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In this paper we motivate and develop the analytic theory of measurement, in which autonomously specified algebras of
quantities (together with the resources of mathematical analysis) are used as a unified mathematical framework for modeling (a)
the time-dependent behavior of natural systems, (b) interactions between natural systems and measuring instruments, (c) error and
uncertainty in measurement, and (d) the formal propositional language for describing and reasoning about measurement results. We
also discuss how a celebrated theorem in analysis, known as Gelfand representation, guarantees that autonomously specified algebras
of quantities can be interpreted as algebras of observables on a suitable state space. Such an interpretation is then used to support
(i) a realist conception of quantities as objective characteristics of natural systems, and (ii) a realist conception of measurement
results (evaluations of quantities) as determined by and descriptive of the states of a target natural system. As a way of motivating
the analytic approach to measurement, we begin with a discussion of some serious philosophical and theoretical problems facing
the well-known representational theory of measurement. We then explain why we consider the analytic approach, which avoids all
these problems, to be far more attractive on both philosophical and theoretical grounds.

Keywords: Gelfand representation, quantity algebra, state space, observables, measuring process, quantity conversion, quantity
restoration.

1. Introduction: theory-world relations and

the measurement question

One of the central aims of philosophy of science is
to formulate a comprehensive and adequate interpretation

of how scientific theories relate to the world. Such an inter-
pretation, however, has to face the fact that modern science is
dominated by quantitative theories whose mathematical for-
malism (usually presented in the language of differential or
difference equations over real-valued functions) says nothing
directly about the world. In order to treat such theories even
as potential descriptions of the world, their formalism must be
augmented by an extra-mathematical interpretation, in which

(i) all functions appearing in the equations represent
amounts, degrees, or intensities of pertinent attributes
of natural systems in the theory’s intended scope of ap-
plication, while

(ii) the equations defined over such functions describe the
dynamical behaviors of target systems or simply the
temporal changes in the amounts or degrees of the sys-
tems’ pertinent attributes.

Only when interpretations (i) and (ii) are carefully speci-
fied, can the theory under consideration be tested by checking
whether there is an agreement (to within admissible approxi-
mations) between two kinds of quantitative values:

(a) those computed for the target system’s attributes us-
ing the mathematical apparatus of the theory, usually
referred to as theoretical predictions, and

(b) those obtained by the experimenters on the basis of
measurement interactions with the target system.

All this, of course, is a very familiar (admittedly coarse-
grained) outline of theory-world relations. And much of what
has been written by philosophers of science takes this out-
line as a sufficiently precise and informative basis for vari-
ous topic-specific philosophical explorations of science (e.g.,
those dealing with scientific realism, scientific explanation and
theory testing). What such philosophical explorations seem to
ignore, however, is that the above outline of theory-world re-
lations is painfully incomplete because it does not even raise,
let alone answer, the following epistemologically and method-
ologically crucial measurement question:

What is it about natural systems and/or obser-
vational interactions therewith that justifies our
correlating the system’s attributes with such-and-
such numbers?

What makes the foregoing measurement question of consider-
able foundational significance is the following: Although the
world imposes many physical constraints on our observational
interactions with natural systems (e.g., we cannot compare the
masses of two stars by using an equal-arm balance), it imposes
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no physical constraints whatsoever on how we may correlate
various features of the world with numbers. Consequently,
unless we can answer the above measurement question, any
way of correlating natural systems with numbers could be
viewed as a ‘measurement result’, allowing us to confirm and
disconfirm theories at will and, as a result, to turn the very
notion of theory testing into nonsense!

While the importance of the measurement question was
first recognized by von Helmholtz (1887) and later by Cam-
bell (1920), their answers to this question amounted to little
more than informal and general definitions of measurement.
In the 1950s, however, a group of mathematically trained so-
cial scientists, building on the earlier work of Hilbert (1899),
Hölder (1901) and Stevens (1951), have developed a mathe-
matically precise answer, known as the representational theory
of measurement, henceforth acronymed RTM.

2. RTM and the measurement question

The two central components of RTM are its empiricist philo-
sophical framework and a mathematical method of represen-
tation theorems. On the philosophical side, RTM embraces the
empiricist methodology and epistemology by aiming to spec-
ify and justify the “basic procedures for assigning numbers
to objects or events on the basis of qualitative observations
of attributes” (Krantz et al. 1971, 2-3, italics ours). In other
words, RTM assumes that the natural world, in and of itself,
is inherently non-quantitative, and that it is we who ‘impose’
quantities on the world when we represent various qualitative
features of the world by assigning numbers to them. More-
over, the qualitative features of the world which give rise
to and justify our numerical assignments are presumed to be
observable, where ‘observable’ means that normal sensory
perception would suffice to determine whether some specified
qualitative comparison relation holds between two attribute-
bearing objects.1

In short, even without stating its philosophical commit-
ments explicitly, RTM seems to be in complete agreement
with the empiricist view of measurement as articulated by
Rudolf Carnap (the most influential empiricist philosopher of
science in the 20th century), who remarked that “Quantitative
concepts are not given by nature... It is we who assign numbers
to nature... [on the basis of] phenomena [which] themselves
exhibit only qualities that we observe.” (Carnap 1966, 100,
italics in the original).

