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Abstract. Taylor linearization methods are often used in nonlinear regression models to simplify
statistical inferences. Criteriafor correct use of such methods are often build on intrinsic curvature of
theoriginal model. Whentheprior distribution of parameter of expectationisknown, thelinearization
by smoothing can be used instead of Taylor linearization. Criteriafor itsuse should be based on some
alternative measure of intrinsic curvature. e propose such a measure in the case of one dimensional
expectation parameter.
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1. Introduction

We consider anonlinear regression model
y=n(0)+e 6O CRP, )
g~ N(O,O’QINXN),

wheren(.) : © — R is measurable mapping, v € RY are measurements with errors ¢, 6 are unknown
parameters, I isidentity matrix, and o > 0 is unknown number.

Some of the properties of the model (1) can be studied by means of differential geometric properties
of its expectation surface, i.e. of the set

& = {n(0);0 € ©} (2)

(seee.g. [7]). One of the most important characteristics is the intrinsic curvature Kjn(6) of the model
(2) in the point 6:

7 — P(O)]u" H(O)ul|

Kin(0) := ,0 €int©, 3
() ueﬂz:’l{){ﬁ} u M(6)u )
e (6) 007 (6) 90(6) _, 00" (6)
on(@) on' (0)on(d),_,0n' (0
P =
() 097 ( 09 907 ) 00

is the projector onto the tangent space of manifold &, in the point 6, M (6) := %%"T@ and H(0) :=
g;gg@ is 3—dimensional array of the second derivatives. For example, some functions of this quantity
can serve as criteria of admissibility of Taylor linearization of model (1) in some a priori given point 6°

with regard to various kinds of statistical inferences, see[5] or [4].
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If the prior information on parameter 6 is in the form of prior distribution = on ©, linearization by
smoothing of model (1) (see[8]), i.e. the model

y=A0+a+e¢e 6 € ©CR?, (4)
5’”<A“0702LVXNJ3

where A := Couv,(n,0)Var 10 anda = E,n— AE,0, canbemoreappropriatethan Taylor linearization.
However, it is obvious that criteria of admissibility of (4) should have the form different from those in
[4]. In particular, it is necessary to find some suitable analogue of (3). One such analogue in the case of
1—dimensional parameter 6 will be given in the next part. Now we review some known facts about the
so-called intrinsically linear models, i.e. models (1) with the property Kin(0) = 0 for al § € int© (see

[7D.

LeMMA 1. ([7]) Model (1) jeintrinsically linear iff &, isrelatively open set in some k—dimensional
affine subspace in RY, where k < p.

Sinceinintrinsically linear models some statistical procedures have better properties than in general
model (1), it isanatural question whether the given model (1) can be sufficiently precisely approximated
by anintrinsicaly linear one.

If aprior 7 is given on the parameter space O, the intrinsically linear approximation of model (1)
with the minimal prior mean squared error is described in the following proposition:

ProrosITION 1. ([2]) Let &, isap—dimensional manifold, let 7 be regular probability distribution
on ©. Then the optimal intrinsic linearization of the model (1), i.e. the solution of the problem

Cri= min E{[n(6) — (AB(0) + a)][n(0) — (AB(6) +a)] T}, (49)
h(A)=p
acRN
B(.):0—RP
or equivalently
cr:= min  E[|n(0) - (AB(0) + a)|’] (4b)
AERNxp
h(A)=p
a€RN
B(.):©6—RP
is
A:(UL...,’LLP), (5)
a=FEn,
BO) = (ATA) AT (n(6) - a),
Cy = —-P)Varyn(I — P),
N
cp =trCy = Z A,
i=p+1
where wq,...,uy are orthonormal eigenvectors, corresponding respectively to eigen-
values \; > --- > Ay > 0 of thematrix Var,(n), P := Py := U(UTU)_lUT, U .= (u1 up>.

If the model (1) isregular then k& = p.

41



MEASUREMENT SCIENCE REVIEW, Volume 6, Section 1, No. 4, 2006

Optimal intrinsically linear approximation of the model (1) from the proposition 1 is

y=AB0) +a+e=AATA)TTAT () — Exn) + Exn+¢,
e~ N(0,0°1), (6)

where A isthe same asin proposition 1.
The following lemma gives another characterization of intrinsically linear models:

LEMMA 2. ([3]) Let en isa p—dimensional manifold. Let 7 be regular probability distribution on
©. Themodel (1) isintrinsically linear with 7— probability 1 iff h(Var,n) < p.

