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Abstract. Boltzmann-Jaynes ill-posed inverse problem (BJIP) is usually regularized by means of
extremization of a criterial function. When BJIP is defined by a moment consistency constraint (mcc)
it is natural to place on the criterial function a requirement of complementarity of the extremization
problem with Maximum Likelihood task. Previously, it was shown that Kullback-Leibler (KL) criterion
satisfies the ML-complementarity requirement, while an Empirical Likelihood kind of criterion is
not ML-complementary. Here, it is shown that KL is the only criterion which satisfies the ML-
complementarity requirement. This result at the same time completes a non-axiomatic justification of
Relative Entropy Maximization (REM/MaxEnt) method, since it shows that REM/MaxEnt is the only
method which under mcc transforms potential linearly.
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1. Introduction

Boltzmann-Jaynes inverse problem (BJIP, [8]) arises wherever quadruple of information {X , n, q,Πn}

is available and it is necessary to select one (or more) types from the feasible set Πn. In the quadruple,

X is m-element support of random variable X, of which sequences of length n are assumed to induce

types (i.e., empirical distributions, occurrence vectors) from set Πn; q is the (supposed or true) source of

sequences and hence also of types. BJIP can be met in many branches of science and engineering. For

instance, the problem of ’recovering’ a probability distribution from observations which were measured

within known intervals falls into BJIP category.

In order to solve BJIP (i.e., to select from Πn a type, given the information quadruple) some criterion

(or objective function) is usually employed. This consequently turns the problem of solving BJIP into

a problem of selecting the criterion, and justifying choice of the criterion. At [4], [5] a meta-criterion

for judging ’reasonability’ of the criterion was proposed for the case of the most common instance of

BJIP at which the feasible set is defined by the moment consistency constraints (mcc). There, it was

suggested that the criterion choice problem can be in this case solved by means of Maximum Likelihood

(ML) complementarity meta-criterion.

Relative Entropy Maximization (REM/MaxEnt, cf. [9]) criterion/method is frequently used for

solving BJIP. At [4], [5] it was shown that under mcc REM/MaxEnt is complementary with ML (in other

words: REM/MaxEnt satisfies the ML-complementarity meta-criterion). Acceptance of REM/MaxEnt

as ’the only proper criterion’ for solving BJIP is not equivocal, however. There are several other criteria

in use. An empirical-likelihood sort of criterion was at [5] shown to not satisfy the ML-complementarity

meta-criterion.

The main objective of this paper is to show that if Π is defined by mcc then REM/MaxEnt is the only

criterion which satisfies the ML-complementarity requirement.
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The ML-complementarity approach to the criterion choice problem was formulated geometrically at

[6] where it served also as a basis for a non-axiomatic approach to justification of REM/MaxEnt method

in the case of the feasible set defined by linear moment consistency constraints. The justification arises

from the fact that REM/MaxEnt transforms a potential linearly - hence, in the simplest possible way.

An opened question remained, whether REM/MaxEnt is the only method with this property. This work

shows that answer to the question is affirmative.

2. Criterion Choice Problem: ML-complementarity approach

First, moment consistency constraints should be recalled. Let there be a random sample of sufficiently

large size n which supposedly or truly comes from q, and a given function (called potential) u(X) of

the random variable X. Based on them, an average a of the potential u is a =
∑m

i=1 νn
i ui where νn

i is

relative occurrence of i-th element of X at the sample (i.e., νn is type induced by the random sample).

Moment consistency constraint equates together expected value of u and the average a, and this way it

forms a feasible set Π of probability mass functions (pmf’s) p; Π = {p :
∑m

i=1 piui = a}.

BJIP with Π defined by mcc (mcc-BJIP) can be solved by means of a criterion C(p). Let C be a class

of all criterial functions C(p) such that 1) C(p) is in order to solve mcc-BJIP extremized subject to mcc,

and 2) First Order Conditions of the extremum lead to a family of pmf’s p(λ) parametrized by a lagrange

multiplier λ of the constrained extremum problem. Let the value of the parameter λ which satisfies mcc

be λ̂.

Provided that we restrict ourselves in solving BJIP with mcc to criteria from the class C, it is natural

to require that a criterial function C(p) satisfies a requirement of complementarity with a Maximum

Likelihood task, cf. [4], [5], [6]. It is instructive to break up formulation of ML-complementarity

meta-criterion into two parts: 1) a self-standing requirement for the ML task, 2) a requirement for

mcc-BJIP:

1) ML task: Let there be a random sample of sufficiently large size n such that it induces type

for which
∑m

i=1 νn
i ui = a. It is assumed that source of the sample lays in a parametric family p(λ)

which is parametrized by single parameter λ. Let λ0 be the value of λ such that f(λ0) ∈ Q, where

Q = {q : Equ(X) = a}. Let λ̃ be the sample-based ML estimate of λ. It seems reasonable to put on

the form of the parametric family f(λ) such a requirement that p(λ̃) should have value of the theoretical

u-moment E
p(λ̃)u(X) equal to a; i.e., p(λ̃) should solve mcc. In other words, λ̃ ≡ λ0. This will be

called ”Requirement of internal consistency of ML task”.

2) BJIP with mcc asks to select a probability mass function p from Π = {p :
∑m

i=1 piui = a}. A

criterion C(p) ∈ C for selection of pmf should be such that it will under mcc choose such a family of pmf’s

p(λ) which – when used at the ML task – satisfies the Requirement of internal consistency of ML task, for

any random sample of sufficiently large size n which induces type νn from Rn = {νn :
∑m

i=1 νn
i ui = a}.