With these empiricist assumptions in the background, the
principal mathematical task of RTM begins with specifying
the axioms for (what the theory calls) an empirical or mea-
surement structure, consisting of a domain of attribute-bearing
objects of interest together with a qualitative comparison rela-

tion thereon and (where applicable) a qualitative composition
operation on these objects. For example, in the case of the so-
called extensive attributes (such as mass, length, charge, etc.),
the empirical structure associated with an attribute λ under
consideration has the algebraic form 〈D,�,⊕〉, where

(i) D is a nonempty set representing a collection of physi-
cal objects, possessing the extensive attribute λ (e.g., if
λ denotes the length attribute, then D is a set of length-
bearing rods);

(ii) � is a binary relation on D, modeling a qualitative com-
parison relation associated with λ. In particular, for the
length attribute the atomic sentence ‘x� y’ encodes the
observational fact that rod x is strictly shorter than rod
y, and its truth value is established operationally. That
is to say, sentence ‘x � y’ is true provided that when
rods x and y are placed side by side with their ends or
edges coinciding on one side, on the other side the edge
of rod x is strictly under the edge of rod y; and

(iii) ⊕ is a binary operation, encoding a qualitative compo-
sition operation on objects in D. For the length attribute
λ, the composite x ⊕ y denotes the rod obtained by a
collinear juxtaposition of x and y.

With the empirical structure 〈D,�,⊕〉 (associated with
the attribute λ under consideration ) appropriately axioma-
tized, the next crucial step is to prove that the axiomatically
specified order-theoretic and algebraic properties of � and
⊕, respectively, embody necessary and sufficient conditions
for the existence of a real-valued function f : D −→ R

(representing the informal notion of assignment of numbers to
objects), satisfying the following two conditions for all objects
x and y in D:

1. x� y ⇐⇒ f(x) < f(y), and

2. f(x⊕ y) = f(x) + f(y).

In addition, the axioms uphold the uniqueness require-
ment, asserting that for any function f ′ : D −→ R satis-
fying (1) and (2) above, there is a real number c such that
f ′(x) = c · f(x).

This kind of mathematical result, available, e.g., in Suppes
(1969a), is called a representation theorem for the measure-
ment structure 〈D,�,⊕〉.

From the standpoint of modern algebra, the real-valued
structure-preserving function f referred to above is best
viewed as a homomorphism or embedding of 〈D,�,⊕〉 into
the numerical structure 〈R, <,+〉.2

Having outlined the main ideas and methods of RTM, let us
now take a look at how this representational approach proposes

1For example, in the process of measuring mass on an equal-arm balance, consider placing two objects on its opposite pans and observing whether the
balance tilts and, if so, on which side. Here the meaning of ‘observable’ is that of philosophers and it differs significantly from the way in which this term is
used in physics, where it designates a measurable characteristic of a natural system.

2Today the literature on RMT includes many excellent surveys (from concise to comprehensive) of the theory’s technical aspects. See, for example,
Suppes and Zinnes (1963), Krantz (1968), Pfanzagl (1968), Krantz et al. (1971), Narens (1985), Luce and Suppes (2002), to mention just some. Readers
interested in detailed proofs of various representation theorems, or in axiomatizations of measurement structures for various attributes may consult any of
these texts.
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to answer the earlier posed measurement question.3 First, rep-
resentation theorems for various measurement structures can
be interpreted as formal assurances that certain qualitative re-
lations/operations involved in our comparison and aggregation
of objects in the world are in effect equivalent to certain math-
ematical relations/operations on numerical values assigned to
these objects. Here the point is that measurement-theoretic
representation theorems can be seen as mathematically jus-
tifying our assignments of quantitative values to amounts of
physical attributes by assuring us that (some amount of) the
order-theoretic and algebraic structure of real numbers con-
stitutes a ‘numerical mirror’ of the order-theoretic and alge-
braic structure of certain specified comparison relations and
composition operations on objects having the said attributes.
Second, by linking a numerical structure directly to quali-
tative relations/operations on attribute-bearing objects, RTM
justifies the view that their underlying attribute is fundamen-
tal in the sense that its measurement requires neither a prior
measurement of other attributes nor theoretical assumptions
associated with derived measurements.

In brief, the physical-to-mathematical implication estab-
lished by representation theorems offers a logical constraint
on our numerical assignments and thus justifies them as gen-
uine measurement results (in contrast to ad hoc numerical
assignments). The mathematical-to-physical implication, on
the other hand, explains why we may treat calculated nu-
merical values of physical attributes as being ‘answerable’ to
certain observational interactions with objects, having these
attributes. Here ‘answerable’ is meant in the sense that signif-
icant disagreements between calculated (predicted) and mea-
sured values of physical attributes are seen as indications that
there is something wrong with the theory involving such at-
tributes.

