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Viktor Witkovskýa, Gejza Wimmera,b,c,d

aInstitute of Measurement Science, Slovak Academy of Sciences
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Abstract. We consider the problem of evaluation of the measurement results from the interlaboratory

comparisons in metrology. It is assumed that the laboratories have either normally, uniformly, or

triangularly distributed systematic errors (biases). We propose an approximate interval estimator for

the common mean, i.e. the true value of the measurand. The empirical coverage probabilities of

the suggested interval estimator were estimated and compared by large Monte Carlo simulations for

different experimental designs. The suggested approach is based on a metrological methodology and is

fully consistent with the Supplement 1 to the Guide to the Expression of Uncertainty in Measurement -

Propagation of Distributions Using a Monte Carlo Method, [3].

Keywords: Common mean, interlaboratory comparisons, key comparisons; key comparison reference
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1. Introduction

In metrology, key comparisons are specific interlaboratory comparisons carried out by the national

metrology institutes (NMIs). The purpose of such measurement comparisons between NMIs is to check

whether measurements performed in the participating countries are consistent, taking into account the

uncertainties assigned to the measurements. In simple key comparisons the participating laboratories

measure repeatedly and independently the same physical quantity (measurand) of stable value during the

comparison. The uncertainty of the measurement process is influenced by the measurement errors of the

participating laboratories and by the systematic laboratory biases, for more details see [1, 4]. One part of

the problem, studied by the key comparisons, is determination of the unknown quantity of the measurand.

From statistical point of view the problem is known as the common mean problem. It has been studied

for a long time, see e.g. [9, 6, 5], however, the metrological specifications, such as the heteroscedasticity

1The work was supported by the Slovak Research and Development Agency, grant RPEU-0008-06, by the Slovak Scientific
Grant Agency VEGA, grant 1/3016/06, and by the Ministry of Education, Youth and Sports of Czech Republic, LC06024.
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k Laboratory Country ȳi ni si σ(B),i

1 PTB Germany 0.12662 9 0.0000429 0.0000617

2 BNM-CESTA France 0.12690 5 0.0005477 0.0003164

3 CSIRO-NML Australia 0.12670 5 0.0000837 0.0001864

4 CMI Czech Republic 0.12670 5 0.0002321 0.0003260

5 CSIR-NML South Africa 0.12710 5 0.0000837 0.0003795

6 CENAM Mexico 0.12657 5 0.0000826 0.0003142

7 NRC Canada 0.12650 5 0.0002688 0.0002650

8 KRISS Korea 0.12659 6 0.0000361 0.0002274

9 NMIJ Japan 0.12655 4 0.0000818 0.0003137

10 VNIIM Russia 0.12694 5 0.0001140 0.0002746

11 NIST United States 0.12640 5 0.0002000 0.0001954

12 Nmi-VSL The Netherlands 0.12662 5 0.0001171 0.0001560

Table 1: Sample means, number of replications, and corresponding Type A and Type B uncertainties of

charge sensitivity measurements of the back-to-back accelerometer for 500 Hz. The systematic errors of

the laboratories are assumed to be independent and uniformly distributed with mean values βi = 0, for

all i = 1, . . . , k, and known standard deviations σ(B),i.

of measurements, systematic laboratory biases, and the Type A and Type B evaluation of uncertainties in

measurement, see [1], leads to new challenges also from statistical perspective, see e.g. [7]. The problem

of determination of the appropriate confidence interval for the common mean was not fully resolved until

now, especially in situation where the involved laboratories are subject to the systematic errors (biases).

In this paper we study the behavior of an approximate confidence interval for the common mean

suggested in [16] and further studied in [17, 18], and consistent with the metrological approach [3, 8].

In metrology, it is referred to as the coverage interval, see [3], and/or key comparison reference value

(KCRV) and its expanded uncertainty. The goal of this paper is to study, by the Monte Carlo simulations,

the frequentist properties (i.e. the coverage probability) of the suggested interval estimator for the true

value of the measurand, say µ.