Note, that this in turn guarantees that p(λ̂) = p(λ̃).

3. REM/MaxEnt as the only ML-complementary method

It remains to show that C(p) = ±
∑m

i=1 pi log(pi/γi) is the only criterial function from C which satisfies

the ML-complementarity meta-criterion. It will be done in two steps. First, it will be shown that p(λ)

should have the form of cγie
−λui in order to satisfy the Requirement of internal consistency of ML task.

At the next step, it will be shown that extremization of C(p) = ±
∑m

i=1 pi log(pi/γi) under mcc leads to
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the above parametric family.

Step 1: Given a random sample/type r from Rn, and supposed parametric family p(λ) from which

the sample was drawn the ML task is to find ML estimator λ̂ of λ as arg maxλ

∑m
i=1 ri log pi(λ). Since

pi(λ) can be written as pi(λ) = k(λ)f(λ, xi), where k(λ) = 1/
∑m

i=1 f(λ, xi) and p′λ = k′

λf + kf ′

λ the

score equation (i.e., FOC) becomes

m∑

i=1

ri

k′

λ

k
= −

m∑

i=1

ri

f ′

λ

f
. (1)

The score equation (1) should be identical with mcc:

m∑

i=1

piui =
m∑

i=1

riui. (2)

Since k, and k′

λ are constants, equating LHS of (1) and (2) leads to requirement

k′

λ

k
=

m∑

i=1

piui. (3)

Equating RHS of (1) and (2) leads to requirement

f ′

λ

f
= −ui. (4)

Requirements (3) and (4) are satisfied only by the exponential family pi(λ) = k(λ)γie
−λui , where

γi ∈ R.

Step 2: It is necessary to find out a criterial function C(p) ∈ C, extremization of which under mcc

leads to the exponential family of pmf’s

pi(λ) = k(λ)γie
−λui . (5)

Lagrangean C(p) + λ(a −
∑

piui) + µ(1 −
∑

pi) is extremized wrt pi for a pi which satisfies

C ′

pi
= λui + µ. (6)

At the same time (5) implies that − log pi = λui − log k(λ)− log γi. This, compared with (6) shows that

1) log k(λ) = −µ and 2) C ′

pi
= − log pi +log γi. (The other possibility, namely that log k(λ)+ log γi =

−µ and C ′

pi
= − log pi would imply that C(p) = −pi log pi which in turn would lead through the

extremization of the lagrangean to conclusion that −µ = 1+ log k(λ), which implies that log γi = 1 and

leads to nowhere). The second requirement then implies that C(p) = −pi log(pi/γi) + pi + d.

It is straightforward to see that this C(p) should be maximized (−C(p) minimized), in order to attain

the ML-complementarity. Since the feasible set is convex and the criterial function is concave (convex)

the maximum (minimum) is unique.

4. Notes

1) A meta-criterion which leads to the same conclusion as the ML-complementarity meta-criterion, has

already been considered in the literature. Based on an analogy with the directed orthogonality principle

for linear projections in Hilbert space, Jones [10] advocated a directed orthogonality meta-criterion for
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criterion selection in mcc-BJIP. Earlier, Campbell [1] demonstrated that under mcc-BJIP, REM/MaxEnt

and a method based on Gauss’s principle are equivalent.
2) Moment consistency constraint equates theoretical and empirical moment. This is reasonable if n - the

sample size - is either sufficiently large or not known. If n is known and not ’sufficiently large’, then one should
consider BJIP with set Πn in place of Π (then, clearly, REM/MaxEnt does not lead to the exponential family).
However, it is (strangely) more common, to consider BJIP with Π defined by mcc even when n is finite and known.
Then, MaxEnt/REM under mcc remains ML-complementary, regardless of n. Objective functions of ML task with
exponential family and REM/MaxEnt task under mcc, however, attain a compatible relationship only for n → ∞,
cf. [7].

3) Though nothing restricts γ to be a pmf it seems natural to identify γ with q, since p(λ) should be also a
function of q, regardless of whether q is viewed as the true or supposed source.

Note that each of the views of q implies different interpretation of mcc-BJIP. If q is taken to be the true source
of the sufficiently large random sample and the sample average of u(X) is different than Equ(X) then it implies
that a large deviation occurred. In mcc-BJIP, where the sample is not given to us, we are thus interested in guessing
a structure of the deviation. On the other hand, if q is viewed as an a-priori source, then mcc-BJIP can be be viewed
as a problem of ’induction’.

4) It should be stressed out, that REM/MaxEnt was shown to be the exclusive ML-complementary method,under
the linear moment consistency constraints, only. The ML-complementarity meta-criterion is itself applicable for
selecting among criteria from class C, only. Thus, other approach should be taken in order to justify REM/MaxEnt
under a broader setting. Indeed, there exist axiomatic (cf. [2], [11]) as well as a probabilistic justifications [3] of
REM/MaxEnt which are not limited to mcc instance of BJIP.

5) The mcc defines feasible set Π which is convex. If C(p) ∈ C is a convex (concave) function of p then
there exists to the problem of its minimization (maximization) under mcc a dual problem. It is worth noting that if
the criterial function is Kullback-Leibler distance (relative entropy) then the complementary ML task is formally
identical to the convex dual problem. For any other convex (concave) criterial function the respective ML task is
not complementary (as it was shown here), yet its convex dual problem exists.

6) The above argument could be made also for continuous random variable X , at a price of involved techni-
calities. The argument directly generalizes to the case of several moment consistency constraints.
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