RTM’s answer to the measurement question – based on
bottom-up empiricist constructions of quantitative representa-
tions of physical attributes, is epistemologically very attractive
in that it promises to explain and justify the introduction of
quantities on the basis of observable qualitative and, thus,
epistemically secure features of the world. And a superficial
consideration of examples of qualitative relations/operations
offered as empirical interpretations of representable measure-
ment structures in the literature on RTM makes the utter trans-
parency of these examples very seductive. After all, what
could be epistemologically simpler and more transparent than
placing two rods side by side, assuring that their edges coin-
cide on one side and then checking whether the other edge of
one rod extends beyond that of the other?

Yet if we take a careful look at the measurement axioms,
supporting various representation theorems – e.g., those in
the now classic axiomatization of extensive measurement in
Suppes (1969a), we will see that the structural properties of re-
lations and operations required for real-valued representations
of even such basic attributes as length unavoidably transcend
the limits of what is observable. In the next section we will

outline several such obstructions to empirical interpretations
of measurement axioms. (Our outline will rely on a detailed
case study in Batitsky (1998) to which readers are referred for
additional details and bibliographic information.)

3. Problems with RTM’s empiricist foundation

Beginning with the comparison relation �, the transitivity
property of this relation requires arbitrarily precise discrimi-
nation capacity, which real-world scientific measuring instru-
ments (let alone unaided human sense organs) do not have.
Specifically, it is quite easy to set up situations in which hu-
man subjects will be asked to compare objects with respect
to some extensive attribute and will produce non-transitive
perceptual comparison judgments (e.g., when the differences
between objects x and y, and between objects y and z, are
below the threshold of sensory detection, while the difference
between x and z is sufficiently large to be clearly detectable).

Nor is there any way to give an observational interpretation
to the Archimedean property of �, which informally tells us
that the amount of an attribute possessed by any object can (in
principle) be exceeded by aggregating sufficiently many repli-
cas of any other object having this attribute. The problems
for empirical interpretability here are quite numerous. First,
this property presupposes an unlimited (potentially infinite)
supply of ‘replicas’ for every object. Second, making precise
the required formal properties of the relation ‘x is a replica of
y’ would expose some of these properties (e.g., transitivity) as
observationally uninterpretable. Last, but not least, the modal
locution “can in principle be exceeded” already goes beyond
the empiricist’s commitment “to withhold belief in anything
that goes beyond the actual, observable phenomena” (van
Fraassen 1980, 202, italics ours).

As for the composition operation ⊕, its closure property
implies a denumerable infinity of attribute-bearing objects in
D, which surely goes beyond what can be determined by ob-
servation. Moreover, such algebraic properties as positivity
involve mereologically meaningless (and thus physically im-
possible) comparisons of an object x with objects containing
x as a part, as in x� (x⊕ y).

Of course, these difficulties with observational interpreta-
tion of measurement axioms have not gone unrecognized by
measurement theorists who from the beginning clearly saw
how much abstraction and idealization is involved in their
axiomatizations of measurement structures (e.g., see Suppes
1969a, 44-45). Their response, however, was largely focused
on order-theoretic and/or algebraic modifications of the stan-
dard axiomatizations, so as to remove observationally uninter-
pretable properties of � and ⊕. For instance, the requirement
of (perfect) transitivity for � can be avoided by treating this re-
lation stochastically (Suppes et al. 1989, 300; Kyburg 1997),
or by viewing it conservatively as a semiorder relation (in
which the atomic sentence ‘x � y’ holds only when there is
some minimal (‘just noticeable’) difference between x and y
(Domotor and Stelzer 1971). The closure property of⊕ could

3We emphasize ‘proposes’ because the adequacy of this answer will be questioned shortly.
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be avoided by making this operation partial, i.e., defined only
on a proper subset of the domain D (Luce and Marley 1969;
Krantz et al. 1971, 81-85). The Archimedean property of
� can be avoided either by switching to finite measurement
structures (Suppes 1969, 5-9), whose real-valued represen-
tations do not require this property, or to non-Archimedean
measurement structures with non-standard real-valued repre-
sentations (Mundi 1987; Narens 1985, 276ff). Last, but not
least, the mereologically meaningless comparisons demanded
by the algebraic properties of⊕ could be avoided by imposing
certain mereological restrictions on this operation (Batitsky
1998, 59-61).

Upon closer inspection, however, none of these modifi-
cations of qualitative relations and operations are amenable
to observational interpretation. The general problem with
all such modifications of measurement structures is that in
removing some observationally uninterpretable properties of
the associated relations/operations, these modifications invari-
ably introduce (though not always explicitly) new structural
assumptions which are equally resistant to observational inter-
pretation. For example, a stochastic treatment of comparison
relations would involve an auxiliary probability structure with
an equally idealized comparative relation (e.g., the relation
“event x is strictly less probable than event y”, axiomatized
as transitive and Archimedean), and other abstract and ideal-
ized structural assumptions required for proving the existence
of a probability measure (Batitsky 1998, 63). Treating the
comparison relation as a semiorder on infinite domains would
require enriching this relation with observationally uninter-
pretable logically higher-order properties, so as to obtain the
so-called indiscernibility equivalence relation, mimicking the
numerical identity relation. Finite semiordered measurement
structures, on the other hand, require highly abstract axioms,
e.g., the so-called Scott Condition, which resists even a phys-
ical interpretation, let alone an observational one (Batitsky
1998, 62-63).

