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Abstract. In this paper we compare several exact and approximate interval estimators, suggested
in recent statistical literature, for the common mean in the one-way fixed effects model. The the
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comparisons are provided in order to identify the comparison reference value (CRV).

Keywords: Interlaboratory studies; Comparison Reference Value; Common mean; Confidence In-
terval.

1. Introduction

The Mutual Recognition Arrangement (MRA), see [1], prompted research of suitable statistical proce-

dures to summarize the results of interlaboratory comparisons (IC). In this paper we consider particular

type of IC, such that all participating measurement institutes (typically the National Measurement In-

stitutes, NMIs) measure (unbiasedly) the same standard, and no other uncertainty could influence the

measurement process except the measurement errors of the participating NMIs. From statistical point of

view the problem of deriving the comparison reference value (CRV) is equivalent to the problem known

as the common mean problem. In this paper we will present and compare several exact and approximate

interval estimators, suggested in recent statistical literature, for the common mean in the one-way fixed

effects model.

We will consider the following model:

yij = µ + εij , (1)

with mutually independent errors, distributed according to normal (gaussian) distribution, i.e. εij ∼
N(0, σ2

i ), i = 1, . . . , k, and j = 1, . . . , ni. The variance components σ2
i are the nuisance parameters,

which could be, in general, unequal. The outcome of the IC experiment is typically given by the

estimates of NMIs means and error variances. We will use the following notation: ȳi = (1/ni)
∑ni

j=1 yij ,

s2
i = (1/(ni − 1))

∑ni
j=1(yij − ȳi)2.

Under the assumption that IC measurements follow the model (1) and if the variance components

σ2
i are known, the optimal estimator for the unknown common mean µ would be the generalized least

squares estimator µ̂GLS = (
∑k

i=1 ωiȳi)/(
∑k

i=1 ωi), where ωi = ni/σ2
i . The exact distribution of the
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estimator is known: µ̂GLS ∼ N(µ, 1/ωΣ), where ωΣ =
∑k

i=1 ωi. From that the corresponding exact

(1− α)× 100% confidence interval is given by

CI1 :
[
µ̂GLS − u1−α/2

√
1/ωΣ, µ̂GLS + u1−α/2

√
1/ωΣ

]
, (2)

where u1−α/2 denotes the (1−α/2)-quantile of the standard normal distribution N(0, 1). This confidence

interval is based on full information about the model and the nuisance parameters σ2
i , i = 1, . . . , k, which

is in typical applications unknown. However, the interval estimator(2) will serve as a gold standard

(benchmark) in further analysis of statistical properties of the other suggested interval estimators for the

common mean.

If the variance components σ2
i are unknown (only the estimates s2

i are available) the situation is more

complicated, and the exact and optimum (shortest) interval estimator for the common mean µ is not

known. The problem considered here was studied by many authors in the statistical literature, see e.g.

[2, 4, 5, 8, 9]. This paper is also related to the work presented by Savin in [6]. In the next Section we

present some approximate and exact confidence intervals for the common mean which have been proved

to have good statistical properties under different situations.

2. Exact and approximate confidence intervals for the common mean

Fairweather, see [2], suggested the exact confidence interval for the common mean µ based on the

distribution of a linear combination of independent Student’s t random variables, say W =
∑k

i=1 uiti,

where ui, i = 1, . . . , k, denote the nonstochastic coefficients which represent the relative importance of

the participating NMIs, and ti, i = 1, . . . , k, denote the independent Student’s t random variables with

νi = ni− 1 degrees of freedom. If we denote by q1−α/2 the (1−α/2)-quantile of the distribution of W ,

then the exact (1− α)× 100% confidence interval for µ is given by



∑k
i=1

√
ni

s2
i
uiȳi

∑k
i=1

√
ni

s2
i
ui

− q1−α/2∑k
i=1

√
ni

s2
i
ui

,

∑k
i=1

√
ni

s2
i
uiȳi

∑k
i=1

√
ni

s2
i
ui

+
q1−α/2∑k

i=1

√
ni

s2
i
ui


 . (3)

The quantiles of W could be calculated exactly by the algorithm tdist suggested by Witkovský in [7].