Let k ≥ 2 be the number of laboratories, the participants of the key comparisons. We will assume

that each laboratory measures the same quantity µ (the true value of the measurand) repeatidly and

independently ni times, ni ≥ 2, i = 1, . . . , k. We will consider the following model (structural

equations) for the measurement process:

Yij = µ + Bi + εij , (1)

where Yij denotes the jth measurement in the ith laboratory, i = 1, . . . , k, j = 1, . . . , ni; εij ∼
N (0, σ2

(A),i) represent the mutually independent normally distributed measurement errors, σ(A),i being

the unknown standard deviations to be estimated by the standard statistical (sample) methods, i.e. by

the Type A evaluation of uncertainties, as defined in [1]. The random variables Bi represent the

(unobservable) laboratory systematic effects. The particular statistical approach that is appropriate for

the estimation of µ depends on what assumptions are made about the laboratory biases Bi. Here, we will

assume that Bi are random variables distributed independently, according to the specified distributions
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Figure 1: Charge sensitivity measurements, ȳi ± 2 × (s2
i /ni + σ2

(B),i)
1/2 plotted together with the 95%

confidence interval (solid horizontal lines) for µ calculated by the suggested method and given by the

equation (8). Numerically, the confidence interval is given by 0.1266327 ± 0.9628e-004.

(e.g. normal, uniform or triangular) with mean values βi and standard deviations σ(B),i, to be determined

by the non-statistical methods postulated based on scientific judgment, i.e. by the Type B evaluation of

uncertainties, see [1]. From this point of view, the parameters βi and σ(B),i, i = 1, . . . , k, are considered

here to be known (in practical situations they are evaluated by qualified expert’s judgment). This case

is equivalent to the model described in the International Organization for Standardization⁄s Guide to the

Expression of Uncertainty in Measurement [1], see also [3]. The distributions of Bi are usually referred

to as Type B distributions, for more details see the Model 3 defined in [7].

The measurement outcome of the key comparisons is given by the laboratory sample means and

sample variances, Ȳi = 1
ni

∑ni

j=1 Yij and S2
i = 1

ni−1

∑ni

j=1(Yij − Ȳi)
2, and by full description of the

Type B distributions. Note that Ȳi and S2
i , for i = 1, . . . , k, are mutually independent variables.

2. Examples

For illustration purposes, we present two examples with output from interlaboratory comparisons. In

Table 1 we present the data taken from the Final report on key comparison CCAUV.V-K1, see [11]. The

key interlaboratory comparisons were taken by 12 National Metrolgy Institutes (NMIs) in the area of

vibration (quantity of acceleration) on the measurements of the charge sensitivity of the accelerometer

standards (back-to-back accelerometer) at different frequencies and acceleration amplitudes. The resulted

95% confidence intervals are presented in Figure 1.

The second example illustrates the application of the suggested method for data from comparison

measurements of time, see [2]. A practical scale of time for world-wide use has two essential elements:

a realization of the unit of time and a continuous temporal reference. The reference used is International
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k Standard Clock Laboratory d̄i ni si σ(B),i

1 PTB-CS1 Braunschweig -15.0 35 5.0 8.0

2 PTB-CS2 Braunschweig 0.2 35 3.0 12.0

3 SYRTE-FOM Paris 2.1 30 0.1 1.0

4 SYRTE-FOM Paris 3.8 10 0.2 1.3

5 SYRTE-FOM Paris 1.0 15 0.2 1.1

6 SYRTE-JPO Paris 3.8 35 0.8 6.3

7 PTB-CSF1 Braunschweig 1.2 15 1.0 1.0

8 NIST-F1 Boulder 4.1 15 0.3 0.7

9 NPL-CsF1 Teddington 8.2 30 0.7 1.9

10 NICT-CsF1 Tokyo 4.5 15 1.0 1.9

Table 2: Sample means, number of replications, and corresponding uncertainties of the deviations of

the International Atomic Time (TAI) frequency with that of the given individual Primary Frequency

Standards (Standard Clocks). The systematic errors of the laboratories are assumed to be independent

and uniformly distributed with mean values βi = 0, for all i = 1, . . . , k, and known standard deviations

σ(B),i.

Atomic Time (TAI), a time scale calculated at the BIPM (Bureau International des Poids et Mesures)

using data from some two hundred atomic clocks in over fifty national laboratories. TAI is a realization

of coordinate time. The Table 2 gives the mean deviations d̄i, i = 1, . . . , k, obtained on the given period

of estimation by comparison of the TAI frequency with that of the given individual Primary Frequency

Standards (Standard Clocks). In the table si is the uncertainty originating in the instability of the standard

and σ(B),i is the uncertainty from systematic effects. All values are expressed in 10−15 of second.