The cost of making the empirical comparison relation
non-Archimedean would be giving up the equivalence of
logical structure between physical and mathematical rela-
tions/operations. Instead, there would be only a one-
directional implication: either the ‘left-to-right’ physical-to-
mathematical implication (Narens 1985, 276) or the ‘right-
to-left’ mathematical-to-physical implication (Mundy 1987).
And this means that RTM would no longer offer us either a
formal constraint on numerical assignments (by giving up the
‘left-to-right’ implication) or a formal justification of holding
calculated theoretical predictions answerable to measurement
interactions with the physical world (by giving up the ‘right-
to-left’ implication). (Batitsky 1998, 60-61; Batitsky 2002,
295-296).

Finally, subjecting the empirical composition operation
to mereological constraints (so as to avoid physically mean-
ingless aggregations and comparisons of objects with their

proper parts) would require a fair amount of background
(Euclidean) geometry needed for defining measurement-
theoretically meaningful parts (e.g., parts obtained by dividing
a rod in a plane perpendicular to the direction of the rod’s
length, as opposed to those chipped out of that rod). Such
auxiliary geometry, however, requires observationally unin-
terpretable, highly technical logically second-order structural
conditions on the pertinent geometric relations (betweenness,
orthogonality, etc.) in order to assure the existence of an
Euclidean distance metric (Batitsky 1998, 59-60).

There are other difficulties faced by empirical interpre-
tations of RTM’s measurement structures, but those already
discussed allow us to conclude that quantities and their mea-
surements cannot be introduced, explained and justified simply
by treating them as convenient (and in principle dispensable)
proxies for qualitative observable manipulations of physical
objects. As we have just seen, such an interpretation would
make RTM’s axioms for measurement structures literally false
and, as a result, deny any extra-mathematical significance to
representation theorems supported by such axioms. With this
in mind, we are certainly entitled to ask: What exactly then is
described by the axioms for these ‘measurement’ structures?
And why should we accept real-valued homomorphisms or
embeddings supported by such axioms as explaining/justifying
quantitative measurements in science?

One way for RTM to respond (and, as we see it, the only
meaningful way) is to abandon its empiricist foundational aims
and to present axiomatized measurement structures as theories
of quantities, which (as all scientific theories) are entitled to
all sorts of idealizations which should be no more objection-
able than idealized frictionless surfaces or centers of gravity
in physics. If this position is taken, then, however, as we shall
discuss next, RTM will have to face several intertwined theo-
retical disadvantages, which we outline below, so as to moti-
vate our alternative philosophical and theoretical perspectives
on measurement in science. (Some of these theoretical disad-
vantages have been discussed in greater detail by other critics
of RTM, e.g., Mari (2000).)

4. Theoretical disadvantages of RTM

4.1 Theory-dependence of measurement

Once we see that RTM’s measurement structures cannot be
given complete qualitative observational interpretations, the
distinction between fundamental and derived measurement,
central to RTM’s empiricist approach, becomes untenable. All
measurement in science, even in most pedestrian cases, is ulti-
mately a derived measurement, requiring prior measurements
and theoretical background assumptions (laws) which relate
different quantities to one another. This theory-dependence
becomes especially pronounced when measurement requires
a theory-based understanding and specification of (i) interac-
tions between target systems and designated measuring instru-
ments, and (ii) calibration procedures for instruments.4 It is

4Note that even such a simplistic procedure as measuring the length of a rod with a ruler presupposes (among other things) suitable control of the rod’s
thermal expansion and, thus, an underlying theoretical relationship between length and temperature.

132



MEASUREMENT SCIENCE REVIEW, Volume 8, Section 1, No. 6, 2008

thus of considerable importance for a theory of measurement
to be formulated in such a way that its mathematical formalism
and the formalism’s intended interpretation naturally accom-
modate the required theoretical relations among quantities.
With RTM, however, no such natural accommodation is possi-
ble because its formalism offers no mathematically significant
constructions relating different measurement structures to one
another, or building new models from antecedently specified
ones.5

4.2 Error and uncertainty in measurement

Errors and the associated uncertainty are unavoidable aspects
of measurement, and modern science has developed a power-
ful array of sophisticated engineering and statistical methods
for controlling and estimating errors, respectively. Again, it
is important for a theory of measurement to be formulated in
a way which allows it to account for the role of error control
and estimation in scientific measurement. In the framework of
RTM, measurement errors have been typically treated in two
ways, both of which are theoretically problematic. The first
way focuses on weakening the logical structure of relations
and operations in a measurement structure, e.g., by replacing
weak order with semiorder, so as to account for error-induced
intransitive comparisons. This approach is theoretically unsat-
isfying because it attempts to account for error-induced logical
‘imperfections’ of measurement results by building these ‘im-
perfections’ into what is being measured rather than by mak-
ing these logical ‘imperfections’ a feature of our methods and
procedures for extracting information about the world through
measurement. The second way in which RTM attempts to deal
with measurement errors is by ‘hiding’ them in the represent-
ing homomorphism f : D −→ R, prompting a probabilistic
representation of the form P