Here we consider two versions of confidence interval (3) based on different choice of weights ui,

i = 1, . . . , k: If we have no reason to prefer results of any particular participating NMI, we suggest to

use the confidence interval (3) with ui = 1 for all i = 1, . . . , k, i.e.

CI2 :




∑k
i=1

√
ni

s2
i
ȳi

∑k
i=1

√
ni

s2
i

− q1−α/2∑k
i=1

√
ni

s2
i

,

∑k
i=1

√
ni

s2
i
ȳi

∑k
i=1

√
ni

s2
i

+
q1−α/2∑k
i=1

√
ni

s2
i


 , (4)

where q1−α/2 denotes the (1− α/2)-quantile of the distribution of W =
∑k

i=1 ti.

On the other hand, if we have some prior information on the NMIs error variances (prior to the current

IC experiment), say, we know from preliminary experiments or from the analysis of the measurement

devices that the error variances are σ2
(0)i, we suggest to use the confidence interval (3) with ui =

√
ni/σ2

(0)i

for all i = 1, . . . , k, i.e.

CI3 :




∑k
i=1

√
ni

s2
i

√
ni

σ2
(0)i

ȳi

∑k
i=1

√
ni

s2
i

√
ni

σ2
(0)i

− q1−α/2
∑k

i=1

√
ni

s2
i

√
ni

σ2
(0)i

,

∑k
i=1

√
ni

s2
i

√
ni

σ2
(0)i

ȳi

∑k
i=1

√
ni

s2
i

√
ni

σ2
(0)i

+
q1−α/2

∑k
i=1

√
ni

s2
i

√
ni

σ2
(0)i


 , (5)

20



MEASUREMENT SCIENCE REVIEW, Volume 5, Section 1, 2005

where q1−α/2 denotes the (1− α/2)-quantile of the distribution of W =
∑k

i=1

√
ni/σ2

(0)iti.

Hartung and Makambi in [4] suggested the following approximate confidence intervals for µ, centered

at the Graybill-Deal estimator µ̂GD of µ, see [3]:

CI4 :
[
µ̂GD − tν̂;1−α/2

√
1/wΣ, µ̂GD + tν̂;1−α/2

√
1/wΣ

]
, (6)

where µ̂GD = (
∑k

i=1 wiȳi)/(
∑k

i=1 wi) with wi = ni/s2
i , wΣ =

∑k
i=1 wi, and tν̂;1−α/2 denotes the

(1−α/2)-quantile of the Students t-distribution with degrees of freedom estimated by ν̂ = (2f)/(f − 1),
where

f = 1 +
2

w2
Σ∗

k∑

i=1

wi

ni − 1
(2wΣ − wi), and wΣ∗ =

k∑

i=1

(ni − 3)
(ni − 1)

ni

s2
i

. (7)

The other approximate confidence interval for µ centered at µ̂GD, suggested by Hartung and Makambi

in [4], is the confidence interval given by

CI5 :
[
µ̂GD − tν̂∗;1−α/2

√
λ̂/wΣ, µ̂GD + tν̂∗;1−α/2

√
λ̂/wΣ

]
, (8)

with degrees of freedom estimated by ν̂∗ = 4 + (6f2)/|V − 2f2|, where f is defined in (7), and

V =
2

w2
Σ

{
k∑

i=1

w2
i

(
1 +

14
ni − 1

)
− 8

wΣ

k∑

i=1

w3
i

ni − 1

}
, λ̂ =

ν̂∗
(ν̂∗ − 2)f

. (9)

Krishnamoorthy and Lu, see [5], suggested an approximate confidence interval based on the gener-

alized pivot, which is a stochastic linear combination of Student’s t random variables:

T =

∑k
i=1

niQi

(ni−1)s2
i
(ȳi −

√
s2
i /niti)

∑k
i=1

niQi

(ni−1)s2
i

, (10)

where Qi ∼ χ2
νi

are stochastically independent random variables distributed as chi-squared random

variables with νi = ni − 1 degrees of freedom, which are also independent with ti ∼ tνi . The

(1− α)× 100% confidence interval for µ is given by

CI6 :
[
Tα/2, T1−α/2

]
, (11)

where Tα/2 and T1−α/2 are the quantiles of the distribution of the random variable T given in (10). The

quantiles of T could be estimated by an auxiliary simulation experiment.