Based on the available measurements over the considered period (September 26 - October 31, 2007),

and taking into account their individual uncertainties, the BIPM estimate of the mean deviation d and

its computed expanded standard uncertainty u was stated as d = 3.1 × 10−15 and u = 0.5 × 10−15.

On the other hand, the 95% confidence interval for the mean deviation d, calculated by the suggested

method (8), and further assuming uniform distribution of the systematic effects, is equal to 〈2.1642 ×
10−15, 3.7483 × 10−15〉, with the estimated mean deviation d = 2.9563 × 10−15 and with standard

uncertainty u = 0.4078× 10−15. Notice, that in order to be able to compare numerical results with other

candidate methods, here we present the resulted values with more significant digits than necessary.

3. Key comparison reference value and its expanded uncertainty

Recently, several papers have been published that suggested methods for deriving KCRV (the estimator

of µ) and its expanded uncertainty, under the assumption that the measurement process is influenced by

the systematic laboratory effects, fully characterized by their Type B distributions, see e.g. [8, 7, 12]

among others. However, only few of them have analyzed the frequentist statistical properties of the

suggested interval estimators for µ. Such example is e.g. [7], where the suggested generalized confidence

interval estimator was conservative, but in no instance in the considered simulated cases did the empirical

coverage probability creep below the nominal rate of 95%. Here we consider an approximate confidence
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interval for µ, originally suggested in [16], based on the conditional statistical inference consistent with

the metrological approach suggested in ISO GUM [1, 3]. It assumes that the measurement process

follows the model (1). It combines the posterior information about the true value of the measurand µ,

given the observed data from each of the laboratories. In the following paragraph we briefly describe the

suggested approach.

Let µi = µ + bi denotes the value of the measurand drifted by the systematic laboratory effect (bi

represents the realization of the random variable Bi which is, however, unobservable). If we know the

true value of the ith laboratory mean µi, then our knowledge about the true value of the measurand µ is

given by the probability distribution of the random variable µ̃(i) = µi−Bi. The value of the parameter µi

is unknown and could be estimated by the ith laboratory sample mean Ȳi together with its sample standard

deviation
√

S2
i /ni. Under the model assumptions (1) the random variable Ti = (Ȳi − µi)/

√

S2
i /ni has

the Student’s t distribution with ni − 1 degrees of freedom. Given the observed values ȳi of Ȳi, and s2
i

of S2
i , our knowledge about the true value of the parameter µi is given by the distribution of the random

variable

µ̃i = ȳi −
√

s2
i

ni
Ti, (2)

where ȳi and s2
i are considered to be given constants and Ti ∼ tni−1 is a random variable with the

Student’s t distribution with ni − 1 degrees of freedom. From that, we can express our knowledge about

the true value of the measurand µ (based on the information from the ith laboratory) by the distribution

of the random variable

˜̃µ(i) = µ̃i − Bi = ȳi −
√

s2
i

ni
Ti − Bi. (3)

By combining the random variables we can finally express our knowledge about the true value of the

measurand µ (based on the information from the k laboratories) by the probability distribution of the

random variable

˜̃µ =
k
∑

i=1

wi
˜̃µ(i) =

k
∑

i=1

wiȳi −
k
∑

i=1

wi

√

s2
i

ni
Ti −

k
∑

i=1

wiBi, (4)

where wi,
∑k

i=1 wi = 1, are properly chosen weights, in [16] suggested as

wi =



1
/





√

s2
i

ni

√

s2
p

ni

ni − 1

ni − 3
+ σ2

(B),i









/





k
∑

l=1

1
/





√

s2
l

nl

√

s2
p

nl

nl − 1

nl − 3
+ σ2

(B),l







 , (5)

where s2
p is the pooled variance estimate, s2

p =
∑k

i=1(ni − 1)s2
i /(
∑k

i=1 ni − k).

Here is the reasoning for selection of the weights given by (5): The goal was to select such weights that

in a specific situation with σ2
(B),i = 0, i = 1, . . . , k, the proposed interval estimator would be the exact

(1 − α) × 100% confidence interval for µ. In particular, let us consider the model without systematic

errors, namely Ȳi = µ + ε̄i, i = 1, . . . , k, ε̄i ∼ N(0, σ2
(A),i/ni). Note that under given assumption

Ti = (Ȳi − µ)/
√

(S2
i /ni) ∼ tni−1. Let W =

∑k
i=1 uiTi where ui are non-stochastic constants. Based

on the above assumptions Fairweather in [5] derived the exact confidence interval for µ of the form