(
α ≤ f(x) ≤ β

)
= p, which

states that the value f(x) of f for object x is between α and
β with probability p. Representational measurement theory
has as yet made little progress in isolating the correct prob-
abilistic conditions to be imposed on relational statements,
including the product probabilistic transitivity condition, hav-
ing the form

Pr
(
x� y

)
·Pr

(
y � z

)
≤ Pr

(
x� z

)
or some other form that jointly with additional conditions
grants the existence of a real-valued random variable f to-
gether with its probability distribution P such that the identity

Pr
(
x� y

)
= P

(
f(x) < f(y)

)

holds for all objects x and y in D.

4.3. The problem of specifying measurands

Because initial methods and procedures for measuring such
basic physical attributes as length, mass and time were de-
veloped long before the emergence of theoretical science, one
may be tempted to think that, in general, a theory-independent,
observation-based understanding of target attributes – the so-
called measurands, is always sufficient for developing pro-
cedures and methods for measuring these attributes. Such
‘bottom-up’ approaches to specifying measurands, however,
did not fare well even in Newtonian physics, as witnessed
by a prolonged confusion between quantities that were even-
tually distinguished and specified as momentum and kinetic
energy. In the social sciences, this approach fares a lot worse.
There are many important attributes (e.g., TV violence, intel-
ligence, poverty, fitness, etc.) that come in obvious degrees
or perhaps in other less clear comparative manifestations, and
thus possess an order structure of some sort, but the represen-
tational approach in itself does not provide any clue to their
correct measurement. The reason, we believe, is that the actual
measurement procedures for these kinds of attributes require
considerably deeper (underlying) psychological, sociological,
cultural and other theories or models that the representational
approach does not engage. For example, if the measurer does
not have a viable model for TV violence or human intelligence,
it is not clear exactly what his or her TV violence indicators
or intelligence tests are measuring. Theoretical models and
their discretized variants (discussed later) provide the required
meeting ground for measurement design, interpretation, and
model validation.

More generally (and closely related to the already dis-
cussed theory-dependence of measurement), a measurand
tends to be part of a larger network of other measurands
to which it is causally linked or statistically correlated, and
framed in an appropriate model or theory of the underlying
measured object (typically by equations involving partially
known parameters). In the absence of well-confirmed theo-
retically framed measurands, there is a danger of designing
spurious measurements of attributes that do not provide any
empirical information about them. In sum, decisions about
what to measure and how to measure are for the most part
theory-dependent or model-driven. In the case of measuring
complex attributes, the formal assumptions of RTM require
substantive theoretical enrichments that take into account ide-
alizations, and provide an adequate framework for analyzing
and interpreting measurement results.

5We know from Newtonian mechanics that the results of measurement of force applied to a particle are intimately related to the results of measurement
of its acceleration (the first derivative of the particle’s velocity) and mass. Although conjoint measurement models (with difficult-to-test conditions) attempt
to address this problem in the case of simple product constructions, a representational treatment of derivation and other analytic operations on quantities
are typically lacking. A particularly simple example which arises frequently is the following: Suppose we are given two extensive measurement structures
〈D, �,⊕〉 and 〈D′, �′,⊕′〉 for measuring (say) the mass of physical objects in two distinct but overlapping empirical domains D and D

′. Let their
respective designated representing homomorphisms (embeddings) be f : D −→ R and f ′ : D

′ −→ R. Central to measurement is the construction of a
joint measurement structure for the union D ∪D

′ and that of a corresponding union homomorphism (embedding) f ∪ f ′. It is clear that the joint model
must involve strong compatibility axioms for relations � and �′, but the representational approach does not make them explicit. There are many other
important formal constructions that are not available or are unknown in the representational theory, including the existence of various (e.g., tensor, fibered,
etc.) products and sums of measurement structures.
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4.4 The problem of finite/discrete versus infinite/continuous

Because mathematical modeling throughout science relies ex-
tensively on the real (and complex) numbers, it is only nat-
ural for RTM to focus on real-valued representations. The
values of homomorphisms or embedding functions not only
are presumed to be sharp, but also can include real numbers
(e.g., non-computable or random) which cannot be obtained
even in the limit of infinite precision allowed to highly ideal-
ized measurement instruments (Batitsky and Domotor 2007,
88-90). With the limited resolution and memory resources
of real-world measuring devices, however, numerical values
obtained through measurement are (i) at best determined to
lie within some relatively small intervals, and (ii) specified
only to finitely many decimal places. These considerations
strongly suggest that measurement should also be considered
in terms of discretizations of continuum models (e.g., as out-
lined in Batitsky and Domotor (2007, 85-86)), and that the rele-
vant relations between continuum theoretical models and their
measurement-induced discretizations should be accounted for
by a theory of measurement. Yet again, RTM does not offer
any mathematical or conceptual means for accomplishing this
task.