2. 2. Approximation of intrinsic curvature by prior moments

Proposition 1 suggests that minimal square " distance”

N
c = Z i (7)
i=k+1
from linearized model (6) from the original model (1) can be considered as a measure of intrinsic
nonlinearity of the model (1). However, for sequence of priors 7 contracting to singular distribution
concentrated in 6°, this expression converges to zero, so it cannot be used directly as approximation of
intrinsic curvature Kin(6") but only after some suitable standardization. In what follows we derive such
standardization for case p = 1. We shall utilize some known propositions.
In thefirst one, the approximation of matrix of first derivatives of the regression function 7(.), based
on moments of prior 7 and utilizable for 7 concentrated in asmall neighbourhood of #°, is given:

PROPOSITION 2. ([8]) Letn(.) be2—timescontinuously differentiable. Let {r,;n € N} isasequence
of regular prior distributions with supports that are subsets of some common compact subset of ©. Let
for Vn there exist finite moments £, (), Ex, (n), Varz, (0), Covs, (n,0), Vary, (n), let Var,, (0) are
regular, let Cov,,, (1, 8) have the full rank. Let

weakly
Tn, o,

where 7 is distribution concentrated in the point 6°. Then

lim E,0 = 0°, lim B,n = n(6°),
0
nh_)rgo Ag, i = nh—>Holo Covy(n,0)Varo = agéi ) (8)

Similarly, the approximation of the second derivatives of 7(.) can be derived:

ProPOSITION 3. ([3]) Let the assumptions of proposition 2 hold. Let 7(.) isthreetimes continuously
differentiable on ©. Let

"Pn(0°)" = (8*m1(6°), 0% 2(0°), ..., 0%m p(0°), 0%12,2(6°), %2 3(6°), . .., 0P p(6°), . .., 0% mpp(6°))

iSN x (p+(5)) matrix. Let0®? = (6%, 616,,...,616,03,0205,...,620,, ... ,9112))T is(p+(5))—dimensional
vector, let Fyisa (P3') x (P1') diagonal matrix withd;!...4,! asits (i1, .. . , i,)—th (in lexicographical
ordering) diagonal element, wherei,, > 0; u = 1,...,p, areintegerssuch that 7; 4 - - - 4+ 4, = 2. Then

lim [Covy, (0, 09%) — Cov,(n, 0)Var,F0Couv, (8, 0°*)][V ar,8°% — Cov, (%2, 0)Var, 0Cov,(0,0°%) " Fy =

:”6277(00)7’.

42



MEASUREMENT SCIENCE REVIEW, Volume 6, Section 1, No. 4, 2006

If prior 7 is concentrated in a small neighbourhood of the point #°, then the expectation surface of
optimal intrinsic linearization is close to the affine tangent space of expectation surface of the original
mode! in point A°. It means that the space generated by eigenvectors i, . . ., u; of the matrix Var,n is
near to the tangent space of expectation surface &, of the model (1) in the point 1(6°), i.e. the projectors
onto these spaces are close to each other:

THEOREM 1. ([3]) Let us consider the function 7(.) and a sequence of priors 7, with the same
properties as in proposition 2. Let AT > --- > A% be eigenvalues and u7, . .., u%; are corresponding
orthonormal eigenvectors of the matrix Var,,n. Let n(.) be two times continuously differentiable on

©p. Let V limit point of the sequence{”x::"gu}go:l be a regular matrix. Then

lim P
n—oo (“gn) >~~~:u§{n))

lim P, o) my, =1 —P.

n—oo (uk+17-"7uN )

=P := PanwO), (9)

90T

COROLLARY 1. Let the assumptions of theorem 1 hold. Then the sets of limits of all convergent
susequences of sequences

Kie 7'('9
Vary,n and 91 Varg,

L ATmaT_ W) T 14
Vars, o] Vars o] (19

areidentical.

