stirs up discussions and the results are often over-interpreted.

Let’s illustrate the comparisons on an example. In the study, 108, 12-year-old children were measured
by several different body composition measurement methods in order to establish their percent body fat.
For detailed description of the study see [4]. One of the main interests was in comparison of an expensive
method by dual X-ray energy absorptiometry (DXA) with a calculated percent body fat using four
compartments ( body density, body water, height, and weight). Each method of establishing percent body
fat was applied exactly once on each child. As a first step we usually plot the data. Figure 1 shows the
raw data, the four-compartment % body fat vs. DXA % body fat for all children in a study.

For modeling the observations we use the following model.

yij = µ + αi + βj + εij , i = 1, 2, . . . , n, j = 1, 2. (7)

Here we changed the notation since we do not have treatments. Under the present notation, αi is a
random between subject effect, assuming αi ∼ N(0, σ2

a), i = 1, 2, . . . , n; βj is a fixed method effect
where βj represents the bias of each method, j = 1, 2; and εij is the error term, εij ∼ N(0, σ2

j ), allowing
for different variances for the two methods. All random variables in a model are assumed to be mutually
independent. Here we have added an assumption of normality.

We say that two (or more) methods agree if they have the same bias and the same variance. The model
for two measurement methods comparisons involves a common mean (% body fat) that is influenced by
a random between-subject effect (each child has its own value of percent body fat) and two different
within method variabilities (the actual observed values). In order to establish whether the methods agree
we have to test for equality of biases, β1 = β2, and for equality of variances, σ2

1 = σ2
2 .
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Figure 2: Four-compartment calculated vs. DXA % body fat with the regression line and prediction
limits. If the observed value by the 4-compartment method is 20 then we obtain the % body fat by DXA
be inverse regression. In this case the corresponding value is 17. The confidence interval is obtained by
inverting the prediction interval at the observed value of 20, resulting in [12, 22] in this particular case.
The presented values are rounded.

Since we have only one measurement taken by each method, the measurement error variances are not
estimable, but we can test for their equality. However, the idea of testing for equality of measurement
error variances is not new and was already developed concurrently by Pitman in [12] and Morgan in
[11] in 1939. Bland and Altman in their approach use the same idea. Subsequently the same was also
emphasized in [9]. We use the fact that if we create the difference between the two random variables that
represent the measurements by the two methods, Y1 − Y2, and their sum, Y1 + Y2, then the covariance
between these two newly created quantities is

cov [(Y1 − Y2), (Y1 + Y2)] = σ2
1 − σ2

2. (8)

Hence, if we regress the difference between the two measurements against their average and test the
hypotheses that the slope of the regression line is equal to zero, it is equivalent to testing that the two
measurement variances are equal.

Notice that model (7) covers also the case when one of the methods is considered a gold standard.
In general, even in that case the bias or the variance of the gold standard should be compared to the
newly investigated method, although often this fact is omitted. Some authors introduce simpler models.
St. Laurent in [16] investigates comparison of a new method with a gold standard and considers a model

Xi = Gi + εi, i = 1, 2, . . . , n, (9)

where Xi is the new or approximate measure with measurement error εi that has mean 0, variance σ2
e ,

and is independent of the gold standard measurement; the variable Gi is the gold standard measurement
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Figure 3: Four-compartment calculated vs. DXA % body fat with the regression line, prediction limits,
and line of identity. In a regression the test of the simultaneous hypothesis H0 : β0 = 0 and β1 = 1 results
in the observed value F (2, 107) = 59.12 and p-value p < 0.0001, hence the hypothesis is rejected.

with zero mean µ and variance σ2
g . For the measure of agreement between the two methods he considers

the correlation coefficient between the two measurements, which, assuming model (9), is ρ =
σ2

g

σ2
g + σ2

e

.

Nevertheless, as Bland and Altman pointed out correctly, for assessing agreement between two mea-
surement methods even if one of them is a gold standard, using the correlation coefficient is misleading
since it does not take into account the relative bias. We also advocate here against such practice. For
comparisons as well as for calibration, regression methods seem to be the most appropriate. In our
example, if we assume that the DXA method is the gold standard, then Figure 2 illustrates the use of
regression for calibration. A simultaneous test for intercept being zero and slope being one in a regression
of the new against the gold standard methods would serve the goal if the need is to compare and/or assess
the agreement of the two methods. Notice that in our example the correlation coefficient between the
two body fat measures is high, ρ = 0.975, and we see that the simultaneous test for intercept β0 = 0 and
slope β1 = 1 is rejected. Figure 3 illustrates the observed regression line and the line of identity.