Having outlined theoretical disadvantages of RTM, we are
now ready to present an alternative approach to measurement.
We call this approach ‘analytic’ because its formal framework
is part of mathematical analysis.

5. The analytic theory of measurement:

conceptual background and informal

introduction

In contrast to RTM, our approach to measurement is based on
a realist conception of quantities – the conception according
to which

(i) quantities are theoretical entities of science, interpreted
as objective characteristics of natural systems, rather
than merely our means for convenient representation of
an inherently non-quantitative world;

(ii) quantities and their mathematical relations (representing
laws) are discovered by scientists, rather than imposed
by them on an inherently qualitative world;

(iii) the purpose of measurement is a determination of prop-
erties of natural systems, achieved by a physical act of
evaluating quantities which produces a real (or com-
plex) number, rather an act of assigning numbers to
non-quantitative reality as convenient numerical repre-
sentations;

(iv) while quantities are instantiated (in various amounts,
degrees or intensities) by natural systems, they have ‘a
life of their own’, so to speak. By this we mean that
the algebraic, topological and other structures of quan-
tities, as well as functional relations among quantities
(e.g., dynamical laws), can be specified and investigated

without having to explain what it is about natural sys-
tems that makes them instantiate the quantities in the
ways they do.

While the foregoing conditions may at first sound meta-
physically and epistemologically audacious, this position will
emerge a bit later as a natural interpretation of one of the
most important results in 20th century mathematics – the so-
called Gelfand duality (Gelfand, 1939), one of whose variants
we shall use as the mathematical cornerstone of the analytic
theory measurement, henceforth acronymed ATM. Before in-
troducing the formal details of ATM, however, we want to give
an intuitive and largely informal description of this approach.

Just as painters or fashion designers can think about col-
ors and their combinations independently of physical objects
which instantiate them (e.g., colors are described as ‘warm’ or
‘cold’, some combinations of colors are described as ‘clash-
ing’, etc.), we can likewise think about quantities, their ‘com-
binations’, and their relations to one another independently of
natural systems which instantiate them. We may, for exam-
ple, consider the ways certain quantities (e.g., mass, velocity)
‘combine’ to produce certain other quantities (e.g., momen-
tum or kinetic energy). We may consider the ways in which
two or more quantities may be ‘related’ to one another (e.g.,
as pressure, volume and temperature are related by the ideal
gas law).

From a formal point of view, a set of quantities together
with some ‘natural’ ways of combining them to form new
quantities constitutes an algebra, which we will call a quan-
tity algebra. In addition to forming an algebra, quantities also
possess an essentially unique geometric counterpart – a topo-
logical state space (manifold), which not only allows us to
represent quantities in terms of continuous (smooth) functions
on it, but also provides a correct framework for explaining
how quantities work. With this duality between algebraic
and topological structures of quantities in mind, we can use
quantity algebras for modeling both the time-dependent be-
havior of a target natural system and its interactions with
measuring devices, chosen for measuring certain quantities
of interest instantiated by the system. If the measurement is
indirect, we use a convenient functional relation between a
hard-to-measure measurand and an easy-to-measure quantity
to convert the information about the former into information
about the latter. The measurand’s values are then restored
or reconstructed from the instrument’s pointer quantity val-
ues, using a so-called inverse method. The relation between
continuous quantities and discrete outputs of measuring instru-
ments is also described in the same basic algebraic framework,
in terms of discretized algebras of quantities and their limits
with respected to increasingly refined reading scales.

As for the measurement question posed in the beginning of
our paper, it receives a holistic ‘top-down’ answer from ATM,
which reflects the status of all quantities as theoretical enti-
ties of science (in contrast to a hard-to-defend foundationalist
‘bottom-up’ (theory-independent) answer attempted by RTM).
Namely, that our measurements on a target system are justified
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by the entire theoretical framework employed in the system’s
scientific investigations, including (a) theoretical laws which
specify functional relations among quantities, (b) theoretical
laws which specify the dynamics of system-instrument inter-
actions, and are used for designing and calibrating measure-
ment instruments, (c) mathematical results establishing con-
nections between continuous models and their discretizations
(where the latter reflect measurement errors and uncertainties),
and more.

The above modeling framework, based on autonomously
conceived and algebraically framed quantities, is widely used
not only in physics (see, e.g., Bratteli and Robinson, 1987),
but also in other disciplines with well-developed methods and
strategies for mathematical modeling (e.g., economics, chem-
istry, mathematical biology, and population dynamics). And
although many scientists who use this modeling framework
feel that nothing else needs to be added to it mathematically or
conceptually, this framework still may be seen as philosophi-
cally unsatisfying because it does not explain why quantities
associated with a target natural system change the way they
do (and, thus, does not really explain why our evaluations
of quantities associated with a target natural system receive
the values they do). In other words, some philosophers (and
philosophically minded scientists) may feel that the quantity
algebra framework underlying ATM is instrumentalist in that
it can function only as an ‘intellectual instrument’ for predict-
ing and systematizing the results of measurements. What this
framework lacks, it can be claimed, is a philosophically realist
explanation of our measurement results in terms of something
deeper, pertaining to the modeled natural systems.