∑k
i=1

√

ni/S2
i uiȲi

∑k
i=1

√

ni/S2
i ui

± q1−α/2
∑k

i=1

√

ni/S2
i ui

. (6)

where the quantile q1−α/2 is implicitly defined by the equation Pr
(

|∑k
i=1 uiTi| < q1−α/2

)

= 1−α. In

this set-up, let wi =
√

ni/S2
i ui/(

∑k
l

√

nl/S2
l ul) denote the weights of the weighted mean of sample
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Figure 2: The empirical coverage probabilities of the interval estimator (8) for µ. Here, the systematic

errors are assumed to be independent with normal distributions with Bi ∼ N (0, σ2
(B),i).

means. The confidence interval (6) is exact for any non-stochastic coefficients ui. It was shown in

[15] that if we choose the natuaral weights (i.e. inversly proportional to the sample variances), i.e.

wi
prop.∼ ni/S2

i , the interval (6) is no more the exact confidence interval on the given significance level α.

If σ2
(B),i = 0, the weights given by (5) are of the form wi =

√

ni/S2
i ui/(

∑k
l

√

nl/S2
l ul), where ui are

the non-stochastic coefficients, and so has the property that the interval (6) is an exact (1 − α) × 100%

confidence interval.

So, given the weights (5), the observed value of the key comparison reference value (KCRV) is given

as the expected value of the distribution of the random variable ˜̃µ and its associated standard uncertainty

is given as the standard deviation of ˜̃µ, see [3], i.e.

µKCRV =
k
∑

i=1

wi(ȳi − βi), uKCRV =

√

√

√

√

k
∑

i=1

w2
i

(

s2
i

ni

ni − 1

ni − 3
+ σ2

(B),i

)

. (7)

This uncertainty is well defined if ni > 3 for all i = 1, . . . , k. The expanded uncertainty of KCRV is

defined as the half-length of the (1 − α) × 100% coverage interval for µ, see [3], i.e.
〈

µKCRV + qα/2, µKCRV + q1−α/2

〉

, (8)

where qα/2 and q1−α/2 are the quantiles of the distribution of the random variable ˜̃µ − µKCRV . The

quantiles qα/2 and q1−α/2 could be evaluated approximately by Monte Carlo simulations, or exactly by

the algorithm tdist, briefly explained in the following section. For more details see also [14].
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Figure 3: The empirical coverage probabilities of the 95% confidence interval (8) for µ. Here, the

systematic errors are assumed to be independent with uniform distributions with Bi ∼ U(−δi, δi),

δi =
√

3σ(B),i.

4. Algorithm tdist for computing the exact distribution of a linear combination of inde-
pendent random variables

The algorithm tdist numerically evaluates the exact distribution of a linear combination of independent

random variables with the standard normal, uniform, triangular, and Student’s t distributions. The first ver-

sion of the algorithm (calculates the distribution of a linear combination of independent Student’s t random

variables) was implemented in MATLAB and R (the environment for statistical computating), and is pub-

licly available at http://www.mathworks.com/matlabcentral/fileexchange/, file object Id 4199

(Matlab version), and athttp://cran.r-project.org/src/contrib/Descriptions/tdist.html

(R version).

Here we briefly describe the priciple and the method used in the algorithm tdist, for more details see

[14]. First, consider a random variable T =
∑k

i=1 λiTi, i.e. a linear combination of independent Student’s

t random variables with νi, i = 1, . . . , k, degrees of freedom. Let φTi
(t) denote the characteristic function

of Ti. The characteristic function of T is

φT (t) = φT1
(λ1t) · · ·φTk

(λkt). (9)

where

φTi
(λit) =

1

2
νi

2
−1Γ(νi

2 )

(

ν
1

2

i |λit|
)

νi

2

K νi

2

{

ν
1

2

i |λit|
}

, (10)

where φTi
denotes the characteristic function of the random variable Ti with Student’s t distribution with

νi degrees of freedom, and Kα{z} denotes the modified Bessel function of the second kind. For detailed

derivation see [13]. Note that the characteristic function of the Student’s t random variable is a real
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Figure 4: The empirical coverage probabilities of the 95% confidence interval (8) for µ. Here, the

systematic errors are assumed to be independent with triangular distributions Bi ∼ ∆(−δi, δi), δi =√
6σ(B),i.

