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Abstract. The paper is devoted to comparison of different confidence intervals for a variance com-
ponent corresponding to the random factor in mixed linear models with two variance components.
Namely, generalized confidence intervals (based on fiducial generalized pivots (FGP), see Hannig et
al. (2006)) are compared to an approximate solution suggested by El-Bassiouni (1994). We focus
on FGPs of certain types that were shown to yield exact intervals in some limiting situations. This
makes them more equivalent counterparts to the El-Bassiouni’s interval, if frequentist properties are
the main concern. A simulation study is presented that reveals, how besides sharing the limiting
properties, these FGPs and the mentioned approximate interval perform with respect to each other.
We also comment on a relationship between the considered types of FGPs.
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1. Introduction

Construction of confidence intervals for a variance component corresponding to the random factor in

mixed linear models with two variance components has been studied extensively in literature. As

the problem is complicated by the presence of a nuisance parameter - the unknown variance of error,

suggested solutions are either approximate or based on fiducial generalized pivots (FGP) (as defined

in [1]). Recently attention has been focused especially on the latter ones. Properties of the resulting

generalized confidence intervals (GCI) were examined in simulation studies e.g. in [3, 4, 5]. (In general,

the confidence level of a GCI cannot be guaranteed and is usually checked only by simulations.) In the

studies the GCIs were also compared to some previously suggested approximate intervals, however, the

one proposed by El-Bassiouni in [2] has never been considered. The main purpose of this paper is to fill in

this gap, as El-Bassiouni’s interval seems to be a solid representative of the approximate solutions. With

respect to maintaining the nominal confidence level, it can be recommended for general use (without

further knowledge of the true magnitude of the parameters) and besides performing well in simulations,

it can be shown to behave as an exact interval in 3 limiting situations (see e.g. [6]). The competing GCIs

considered in this paper are based on FGPs of two types that share the three limiting properties with

El-Bassiouni’s interval (see [7]), which makes them more acceptable from the frequentist point of view.

In the conducted simulation study the mentioned GCIs and the approximate El-Bassiouni’s interval are

compared with respect to their probability of coverage and average length. Besides, the study illustrates

the relationship between the considered FGPs and in some cases it supplements results in [8] where the

respective GCIs were examined only by means of two examples. The paper is organized as follows: the

results are stated in section 3, while the model, the used FGPs and the approximate interval are described

in section 2.
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2. Subject and Methods

Model

The vector of observations y (n × 1) is supposed to come from a multivariate normal distribution

Nn(Xb, σ2
1ZZ ′ + σ2I), where X, Z are known matrices (we suppose that R(Z) 6⊆ R(X), where R(A)

denotes the linear subspace generated but the columns of the matrix A) and b, (σ2
1, σ2)′ are vectors of

unknown parameters, σ2
1 ≥ 0, σ2 > 0. Exploiting the principle of invariance, inference on variance

components σ2
1 , σ2 is based on a minimal sufficient statistic for a maximal invariant under translation

in mean, which is a vector consisting of mutually independent quadratic forms: Ui ∼ (λiσ
2
1 + σ2)χ2

νi
,

i = 1, ..., r (λ1 > ... > λr−1 > λr ≥ 0). See also [5]. We suppose that λr = 0. This is fulfilled

whenever n > rank([X, Z]). The model is then said to have non-zero degrees of freedom for error as

Ur ∼ σ2χ2
νr

. Construction of confidence intervals on σ2
1 is complicated by the presence of the nuisance

parameter σ2.

In what follows, Fm,n;x and χ2
m;x denote x quantiles of the appropriate F and χ2 distributions and

s =
∑r−1

i=1 νi.

Approximate solution

In [2] El-Bassiouni proposed the following approximate confidence interval that maintained the nominal

confidence level in all considered settings. Moreover, its probability of coverage tends to that of an exact

interval when νr → ∞, or σ2
1/σ2 → ∞, or σ2

1 = 0 (see e.g. [6]). Its bounds are non-negative solutions

(or zeros if such solutions do not exist) to the following equation in B :

r−1
∑

i=1

Ui

λiB
χ2

s;x

sFs,νr;x
+ Ur

νr

= sFs,νr;x, (1)

where x = 1 − α/2 for the lower and x = α/2 for the upper bound. (Forcing the bounds to be non-

negative stems from the fact that σ2
1 is a non-negative parameter.) The interval is a generalization (for

r > 2) of the Williams-Tukey interval [10, 11], see [6]. Thus we will refer to it as the El-Bassiouni

- Williams - Tukey interval (EBWT). In [2] a short version of the interval was also suggested, using

not-equal-tailed χ2 quantiles, like those in Table 678 in [12], while still using x = 1 − α/2, α/2 in F

quantiles. In what follows, these short intervals will be referred to as sEBWT.