. 82n(6°) . .
Letg:= dlm([{(I—P)%Q%J =1,...,p}).

THEOREM 2. Lettheassumptionsof theorem1 hold, let p = 1. Moreover, let the following assertions
about limits hold:

Vary, [(0 — 6°)?]

lim sup

n—oo ||Va/7‘7rn0||2
isfinite and positive,
. Ex [(9 — '90)2]
1 _nty 7 C
o [Vary, 0] |

Vary,0* — Covg, (62,0)Var; '0Cour, (6,6%)

lim sup

n—o0 ”VQTMHHQ
isfinite
and
B, [0P0(67)(8 — 69)%(8 — En,0)]
1 - &
P [Vare, 0]
isfinite,
Then
w8 Fuf iy = TP (9
where
2 0y . 92n(0° 92n(6° 92n(0°
(I = P)o™n(6") := (I - P) (89?5901) aez(ael) aez(ae,,)> :
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Proor.
(I = P\Varmn(I = P) = (I = P)E[(n(0) — Exn)(n(0) — Exn) (I - P) =
(I = PYBLI((6") ~ Exn+ 9n(6")(6 — 0°) + 50Pn(6°)(0 — 0°)+
+ £0(0%) (0 — 0 0(0) — Ben) (1~ P) =
=(1 — PY{0n(8°)Coug(6,n) + 50°n(6°) Ex[(0 — 0°)2(n(6) — Ben) |+
+ SEL0P(07)(0 — 0°P) (0(6) — Ben) TIHT — P) =

=1~ P){,0*(0) Exl(6 — 8°2(n(6) — Ben) ] + £ Eol0*n(6)(0 — 6))(0(®) — Ban)1H(T ~ P).

(16.0)
Sinceit holds that
Ex[(0 = 0°)*(n(0) = Exn) '] = Covr (6%, ) — 20"Cove (0, 1) = (16)
= Covg(02,1) — Covg (62,0)Var, '0Cou.(0,n)+
+ [Covg (62,0)Var 10 — 20°1Cov. (6, 7),
1 1
Covy(n,0) = on(0°)\Var,0 + 50277(00)c*(w7r(02, 0) — 53277(90)200Va1"ﬂ0+
1
FSB00)(0 ~ 60~ B0)], )
and
Varg[(0 — 0°)?] =Vary(6%) — Covs (0%,0)Var10Cov, (0, 6?)+ (18)
+[Covr(02,0)Var; 10 — 201V ar,0[Var; ' 0Cov, (0, 6?) — 26°],
it also holds that

Ex[(60 = 6°)?(n(0) — Exn) '] =

—{[Var-(02) — Covs (62, 0)Var-L0Cous (0, 92)]%8277T(90)+

—i—%[chT(OZ) — Covg(62,0)Var; 0Cou, (6, 0)][2[Var, (%) — Covs (62,0)Var t0Couv.(6,6%)] L.
[Covr(62,1) — Cov(0%,0)Var-10Couv.(6,1)] — 8y (6°))+

+[Covy(6%,0)Var:'0 — 20°1{[Cov (0, 6%) — Var,rezeo]%aQnT(eo) + Var,00n" (6°)+

S EL0P(6)(0 — 00— B0)]} =

=[Cov,(6,0)Var10 — 20°1Var,00n" (6°) + Var,[(6 — 90)2]%5)277T(00)+

+% [Var,(6%) — Covg(60%,0)Var;'0Cou, (0, 0%)][2]V ary(8%) — Covx(62,0)Var; '0Cov,(0,6%)] 1.
[Covx(0%,1) — Cove(62,0)Var10Cou(0,n)] — 8*n ' (8°)]+

H[Covs (6, 0)Var="0 290%& 03 0(07)(0 — 0°)3 (0 — E,0)].
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Further, proposition 3 implies that

lim Covy,(6°,0)Var,'0 = 20°. (19)

n—oo

Then we get

(I — P)S*n(@*) B [(0 — 6°)2(n(6) — Ban))(T — P) =
(1 — P)%a%(eo){[cov,r(ei n) — Cous (62, 8)Var="Couvs (6, )]+
+[Covy(0%,0)Var 0 — 26°|Cov,(0,m)}(I — P) =
=(I — P){i@QU(QO)[VaTW(QQ) — Covg (0%,0)Var, Covy(6,6%)]0°n" (6°)+
+%%8277(00)[Va7“7r(02) Covg(02,0)Var10Couv,(6,6%)].
(