As philosophers, we are sympathetic to the realist per-
spective on science in general and on measurement in par-
ticular. And our realist sympathies are completely satisfied
by this modeling framework because it does provide us with
a realist interpretation of quantity-based models and evalu-
ations of quantities with the help of the earlier mentioned
Gelfand duality. Speaking informally (and for now roughly),
what Gelfand’s celebrated theorem tells us is that every au-
tonomously specified algebra of quantities is representable by
(and thus is essentially the same as) an algebra of observables
on a uniquely given topological state space (unique up to a
homeomorphism), where observables are understood in the
scientists’ sense, namely as real-valued continuous functions
on a state space.

To appreciate the enormous philosophical significance of
this result, note that, in modeling natural systems, we certainly
can begin (as some scientists do) with a realist commitment
to the system’s states and state transitions as fundamental
entities and processes respectively, and consider the (auto-
matically available) algebra of observables on the system’s
state space as our algebra of (system-specific) quantities to be
used as an algebraic calculational ‘instrument’ for reasoning

about the system’s states. On this view, the measured values
of observables would be given a realist explanation as be-
ing determined by the system’s objective internal (not directly
accessible) states.

What Gelfand duality shows is that this realist ‘underpin-
ning’ of measurement need not be assumed outright, but can
be completely recovered from models based on autonomously
(abstractly) specified algebras of quantities! In other words,
if an abstractly specified algebra of quantities is viewed as a
formal syntactic framework for scientific modeling, Gelfand
duality guarantees a realist geometric semantics for it in terms
of state spaces and observables thereon. In doing so, Gelfand
duality also makes suspect any philosophical motivations for
debating whether states or quantities should be given ontolog-
ical, epistemological or methodological priority. As we see
it, whatever philosophical commitments with respect to states
one accepts or rejects (e.g., the commitment to states being
real objective entities), such acceptance or rejection will au-
tomatically apply (via Gelfand duality) to quantities, and vice
versa. And since we better be realists about something that
is indicated by measurement results (i.e., we cannot view our
measuring instruments as magic boxes spitting out numbers
for no reason whatsoever), Gelfand duality makes it perfectly
reasonable for us to be realists about both the system’s states
and its quantities. This is why we said at the beginning of our
informal exposition that our realist conception of quantities
will emerge as a natural interpretation of Gelfand duality.

Finally, before outlining the formal details of ATM, we
should mention that Gelfand duality applies (via its variants)
to models of classical systems as well as to models of quan-
tum systems, and with classical systems it also holds for both
deterministic and stochastic models. For the sake of sim-
plicity of presentation (and because of space constraints) we
will present the formal details of ATM only for models of
classical deterministic systems and their classical determinis-
tic measurements, while briefly indicating along the way how
these details can be modified to apply in stochastic or quantum
modeling.

6. Quantity algebras, their dynamics,

discretization and propositional logic

In the modern mathematical physics literature (see, e.g., de
Groote, 2005, Döring, 2005, and Döring and Isham, 2008),
the standard way to reason about the measurement of a classi-
cal physical quantity6 or more generally about any empirical
measurand (e.g., mass, electric charge, potential energy, pres-
sure, stress, viscosity, temperature, humidity, utility, fitness,
and so on) is in terms of a real-valued function that can in prin-
ciple be measured or evaluated by an actual or a physically
possible measuring instrument. In technical terms, measure-
ment of a classical target system’s characterizing quantity, say

6Along standard lines, we regard the notion of quantity to be an attribute of a natural system that comes with values (expressed by magnitudes), comprising
the attribute’s value space.

7As alluded to earlier, since not all values of any given ‘observable’ f̂ are presumed to be observable or measurable in any empirical sense, the terminology
is at odds with the philosophical idea of observation in science. However, this is the standard term used by most physicists and we retain it.
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f , is modeled quite simply by a real-valued function of the
basic form f̂ : X −→ R, commonly but misleadingly called
the system’s observable,7 on an underlying measurement do-
main X of states, events, objects or some other entities, to
the quantity-value or host space R of reals. To gain a pre-
liminary intuition on which this model is based, recall that in
economics the utility quantity U is typically expressed by a
real-valued function Û : X −→ R, where X denotes a do-
main of commodities from which a decision maker is invited
to choose, and the utility function Û encodes (e.g., in some
monetary units) the decision maker’s utility. Here the ques-
tion of whether or how Û is derived from the decision maker’s
order-theoretic preference structure does not arise. For an-
other example, the energy quantityH in a simple pendulum in
motion is represented by the smooth Hamiltonian observable
Ĥ : R/2πZ×R −→ R, where the measurement domain X is
given by the familiar cylinder-shaped topological state space
R/2πZ × R. In each state x ∈ X , the pendulum possesses

a unique magnitude of energy, namely Ĥ(x), expressed in a
dimensionless manner or in some implicitly specified energy
units.