4. Testing for equality of biases and variances

It is easy to show that if the number of observations by each of the two methods is equal (balanced case),
the estimates of the means µ+β1 and µ+β2 do not depend on estimates of the unknown variances and are
equal to simple averages of measurements by each method over all units. The test of the hypothesis that

β1 = β2 against a two-sided alternative based on the estimated difference ̂β1 − β2 =
1
n

n∑

i=1

(yi1 − yi2) is

the well known paired t-test with n− 1 degrees of freedom irrespective of whether the variances σ2
1 and

σ2
2 are equal. The test for the equality of variances is in this case the well known t-test that tests that the
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Figure 4: Four-compartment calculated vs. DXA % body fat using the Bland-Altman graph. The
difference is plotted against the average of the two methods. The shaded area represents the area of
agreement defined by Bland and Altman, the area of the mean of the difference ± 2× the standard
deviation of the difference. The prediction region for the difference is also displayed here.

slope of the regression line in regression of differences against the averages is zero. Figure 4 illustrates
the procedure.

5. Generalization for more than two methods comparisons – testing for equality of biases

Testing for equality of biases in model (7) in a general case is not a straightforward procedure. The
situation is much more complicated if we deal with more than two methods and more than one observation
by each method. Even in a balanced case the test for equality of biases is not exact and there are several
approximate F -tests that we may choose from. The model for such a situation takes the form

yijk = µ + αi + βj + γij + εijk, i = 1, 2, . . . , n, j = 1, 2, . . . , J, k = 1, 2, . . . , K. (10)

Here we have an additional random effect γij due to a potential unit-by-method interaction, which is a
realistic assumption mainly in chemical laboratories. We assume that γij is random, normally distributed
with zero mean and variance σ2

g . The number of measurement methods is J and the number of replications
is assumed to be K by each method. We have to test the hypothesis β1 = β2 = . . . = βJ . Now we have
J measurement error variances, as many as there are methods. The empirical best unbiased estimators
of contrasts on biases of, say β1 − βj , for all j = 2, . . . , J , are still independent of the unknown
variance components. It is interesting to point out that the covariance matrix of the vector of contrasts is
independent of the between subject variance σ2

a and depends only on σ2
g and all the measurement errors

variances σ2
j . We may choose to estimate the variance components in the model by some established

method, say restricted maximum likelihood method (REML) and then to use an approximate F -test
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Figure 5: Size and power of four types of tests for equality of biases for four different levels of effect
size. σ2

g = 0. For the sample size of 10, two replications by each of four methods, and the desired size
of 0.05, the dominating power is for the test (+) that uses restricted maximum estimators (REML) of the
variance components and the Fai-Cornelius approximation of the F -test.

based on the approach derived by Fai and Cornelius in [6] or based on Kenward-Roger approximate
F -test, see [8]. Another way is to average the observations over replications and ignore the structure
of dependencies and use the sample variance-covariance matrix estimator. The most intriguing is the
approach that uses the analysis of variance (ANOVA) test as if the variances of all measurement errors
were identical. In [18] a simulation method was used to compare several possible tests with respect to
their size and power. Figures 5 and 6 below show the behavior of power for two different situations, with
the subject-by-method variability being zero and high relative to measurement error variances.

For smaller sample sizes and zero variance σ2
g = 0 the effect of heteroscedasticity seems to be

apparent. The test based on the full model with all variance components estimated by REML and then
using Fai-Cornelius behaves the best with respect to size and power, but requires lots of computations.
In spite of that, in medical but also in the most metrological applications this would be the most
recommended approach. On the other hand, when σ2

g , the subject-by-method variability increases, the
effect of heteroscedasticity is washed out and in that case all tests behave very well with respect to their
size and power. The recommended test is the ANOVA-based test since it is the simplest with respect
to computational complexity. This may be used in some applications in chemical laboratories when the
measurand and the method may interact and influence the response.

There is more work needed in the case of unbalanced designs where the numbers of replications by
respective methods are unequal.
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