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Abstract. Finite sample performance of two non-affine invariant multi-sample location parameter
tests based on spatial medians is studied by simulations in case of spherically symmetric distributions
of the samples. We demonstrate that the decrease of the powers of the tests in case of extreme
ellipticity depends also on the distances of the true location parameters. It is also shown how can
the ellipticity of the samples have also a positive effect.
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1. Introduction

In practice, the experimenter has often q random samples from multivarite d-dimensional distributions
and he has to decide if the location parameters of the underlying distributions are equal or not. To explain
the term location parameter, suppose that the underlying densities are of the same type, i.e. the density
of the i-th sample has the form f(. − µi). In this notation µi’s are called the location parameters. The
task of the experimenter is to test the hypothesis

H0 : µ1 = µ2 = . . . = µq.

This is known as multivariate multi-sample location problem. We note that in practice location parameters
µi’s are often expected values of the distributions but they do not have to be! When the expected value
does not exist the interpretation of the location parameter is the centre of symmetry of the density function
or, more generally, the spatial median of the distribution etc.

There exist many tests for testing the above hypothesis, a good overview can be found in [1]. Some
of these tests enjoy the so called affine invariance which means that the value of the test statistic does not
change after an affine transformation (i.e. multiplication by a regular matrix) of the data before testing.
As a practical result, for example, the value of the test statistic (and hence also the result of the testing)
does not change after linear change of the units of measurements or after a linear transformation of the
coordinate system. This property is natural but there is also another benefit of the affine invariance. By
spherical or elliptical symmetry of a distribution one understands that that the contours of the density are
concentric circles or ellipses respectively. It was mentioned in many papers (see e.g. [2], [3], [4] and
especially [5]) that the performance of the tests which are not affine invariant tends to be poor when the
data come from an elliptically symmetric distribution and not from a spherically symmetric one (of the
same type).

This was the motivation of our simulation study, which is aimed at investigation of the behaviour
of tests based on spatial median. As usual, by the spatial median of the random sample X1, . . . , Xn of
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d-dimensional data we understand the vector µ̂ ∈ Rd such that

n∑

i=1

‖Xi − µ̂‖ = min
M∈Rd

n∑

i=1

‖Xi −M‖,

where ‖.‖ denotes the usual Euclidean norm in Rd. Details about spatial median can be found in [6]. In
[7] we have introduced two test statistics based on spatial median:

M1 :=
q∑

a=1

na(µ̂a − µ̄)T V̂ −1(µ̂a − µ̄)

and

M2 :=
q∑

a=1

na(µ̂a − µ̂)T V̂ −1(µ̂a − µ̂),

where na is the size of the sample from the a-th population, µ̂a is the spatial median of the a-th sample,
µ̄ := 1

n

∑q
a=1 naµ̂a, is the weighted mean of the sample spatial medians and µ̂ is the spatial median of

the joint sample. V̂ is a consistent estimate of the asymptotic covariance matrix of the sample spatial
median under H0 (see [8] for details).

The asymptotic distribution under H0 of both test statistics is χ2
(q−1)d (which occurs very frequently

in multi-sample situations, see e.g. [9]). Therefore for i = 1, 2 the test based on the statistic Mi is
carried out in such a way that H0 is rejected if Mi is greater than the α% critical value of the chi-square
distribution with (q − 1)d degrees of freedom. This rule is a test having asymptotic significance level
α%.

We presented some other properties of these test statistics and their relations to other well-known
tests in [7]. There we also studied by simulations their finite sample performance in case of spherically
symmetric distributions. It turned out that tests based on M1 and M2 are preferable especially in case of
heavy-tailed distributions and they seem to be robust against outliers. However, M1 and M2 are not affine
invariant so an affine transformation of the data could affect their performance. Hence the aim of our
simulation study will be to investigate their finite sample performance in case of elliptically symmetric
sample distributions.