3. Simulation study

We have examined the empirical coverage probabilities and the relative average lengths (relative to the

average lengths of CI1) of the interval estimators CI1, . . . , CI6, for nominal level α = 0.05. Assuming

that model (1) is true, we have used the following values of the unknown parameters in the simula-

tion study: µ = 0, k = 9 and the following 10 sample designs used by Hartung and Makambi in

[4]: 1) ni ∈ {{10, 10, 10}, {10, 10, 10}, {10, 10, 10}} and σ2
i ∈ {{4, 4, 4}, {4, 4, 4}, {4, 4, 4}}, 2) ni ∈

{{10, 10, 10}, . . .} and σ2
i ∈ {{1, 3, 5}, . . .}, 3) ni ∈ {{20, 20, 20}, . . .} and σ2

i ∈ {{4, 4, 4}, . . .}, 4)

ni ∈ {{20, 20, 20}, . . .} and σ2
i ∈ {{1, 3, 5}, . . .}, 5) ni ∈ {{5, 10, 15}, . . .} and σ2

i ∈ {{4, 4, 4}, . . .}, 6)

ni ∈ {{5, 10, 15}, . . .} and σ2
i ∈ {{1, 3, 5}, . . .}, 7) ni ∈ {{5, 10, 15}, . . .} and σ2

i ∈ {{5, 3, 1}, . . .}, 8)
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Design CI1 CI2 CI3 CI4 CI5 CI6

1 0.9490 0.9501 (1.05) 0.9501 (1.05) 0.9536 (1.18) 0.9542 (1.18) 0.9618 (1.21)

2 0.9497 0.9478 (1.11) 0.9474 (1.05) 0.9493 (1.18) 0.9500 (1.18) 0.9572 (1.20)

3 0.9494 0.9511 (1.02) 0.9511 (1.02) 0.9537 (1.08) 0.9541 (1.08) 0.9586 (1.10)

4 0.9472 0.9474 (1.08) 0.9473 (1.02) 0.9494 (1.08) 0.9496 (1.08) 0.9541 (1.10)

5 0.9516 0.9522 (1.13) 0.9512 (1.07) 0.9430 (1.20) 0.9462 (1.22) 0.9612 (1.27)

6 0.9478 0.9488 (1.09) 0.9492 (1.11) 0.9448 (1.29) 0.9539 (1.35) 0.9618 (1.32)

7 0.9478 0.9472 (1.27) 0.9453 (1.04) 0.9371 (1.15) 0.9375 (1.15) 0.9561 (1.21)

8 0.9497 0.9515 (1.06) 0.9512 (1.02) 0.9535 (1.08) 0.9540 (1.09) 0.9593 (1.11)

9 0.9472 0.9470 (1.03) 0.9448 (1.03) 0.9495 (1.12) 0.9493 (1.12) 0.9565 (1.14)

10 0.9497 0.9506 (1.18) 0.9481 (1.02) 0.9522 (1.06) 0.9537 (1.07) 0.9574 (1.08)

Table 1: Empirical coverage probabilities of nominal 95% confidence intervals CI1, . . . , CI6 and their

relative (with respect to CI1) average lengths.

ni ∈ {{10, 20, 30}, . . .} and σ2
i ∈ {{4, 4, 4}, . . .}, 9) ni ∈ {{10, 20, 30}, . . .} and σ2

i ∈ {{1, 3, 5}, . . .},

and 10) ni ∈ {{10, 20, 30}, . . .} and σ2
i ∈ {{5, 3, 1}, . . .}. For each particular design we have generated

10000 realizations of the particular interval estimator. Each realization of CI6 was based on another

10000 realizations of the pivotal quantity T given by (10). The simulations show that the confidence in-

tervals CI2, . . . , CI6 have good coverage properties for considered experimental designs. The empirical

coverage probabilities of the approximate confidence intervals CI4, CI5, and CI6 fluctuates around the

nominal level in the range ±1.5%. The average lengths exceed the expected length of the CI1 in the

range 1.02− 1.35.
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