function. Then, the distribution function FT (x) = Pr{T ≤ x} is given by

FT (x) =
1

2
− 1

π

∫

∞

0
ℑ
(

e−itxφT (t)

t

)

dt

=
1

2
+

1

π

∫

∞

0

sin(tx)φT (t)

t
dt, (11)

and the probability density function fT (x) of T is given by

fT (x) =
1

π

∫

∞

0
ℜ
(

e−itxφT (t)
)

dt

=
1

π

∫

∞

0
cos(tx)φT (t) dt. (12)

The algorithm tdist evaluates the integrals in (11) and (12) by multiple p-points Gaussian quadrature

over the real interval t ∈ (0, 10π) which involves base points bij and the weight factors wij , i = 1, . . . , p,

j = 1, . . . , m.

FT (x) ≈ 1

2
+

1

π

m
∑

j=1

p
∑

i=1

sin(bijx)

bij
Wij , (13)

fT (x) ≈ 1

π

m
∑

j=1

p
∑

i=1

cos(bijx)Wij , (14)

with Wij = wijφT (bij). Notice, that for evaluation of FT (x) and fT (x) in many different points the

algorithm requires only one evaluation of the weights Wij , which directly depend on the characteristic

function φT (·) and does not depent on x.
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The algorithm could be easily generalized to other symmetric distributions with known characteristic

functions. Here we consider independent random variables Z ∼ N (0, 1) (standard normal distribution),

U ∼ U(−1, 1) (uniform distribution over (−1, 1)), and ∆ ∼ T (−1, 1) (triangular distribution over

(−1, 1)) with

φZ(λt) = exp

{

−(λt)2

2

}

, (15)

φU (λt) =
sin(λt)

λt
, (16)

φ∆(λt) =
(2 − 2 cos(λt))

(λt)2
, (17)

where λ stands for arbitrary multiplication coefficient.

5. Simulation study on empirical coverage probability of the approximate confidence in-
terval for µ

In order to check the frequentist statistical properties of the interval estimator (8) we have performed a

large simulation study. We have considered three types of the distribution for the systematic laboratory

effects Bi. The normal (gaussian) distribution Bi ∼ N (0, σ2
(B),i), the uniform (rectangular) distribution

Bi ∼ U(−δi, δi), δi =
√

3σ(B),i, and the triangular distribution Bi ∼ ∆(−δi, δi), δi =
√

6σ(B),i,

i = 1, . . . , k. Without loss of generality we have assumed that µ = 0, and that the distributions of the

laboratory effects are centered at zero, i.e. βi = 0. We have considered the following specific designs

of the interlaboratory comparison experiment: k ∈ {5, 10, 15}, ni = 5, ni = 10, ni = 15, and ni ∈
{15, 10, 5, 15, 10, 5, 15, 10, 5, 15, 10, 5, 15, 10, 5}, i = 1, . . . , k. Figure 2 presents the empirical coverage

probabilities of the interval estimator (8) for the true value of the measurand µ, based on 10000 Monte

Carlo simulations from the model (1) with Bi ∼ N (0, σ2
(B),i), i = 1, . . . , k, for each specific design with

the nominal significance level α = 0.05. By a we denote the designs with σ(B),i = 0, by b we denote

the designs with σ(B),i = 1, by c we denote the designs with σ(B),i = 5, and by d we denote the designs

with σ(B),i ∈ {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}, i = 1, . . . , k. The coverage probabilities for designs

with σ(A),i = 1, i = 1, . . . , k, are plotted by the symbol +, for designs with σ(A),i = 5, i = 1, . . . , k, are

plotted by the symbol ◦, and for designs with σ(A),i ∈ {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}, i = 1, . . . , k,

are plotted by the symbol ×. Similarly, Figure 3 presents the empirical coverage probabilities with

Bi ∼ U(−δi, δi), δi =
√

3σ(B),i, i = 1, . . . , k, and Figure 4 presents the empirical coverage probabilities

with Bi ∼ ∆(−δi, δi), δi =
√

6σ(B),i, i = 1, . . . , k, respectively.

6. Conclusions

The general conclusion of the present simulation study is the observation that the interval estimator (8)

shows good statistical properties with the empirical coverage probabilities close to the nominal 95%

level for all three considered types of distributions of the laboratory systematic effects. For designs with

smaller number of replication (ni = 5, i = 1, . . . , k) the confidence interval (8) is slightly conservative

with the values of the emprirical coverage probabilities growing up to 96.5%.
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