Fiducial generalized pivots

We recall a definition of an FGP given in [1]: Denote by U∗ = (U∗

1 , ..., U∗

r )′ an independent copy of

U = (U1, ..., Ur)
′. An FGP is a function R(U, U∗, σ2

1, σ
2) with the following properties:

1. Conditional distribution of R, conditional on U = u is free of σ2
1 , σ2.

2. For every allowable u, R(u, u, σ2
1, σ2) = σ2

1 .

For more details see [1]. Then the GCIs are formed by appropriate quantiles (usually α/2, 1 − α/2) of

the conditional distribution of R conditionally on U = u.
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Ex. X Z s νr

1 [130 v30] ni :5, 10, 15 2 26

2 [130 t] [diag(16, 16, 16, 16, 16) w] 5 23

t : 30 × 1 w : 30 × 1

ti = −3 + 6 ∗ (i − 1)/29 wi = (−2 + 4 ∗ (i − 1)/29)2

3 [1157 v157] ni :1, 1, 2, 3, 50, 100 5 150

4 114 ni : 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 9 4

5 [159 v59] ni : 1, 1, 4, 5, 6, 6, 8, 8, 10, 10 9 48

Table 1: Examples considered in the simulation study. vk is a (k × 1) vector of real numbers between 0

and 1, 1k is a (k× 1) vector of ones. If not stated otherwise, Z is a block matrix with 1ni
on the diagonal.

Ex. 1,3,5 were considered also in [3].

Denote Qi = U∗

i /(λiσ
2
1 + σ2), i = 1, ..., r− 1 and V = U∗

r /σ2. The type 1 FGPs considered in this

paper are of the form:

R1 = max(0, R), where R is a solution to the following equation
r−1
∑

i=1

ciUi

λiR + Ur/V
=

r−1
∑

i=1

ciQi, (2)

and cis are some positive constants. In particular, we take ci = 1 or ci = λi, i = 1, .., r − 1, the

corresponding FGPs being denoted R1
1 , Rλ

1 . R1
1 was firstly considered in [3]. The choice of cis was

inspired by tests of H0 : σ2
1 = 0. For ci = 1, i = 1, ..., r − 1, 0 is included in the interval in accordance

with the Wald test, which is optimal for large alternatives. The other choice of cis correspond to a test

that should be more powerful for small alternatives, see [13].

The type 2 FGPs considered in this paper are of the form:

R2 = max(0, R̃),

R̃ =

∑r−1
i=1 ciUi −

Ur
V
∑r−1

i=1 ciQi
∑r−1

i=1 ciλiQi

, (3)

and cis are some positive constants. We take ci = 1 or ci = 1/λi, i = 1, .., r − 1, the corresponding

FGPs being denoted R1
2 , R1/λ

2 . GCIs based on these FGPs were suggested in [8] (there they were derived

using generalized test variables T 1
1 , T

1/λ
1 ).

Simulation study

Designs used in the simulation study comparing the different GCIs and the approximate intervals are

stated in Table 1. For each design and σ2
1 = 0.001, 0.1, ..., 0.9, 0.999, σ2 = 1 − σ2

1 , 2500 realizations

of y were simulated and intervals using Eq. 1, 2, 3 were constructed for α = 0.05. Substituting

T = Bνrχ
2
s;x/(sFs,νr;xUr) and multiplying both sides by Ur/νr, Eq. 1 was solved in T by the Newton-

Raphson method with tolerance 10−14 and then B was obtained by the reverse transformation. In case

of GCIs, for each realized Uis, we randomly generated Qis , V 10 000 times, solved Eq. 2 by the

Newton-Raphson method with tolerance 10−12 and used these 10 000 values to estimate the quantiles

(2.5% and 97.5%) of the conditional distribution of R1
1 (Rλ), or in case of type 2 FGPs we used the
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generated Qis and V for computing the value of R1
2 (R1/λ

2 ) and then we estimated the respective quantiles

(2.5% and 97.5%).

3. Results and discussion

In Figure 1 and 2 the obtained simulated probabilities of coverage and average lengths of the GCIs and

the approximate intervals are displayed for each example in Table 1. In Figure 1 there are depicted

also bounds between which the estimated probability of coverage should fall with probability 0.95 if

the true probability of coverage is 0.95, using the normal approximation to the binomial distribution.

In three cases the obtained coverage probabilities fell below the lower bound of this interval, but only

slightly and so we conclude that the nominal confidence coefficient seems sufficiently maintained by all

considered intervals in all considered settings. We can also see that the approximate intervals tend to be

a bit conservative in Ex. 4 (s > νr) for small and medium σ2
1/σ2 and unlike the other intervals, which

become exact with increasing νr (see [6, 7]), in Ex. 3 sEBWT remains a bit conservative for small values

of σ2
1/σ2.