[2[Var, (%) — Covs(62,0)Var 0Couv.(6,6%)] "

[Covr(8%,1) — Cove(62,0)Var_10Cou(0,n)] — 8*n" (8°)]+

1
—1—5827](90)[00%(02 0)Var 10 — 26°|Covr(0,n)}(I — P) =

=(I— P){i@QU(HO)[Varﬂ(G% — Covg (0%,0)Var  Cov,(6,6%))0°n" (6°)+

+%%a2n(90)[‘/arw(92 Covr(62,0)Var;*0Cov. (0, 6%)).

) =
[2[Vars(6) — Covg(62,0)Var;'0Couv,(8,6%)] "

[Covr (62, 1) — Cov (8%,0)Var;10Cou,(6,n)] — 8*n' (6°)]+
%6277(00)[0%(92 0)Var="0 — 20°1{[Covs (0, 6?) — VarW92.90]%8277T(90)+
+Var.0.0n" (0°) + 6E,r [037(6%)(0 — 6°)3(0 — E-0)]}}(I — P) =
= (1~ P);0Pn(6°)Vars[(0 — 6)2)0°n(6°) (1 — P)+
+(I — P)%%@%(QO)[VQTW(OQ) — Covg (62,0)Var;'0Cov, (0, 6%)).

[2[Var,(6%) — Covg(62,0)Var, '0Couv.(0,6%)] "
[Covr(62,1) — Covr(0%,0)Var10Cov,(0,1)] — 8*n' (69)](I — P)+

%6277(00)[00%(92, O)Var=10— 290%&[8377(9*)(9 (0 — EL0)](I — P).

Then
. Varg. n
1 I—P)———_ (I —P) =
A= P, g D)

1 . Varg, (0 — 692
— (1= Pye) Jim Ll g o)1 - )

Vary, (6?) — Cov, (6%,0)Var; '6Cous,, (6, 02)]
I P - 2 - n n n
( ) a ( )n—>oo ||VCLT7|-n9||2
A{2[Vars, (6%) — Covs, (6%,0)Var, 10Covy, (6,6%)]
[Covy, (0%,n) — Covy, (6%,0)Var; ' 0Covs, (0,7)]—

- T(90)}( P)+
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1 E, [0°n(0")(0 — 09)3(0 — E,. 0
[0°n(67)(6 =06 = En,0)] | py

1
I — P)= 2 0 li 2 -1 ) 01 -
* )28 (0 )nggo[Covﬂn(G 9)Vare, 620 ]6 |Var:,0|?
1 Eq,[0°n(6%)(0 — 60°)(0 — 6°)*(n(6) — Ex,n) "I = P)
I—-P)-1 - i =
+ ( )6 it Vars. 02

1 . Varg, (0 — 692
— L= Pye) Jim Ll OB o)1 - )

The rest of the proof is then the same as the proof for the previous theorem. [

COROLLARY 2.

. Varz,n . 1 2 Varn, ((9 00)2) 2
lim (I -P,)—"-—-(—-P,) = lim - (I — P,)0 - 0 I—-P,). 2
1 ( ) ( ) 1 4( ) n H‘rarﬂ’nHHQ n ( ) ( 0)

noo IVars,0|? neo

By means of V ar,n we can approximate also the curvature Kin(6°) of one dimensional models:

Let us denote
_ Va,rﬂ'n((e — 00)2)

Fon = |V ar,0]?