2. Method

We have performed computer simulations to compare the performance of the proposed spatial median
test statistics M1 and M2 with the performance of the well-known affine invariant Lawley-Hotelling T 2

(see e.g. [1] for definition). We compared q = 3 samples of n1 = n2 = n3 = 30 data points from R3

(i.e. the dimension is d = 3). In two cases we also compared unbalanced samples of n1 = 20, n2 = 30
and n3 = 40 data points but we obtained virtually the same behaviour as in the balanced case. Hence
the rest was performed with n1 = n2 = n3 = 30. In each of the 5000 simulation all the data points
were generated from spherically symmetric multivariate distributions of the same type centered around
the location parameters µ1, µ2, µ3, i.e the underlying densities had the form g((x − µi)T (x − µi));
i = 1, 2, 3. We sampled only from a heavy-tailed multivariate Cauchy distribution since it was shown
in [7] that in case of light-tailed distributions M1 and M2 are outperformed by T 2 already in spherical
situations.
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Then the three data clouds were elliptically “deformed” by multiplying with the square root of the
positive-definite matrix

Σ :=




1 ρ ρ

ρ 1 ρ

ρ ρ 1


 ; ρ ∈ (−1, 1).

It is equivalent to sampling from the distributions given by the densities | det(Σ)|− 1
2 g((x−Σ

1
2 µi)T Σ−1(x−

Σ
1
2 µ1)); i = 1, 2, 3. Contours of these densities are ellipsoids (around the location parameters Σ

1
2 µ1,

Σ
1
2 µ2, Σ

1
2 µ3) given by the equations

(x− Σ
1
2 µi)T Σ−1(x− Σ

1
2 µi) = const; i = 1, 2, 3.

As we can see, the matrix Σ is the matrix of the symmetry of the ellipsoidal contours. The values of ρ we
used were 0 (=no deformation; spherical symmetry), 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 (=extreme deformation;
eccenric elliptical contours) because we wanted to focus on stronger deformations rather than on the
“nearly spherical” cases (ρ close to zero).

For affine invariant tests (e.g. the Lawley-Hotelling test) the “deformed” situation is the same as
spherical symmetry around the location parameters µ1, µ2, µ3. But for our median-based test statistics
M1, M2 it is not the case, the performance of the tests could depend on the choice of the matrix Σ.

3. Performance under H0

First we simulated the case when H0 is true, i.e. the µi’s were set up to vectors of zeroes. The tests were
carried out in such a way that the null hypothesis was rejected if the employed test statistic exceeded
the 5% critical value of the χ2

(q−1)d = χ2
(3−1)·3 distribution, so we were testing on the nominal level of

significance 5%. Table 1 shows how the simulated probabilities of type I error differ from the “ideal”
0.05.

Table 1: Simulated probabilities of type I error - balanced and unbalanced samples

n1 = n2 = n3 = 30 n1 = 20, n2 = 30,
n3 = 40

ρ M1 M2 T 2 M1 M2 T 2

0 0.073 0.079 0.023 0.076 0.084 0.032
0.5 0.080 0.086 0.023 0.088 0.096 0.032
0.6 0.081 0.089 0.023 0.091 0.100 0.032
0.7 0.085 0.094 0.023 0.095 0.107 0.032
0.8 0.097 0.107 0.023 0.103 0.117 0.032
0.9 0.114 0.132 0.023 0.128 0.141 0.032

0.95 0.151 0.174 0.023 0.162 0.186 0.032

It is obvious from the table that the stability of the spatial median tests gets worse as ρ increases,
i.e. the data clouds are more ellipsoidal. We note that asymptotically the true values of probabilities of
type I error must attain 0.05 for larger sample sizes because the asymptotic distribution of M1 and M2

is χ2
(q−1)d also under elliptical symmetry (see [7]). The impact of elliptical symmetry is that for smaller
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sample sizes the use of χ2
(q−1)d critical values is less accurate than in case of spherical symmetry. Finally,

note that the results for unbalanced samples are very similar to the balanced case: simulated probability
of type I error is increasing with ρ increasing.

4. Different location parameter distances

Now we present the results of simulations when H0 did not hold. We set up the location parameters to

µ1 :=




0
0.4
0


 , µ2 :=



−0.4
0.4
0.4


 , µ3 :=




0.4
0
0




and then to 1.5µ1, 1.5µ2, 1.5µ3 and 2µ1, 2µ2, 2µ3. Table 2 shows the simulated powers of the considered
tests.