Comparing average lengths, we can observe the following

1. FGP Rλ
1 yielded shorter intervals (on average) than R1

1 for small values of σ2
1/σ2, while for larger

ratios σ2
1/σ2, R1

1 outperformed it in this regard. The difference is most striking in Ex. 2, which

may be a result of a combination of a smaller νr and a wide range of λis (53.563, 6.0, 1.029, 0.233).

2. The average lengths of the approximate intervals, EBWT, and the GCIs based on R1
1 are comparable,

though, somewhat bigger (relatively to average length) differences between them appeared in Ex.

4 (s > νr), with intervals based on R1
1 shorter on average.

3. The short version of the approximate interval, sEBWT, was naturally shorter than EBWT intervals,

and on average also shorter than GCIs based on R1
1 in all considered settings. In Ex. 1 the average

length of sEBWT was even the shortest of all compared intervals. For this design (s = 2) also the

most dramatic difference between EBWT and sEBWT was observed. (A similar result had been

obtained in [2].)

4. Similar results yielded by R1
1 and EBWT suggest that by a different choice of quantiles in the R1

1

procedure (not α/2, 1−α/2) we can perhaps obtain shorter GCIs with average length comparable

to that of sEBWT.

5. Looking at pairs R1
1, R

1/λ
2 and Rλ

1 , R1
2, their average lengths are very similar and seem to become

the same as σ2
1/σ2 increases. (This was previously observed in [5] for the former pair.) Actually, it

can be shown that normed by the true value of σ2
1, the mean lengths of GCIs based on type 1 FGPs

with constants ci and based on type 2 FGPs with constants ci/λi converge to the same quantity as

σ2
1/σ2 → ∞. For a brief outline of the proof see Appendix. We just note here that while R1

1, R
1/λ
2

behave similarly from the viewpoint of average length, intervals based on the two FGPs may differ

substantially with respect to other properties. For example, considering the ties of the FGPs to

the tests of H0 : σ2
1 = 0, it is not surprising that the two intervals differ for small and moderate

σ2
1/σ2 with respect to the probability of falsely including zero. (Just for an illustration: in Ex.

3 in our simulation 0 was included in 44%, 12.8%, 1.6% of intervals constructed by R1
1, while

in 92%, 61.2% and 11.7% of intervals constructed using R
1/λ
2 for σ2

1/σ2 = 1/4, 1, 4 respectively.)
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Figure 1: Simulated probabilities of coverage of the considered confidence intervals in examples from

Table 1 (for the true values of variance components: σ2
1, σ2 = 1 − σ2

1).
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Figure 2: Average lengths of the simulated confidence intervals in examples from Table 1 (for the true

values of variance components: σ2
1, σ2 = 1 − σ2

1).
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4. Conclusions

The paper deals with comparison of a few procedures for constructing confidence intervals for a variance

component corresponding to the random factor in mixed linear models with two variance components.

By means of simulation generalized confidence intervals based on certain fiducial generalized pivots

(FGP) (of two types) were compared to an approximate interval, and its short version, suggested in [2]

(called El-Bassiouni-Williams-Tukey interval here). All the considered procedures seemed to maintain

the nominal confidence coefficient to a sufficient degree, thus they have been compared with respect

to average lengths of the intervals they yielded. None of the procedures yielded the shortest intervals

across all designs and values of the unknown parameters, though, if s > 2, both approximate solutions

and the FGPs R1
1 (an FGP firstly suggested in [3]) and R

1/λ
2 produced intervals, whose average lengths

seem overall acceptable. Out of these the shortest intervals were obtained using the short version of the

El-Bassiouni-Williams-Tukey interval. In case s = 2, this procedure yielded the shortest intervals of all.

Also a certain relationship between the used types of FPGs has been commented on.
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Appendix

Here we present a brief proof that normed by the true value of σ2
1, the mean lengths of a GCI constructed

by R1 with ci = di > 0, i = 1, ..., r−1 and of a GCI constructed by R2 with ci = di/λi, i = 1, ..., r−1

converge to the same quantity.

Firstly, consider GCIs constructed by R2 as defined in (3). For each observed value of u =

(u1, ...., ur)
′ a GCI is formed by the lower and upper quantiles of the conditional distribution of R2

conditionally on u. Denote these q
α/2
2 (u), q

1−α/2
2 (u). The mean length of the GCI normed by σ2

1 is

E

(

q
1−α/2
2 (U)

σ2
1

−
q
α/2
2 (U)

σ2
1

)

.