For example, if 7, isuniform distribution on interval (0 — «, 0" + «), then

4&4 4
lim ko = lim 23 = —.
a—0t a—07t % )

THEOREM 3. Let the assumptions of theorem 2 hold. If p = 1 then

lim 4/ AN 6. (21)
n— o0 Kn )\g’”)

PrOOF. Theorem 1 impliesthat in case k = 1 it holds that

. on(6°)
1 4~ 7
ntoo T T am(60)]

This condition aso impliesthat ¢ = 0 or ¢ = 1. If ¢ = 0, then the model isintrinsically linear and then

according to proposition 1 and lemma2 A5 = 0, SO

)\n
V2 — 0= Kin (6°).

lim

If K =1andq = 1 then according to theorem 2

where v(u) isavector of curvature of £, in the direction of tangential vector . Then utilizing corollaries
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land2
nT Varz,n
) /)\n \ / u2 VCL’I”ﬂnT]’LL2 \/u2 WUZ
fim = Jim B T Varg,n =
n— oo K n—oo K n%oo n Tn n
n n ul Varﬂn nuy Kn  uf Varg ¥
)T Varg,n v(u?) 92T (09)( H‘YM””;‘Q(I*P)WW(@O)
Hv “1 )| ||V‘“”wn9|| o)l || (I—P)a2n(09)[|2
n—»oo u’ Varz,n_ o n—>oo 0\ Varm,0 T /00, n -
uy K uf T on(6°) ||Var7rn9Ha77 (09)uf

U1 Var, ol

L1927 (90)(I—P)> (90)%82 T (09)(I—P)92n(6°)

A \/ [T=P)en(eo)? B
= Vi on’ (0°) o 1n(6°).1.997 (°) On(0)) N

[onte" [on (@)
_Iiz = P)aPn(e*)|
1om(6%)]2

= Kin(6°).

Moreover, from the proof it can be seen that for p = 1

n

A
lim_ ot = (o (60°)|?
oo |[Vars, 0|

and

4N\D
li 2 = |[(I = P)9*n(6°)].
lim \/ ey = |0~ PPl
Approximation (21) equals to the intrinsic curvature Kin(#°) in the limit for prior distribution
7 concentrated in #°. A differently defined intrinsic curvature K;n(6°) of the model (1) with prior
distribution 7 isin [P, 92] and [P, 93]. Kin(6°) involves derivatives and equals to K (6°) for prior 7
uniform on ©.

3. Examples

Theorem 3 will be further illustrated on examples with different dimensions p, ¢ and N

ExaMpLE lédlipse (N=2,p=1,q=1)
acos 6
0) = )
n(6) (bsin@)
where a # 0 # b are known, 7 isuniformon 6, :=< 6" — a,6" + a >, 6" = 5, a € (0,%). Then
eigenvalues of the matrix Var,n are

M = M(a) = 2(% - %Siza cos )
3o = (@) = (5 + 5T cosa - T2
It holds:
0
I o ~ 5
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A1 is,greater” than A\, in the sense that for Va, b > 0; 3¢ > 0;Va € (0,¢€); A1 () > A2(«). Then

in in?
VBVRn@) _ | VB/Aala) | Vb | /3% cosa - e

2 1 1 si
a—0  Ag(a) a—0  A(a) a? a—0 3 — 3 2% cosa
%+%§1ga cos r— SinZ @
1
V/5b T b
= lim A = — = Kin(0°).
a’ a=0 %fésmo‘ cos o a? mt( )

ExaMPLE 2 helix wound around the cylinder, with ellipse from example 1 as the base; parameter ¢
determines the density of windings (the greater ¢, thesmaller density) (VN =3,p=1,q=1)

where ¢ #£ 0 isknown and other assumptions are asin example 1. Then

a2(% - %Sizo‘ cos ) + 02%2 + \/(aQ(% — %Sigo‘ cos ) — 02%2)2 + 4a2c?(cos a — %)2
A= 5
1 1lsina sin® o
2
Ao =b (5—1—5 L cosa——s )
QQ(% — %Siga cos ) + 62%2 — \/(aQ(% — %Sigo‘ cosar) — 02%2)2 + 4a?c(cos a — %)2
A3 = 5
It holds:
A A
1(e) = lim 1(3) —a2+c2,
a—0 Var,roﬁ a—0 %
. A2(a) M) 91
lim — 2 _ R
om0 (Varg,0)2 a0 al 5
A A 3 a’c?
tim 0 gy Aa(@) e
a—0 (Varg,0)3 a-0 < 25.7 a? + ¢?
Again
1y AL > Ay > A7

in the sense defined in example 1.

VB Akt (@) _
Ak

a? + c?

lim
a—0

lim
a—0

L ATM) L = K0,
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