Table 2: Power under various violations of H0

Location parameters Location parameters Location parameters
µ1, µ2, µ3 1.5µ1, 1.5µ2, 1.5µ3 2µ1, 2µ2, 2µ3

ρ M1 M2 T 2 M1 M2 T 2 M1 M2 T 2

0 0.430 0.449 0.049 0.769 0.784 0.087 0.937 0.942 0.146
0.5 0.438 0.454 0.049 0.769 0.782 0.087 0.944 0.948 0.146
0.6 0.436 0.454 0.049 0.766 0.777 0.087 0.943 0.947 0.146
0.7 0.433 0.451 0.049 0.759 0.773 0.087 0.942 0.947 0.146
0.8 0.425 0.446 0.049 0.744 0.760 0.087 0.937 0.942 0.146
0.9 0.414 0.440 0.049 0.708 0.727 0.087 0.911 0.924 0.146

0.95 0.404 0.441 0.049 0.670 0.696 0.087 0.874 0.888 0.146

Similarly to the situation when H0 was true the performance of the spatial median tests gets poorer
because their simulated powers are decreasing when ρ is increasing. Table 2 also shows that the
decrease of simulated powers depends on ”how far” from H0 we are: when the distances between
location parameters are longer (cases 1.5µ1, 1.5µ2, 1.5µ3 and 2µ1, 2µ2, 2µ3) the decrease of powers
after elliptical deformation could be sometimes more dramatical (nearly 10%) when comparing with a
moderate violation of H0 (the case µ1, µ2, µ3). However, from the simulation results it is not clear if the
fall-off of the power increases monotonically with an increas of distances between location parameters.

In the case of location parameters 1.5µ1, 1.5µ2, 1.5µ3 we simulated also the case of unbalanced
samples: n1 = 20, n2 = 30 and n3 = 40 (see Table 3). As in the “H0-situation” the results are similar
to the balanced case (Table 2): simulated power is decreasing with ρ increasing.

5. Changed orientation of location parameter vectors

Since spatial median and arithmetic mean are rotationally equivariant, the test statistics M1, M2 and T 2

are rotationally invariant (i.e. the value of the test statistic does not change after a rotation of the data).
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Table 3: Location parameters 1.5µ1, 1.5µ2, 1.5µ3 and unlabanced sample sizes n1 = 20, n2 = 30 and
n3 = 40

ρ M1 M2 T 2

0 0.798 0.811 0.104
0.5 0.807 0.821 0.104
0.6 0.806 0.819 0.104
0.7 0.801 0.817 0.104
0.8 0.789 0.803 0.104
0.9 0.754 0.769 0.104

0.95 0.714 0.738 0.104

This can be seen in the first row of Table 4: first we generated data points around the location parameters

µ1 :=




0.4
−0.4

0


 , µ2 :=



−0.4
0.4
0


 , µ3 :=




0.4
0
0




and then we rotated the data 90 degrees around the z-axis in R3 and obtained the same simulation results.
Note that rotation of the data corresponds (i.e. the distribution of the test statistics is the same) to sampling
around rotated location parameters

µ′1 :=




0.4
0.4
0


 , µ′2 :=



−0.4
−0.4

0


 , µ′3 :=




0
0.4
0




because the distributions of the samples are spherically symmetric and the test statistics are rotationally
invariant.

Table 4: Powers of the tests for ”deformed” and ”rotated & deformed” data

Location parameters Location parameters
µ1, µ2, µ3 µ′1, µ′2, µ′3

ρ M1 M2 T 2 M1 M2 T 2

0 0.558 0.574 0.062 0.558 0.574 0.062
0.5 0.553 0.570 0.062 0.536 0.558 0.062
0.6 0.547 0.567 0.062 0.531 0.555 0.062
0.7 0.539 0.558 0.062 0.522 0.550 0.062
0.8 0.525 0.547 0.062 0.516 0.552 0.062
0.9 0.502 0.528 0.062 0.527 0.564 0.062

0.95 0.487 0.520 0.062 0.564 0.603 0.062

If we now elliptically deform the original data (samples around µ1, µ2, µ3) by the matrix Σ
1
2 and

do the same with the rotated data (samples around µ′1, µ′2, µ′3) we again obtain the same powers for the
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Lawley-Hotelling test but not for the median tests based on M1 and M2 (compare the corresponding
columns in Table 4).