Thus let us consider the limiting behaviour of E(qα
2 (U)/σ2

1) for fixed α as σ2
1/σ2 → ∞. Note that

qα
2 (u)/σ2

1 is an α quantile of R2(u, U∗, σ2
1, σ

2)/σ2
1. Without loss of generality, we may write

Ui

λiσ2
1

=

(

1 +
σ2

λiσ2
1

)

Zi, i = 1, ..., r − 1, and
Ur

σ2
1

=
σ2

σ2
1

Zr,

where Zi ∼ χ2
νi

, i = 1, ..., r are mutually independent and independent of U∗. Then as σ2
1/σ2 → ∞,

for each ω ∈ Ω (where (Ω, S, P ) is the underlying probability space)

Ui(ω)

λiσ2
1

→ Zi(ω), i = 1, ..., r − 1 and Ur(ω)/σ2
1 → 0 (4)

So for each observed u (u = U(ω) for some ω), using (3),

R2(U(ω), U∗, σ2
1, σ

2)

σ2
1

= max(0, R̃/σ2
1) −→ T2(ω) =

∑r−1
i=1 ciZi(ω)λi
∑r−1

i=1 ciλiQi

in distribution
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Denoting q1−α the 1 − α quantile of
∑r−1

i=1 ciλiQi and realising that for each ω, T2(ω) is a random

variable with a continuous distribution function, from the previous we have

qα
2 (U)/σ2

1 →
r−1
∑

i=1

ciZiλi/q1−α for each ω.

Now, if in limσ2

1
/σ2

→∞
E(qα

2 (U)/σ2
1) the order of the limit and expectation can be exchanged, for the

mean length we obtain:

E

(

q
1−α/2
2 (U)

σ2
1

−
q
α/2
2 (U)

σ2
1

)

→ E











r−1
∑

i=1
ciZiλi

qα/2











− E











r−1
∑

i=1
ciZiλi

q1−α/2











=

r−1
∑

i=1
ciνiλi

qα/2
−

r−1
∑

i=1
ciνiλi

q1−α/2
. (5)

Justification for exchanging the oder of the limit and integration comes from the following: for each

ω and σ2
1/σ2 > 1/λr−1,

Ui(ω)
λiσ2

1

≤ 2Zi(ω) (for i = 1, ..., r − 1), which implies that for each ω and

σ2
1/σ2 > 1/λr−1, the cumulative distribution function of 2T2(ω) is stochastically greater or equal to

the cumulative distribution function of R2(U(ω), U∗, σ2
1, σ

2)/σ2
1, thus for each ω and σ2

1/σ2 > 1/λr−1,

(0 ≤)qα
2 (U)/σ2

1 ≤ 2
∑r−1

i=1 ciZiλi/q1−α. And the expectation of the latter exists.

Now, consider GCIs based on R1. We are interested in the limit of

E

(

q
1−α/2
1 (U)

σ2
1

−
q
α/2
1 (U)

σ2
1

)

,

which is a difference of the lower and upper quantiles of R1/σ2
1 = max(0, R/σ2

1) as defined in (2).

R is an implicitly stated function R(U1c1, ..., Ur−1cr−1,
∑r−1

i=1 ciQi, Ur/V ) and it can be easily seen

that R/σ2
1 = R

(

U1c1λ1

σ2
1λ1

, ...,
Ur−1cr−1λr−1

σ2
1λr−1

,
∑r−1

i=1 ciQi,
Ur

σ2
1V

)

. From Implicit Function Theorem it

follows that R(·) is continuous at every (r + 1)−tuple with all but the last coordinate positive, the last

one being zero. For each such an (r +1)−tuple R(a1, ..., ar−1, ar, 0) =

∑

r−1

i=1
ai/λi

ar
. Continuity of R(·)

together with (4) implies that for each observed u = U(ω) as σ2
1/σ2 → ∞,

R1/σ2
1 −→

r−1
∑

i=1

ciZi(ω)/
r−1
∑

i=1

ciQi in distribution.

Thus qα
1 (U)/σ2

1 converges for each ω to
∑r−1

i=1 ciZi/q̃1−α, where q̃1−α is an (1−α) quantile of
∑r−1

i=1 ciQi.

Similarly to the previous case, it can be shown that for each ω and σ2
1/σ2 > 1/λr−1, (0 ≤)qα

1 (U)/σ2
1 ≤

2
∑r−1

i=1 ciZi/q̃1−α and as the expectation of the latter exists, for the mean length normed by the true σ2
1

we obtain:

E

(

q
1−α/2
1 (U)

σ2
1

−
q
α/2
1 (U)

σ2
1

)

→ E











r−1
∑

i=1
ciZi

q̃α/2











− E











r−1
∑

i=1
ciZi

q̃1−α/2











=

r−1
∑

i=1
ciνi

q̃α/2
−

r−1
∑

i=1
ciνi

q̃1−α/2
. (6)

Comparing (5) with (6) it is clear that normed by the true σ2
1, the mean lengths of GCIs constructed

by R1 with ci = di, i = 1, ..., r−1 and by R2 with ci = di/λi, i = 1, ..., r−1 tend to the same quantity

as σ2
1/σ2 → ∞.
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