Now we try to explain the different behaviour of the tests for ”deformed” and ”rotated & deformed”
data. Note that spherical symmetry of the distributions of the samples and rotational invariance of our
test statistics ensure that the powers of all three tests depend on the location parameters µ1, µ2, µ3 only
through the mutual distances between them and not on the spatial orientation of the vectors µ1, µ2,
µ3. But when we deform the data by the matrix Σ

1
2 the distances between the location parameters µ1,

µ2, µ3 will change and this change depends on the spatial orientation of µ1, µ2, µ3 with respect to the
elliptical contours given by the matrix Σ. For the affine invariant Lawley-Hotelling T 2 it does not cause
problems because the Lawley-Hotelling test can be seen as retransformation of the data to the spherically
symmetric case with original location parameters µ1, µ2, µ3 and then computing of the test statistic T 2.
Hence we obtained the same power. But M1 and M2 are not able to “return back” to the undeformed
data so they have to deal with a completely new situation: changed distances between the new location
parameters and elliptical distribution of the samples.

Looking at Table 4 one can notice that for location parameters µ1, µ2, µ3 there is an decrease of powers
of the median tests when ρ is increasing (similar behaviour as in Table 2) but for the rotated location
parameters µ′1, µ′2, µ′3 there is an increase of powers for ρ close to 1! The reason is that whereas before
the deformation of the data there was no difference (in the distances between the location parameters)
between the original (location parameters µ1, µ2, µ3) and rotated situation (location parameters µ′1, µ′2,
µ′3):

‖µ1 − µ2‖ = ‖µ′1 − µ′2‖ = 1.13,

‖µ2 − µ3‖ = ‖µ′2 − µ′3‖ = 0.89,

‖µ2 − µ3‖ = ‖µ′2 − µ′3‖ = 0.4,

after the elliptical deformation (we take ρ = 0.95 as an example) the distances got shorter for the
”deformed” data:

‖Σ 1
2 µ1 − Σ

1
2 µ2‖ = 0.25,

‖Σ 1
2 µ2 − Σ

1
2 µ3‖ = 0.44,

‖Σ 1
2 µ2 − Σ

1
2 µ3‖ = 0.4,

and longer for the ”rotated & deformed” data:

‖Σ 1
2 µ′1 − Σ

1
2 µ′2‖ = 1.58,

‖Σ 1
2 µ′2 − Σ

1
2 µ′3‖ = 1.19,

‖Σ 1
2 µ′2 − Σ

1
2 µ′3‖ = 0.4.

Hence it should be easier for the median tests to reveal the violation of H0 in case of the ”rotated &
deformed” data but the situation is also influenced by the fact that the distributions in the samples are
no more spherically but elliptically symmetric. So one can see that an elliptical deformation of the data
does not necessary imply a decrease of the powers of the test. It depends on the spatial orientation of the
location parameter vectors with respect to the elliptical contours given by the matrix Σ.
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6. Conclusions

The results of the simulation study show that the elliptical symmetry does not affect the performance
of the spatial median tests M1 and M2 that much as the performance of some non-affine invariant test
studied by simulations in [1] and [5]. And M1 and M2 were still better than the affine invariant Lawley-
Hotelling test in case of the heavy-tailed multivariate Cauchy distributon. Moreover, it turned out that
the performance of M1 and M2 under elliptical symmetry strongly depends on the orientation of the
true location parameter vectors and in some situations the elliptical deformation of the data could even
improve the powers of M1 and M2!

A “negative” result for the spatial median tests is that the elliptical deformation increases their finite
sample probabilities of type I error. This phenomenon was not observed in case of non-affine invariant
tests studied in [1] and [5]. Further we found out that the impact of elliptical deformation is stronger
when violation of H0 is more serious (observed also in [1] and [5]).

Despite of some promising properties of the spatial median test statistics M1 and M2 it is still a
challenging problem for us to adjust them so that they become affine invariant.
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