Traditionally, a major underlying assumption – prompted
by the success of well-established physical theories, is that the
magnitudes of quantities ought to be real (or complex) num-
bers. One major reason for this choice is the long history of
abundant use of reals in science. However, from the standpoint
of mathematics, a decisive reason is that the host space of reals
(or complex numbers) is strongly present in all nontrivial cat-
egories of mathematical structures of practical importance in
analysis and its applications. Another important reason is that
the continuum of reals is blessed with a plethora of empirically
vital algebraic and geometric structures.

In order to elucidate the relationship between objects as
bearers of quantities further, it is useful to briefly recall Leib-
niz’ duality between them. According to Leibniz’ Principle
of the identity of indiscernibles and the so-called Principle of
extensionality, any given thing is determined by its properties
and conversely, any property is (extensionally) specified by
the set of all individuals having that property. In this sense
we can say that the universe of individual objects and that of
their properties are dual to each other. This symmetry idea is
of course quite limited since properties reflect only two op-
tions: either individual objects possess them or they do not.
However, we can profitably extend this thought to quantities
that come in various amounts, degrees or other distinguishable
manifestations, and can change smoothly, continuously or at
least measurably in time (or space). To obtain a workable
idea of Leibniz’ duality in the world of quantities of systems,

it is necessary to algebraicize the notion of quantity and its
instantiated values in classical systems in such a way that it
upholds their representation in terms of suitable real-valued
functions, alluded to earlier.

We retain the notion that a scientific description of phys-
ical objects and information about them can be effectively
formulated in terms of appropriate collections of quantities
that have an algebraic life of their own, and have the special
property such that if measured, they produce a magnitude in
the form of a real number. Boolean algebras are well-known
to formalize the calculus of properties of things in this sense
and in full analogy, Banach algebras, R-algebras (i.e., com-
mutative unital linear algebras over R), and von Neumann
algebras in particular are introduced with a similar purpose
in mind in the world of classical (and also noncommutative
quantum) physical quantities. Specifically, in place of Boolean
operations, Banach and the other closely related topological
algebras are equipped with binary operations mimicking addi-
tion, multiplication, and multiplication by a scalar.8 However,
unlike Boolean algebras, quantity algebras tend to be fur-
nished with complex topological-algebra structures and they
may even carry operators for differentiation. In addition, they
support various (e.g., differential) equational formulations of
law-like relations between quantities and are convenient for
specifying algebraic dynamical models that represent (contin-
uous, smooth or measurable) temporal changes in the target
system’s quantities. There may be a concern of having to
consider infinitely many basic quantities in an attempt to com-
pletely characterize a target system. Surprisingly, as we shall
illustrate next, most quantity algebras of practical interest are
generated by an astonishingly small list of basic quantities.

A particularly simple concrete example involves the clas-
sical thermodynamical theory of (ideal) gases in a vessel. As
is well-known, the pertinent basic quantities are pressure p,
volume v and gas temperature t, measurable by three types of
measuring instruments of different design and range. These
quantities satisfy the ideal gas law p • v = κ ·t, involving a gas
constantκ. In modeling a gas-in-a-vessel system, the algebraic
approach recommends to use the real commutative unital Ba-
nach algebra A(p, v, t) that includes the basic quantities p, v, t
together with the trivial unit quantity 1 (that always outputs
value 1 when measured), and is in essence equal to the norm
closure of the linear space spanned by 1 and all formal product
terms p • v, p • t, v • t, p • v • t, p • p, v • v • v, . . . or more gen-
erally all quantity terms of the form q1 • q2 • · · · • qn, where qi
in the product term is 1, p, v or t. In this way, the quantity
algebra A(p, v, t) contains not only all linear combinations
of the form α · p + β · v + γ · t involving all basic quan-

8If two quantities can be measured in the same experiment or on the same target system, we obtain two numbers that can be added, multiplied, and so
forth. This immediately leads to the possibility of treating quantities as fundamental primitive entities, instantiated by systems and forming an algebra. Recall
that a unital Banach algebra is a complete normed algebra of the form 〈A, ‖·‖, 0, 1, +, •, ·〉 over the reals or complex numbers. Another elegant definition
under linear space terminology is as follows: A commutative unital Banach algebra is a Banach space 〈A, ‖·‖, 0, +, ·〉 equipped with a multiplication
operation • and a unit 1 satisfying the norm inequality ‖f • g‖ ≤ ‖f‖ · ‖g‖ for all f, g ∈ A, and the identity ‖1‖ = 1. A Banach space is a normed linear
space 〈A, ‖·‖, 0, +, ·〉 which is also a complete metric space under the distance metric �(f, g) = ‖f − g‖ for all f and g in A. The simplest ‘concrete’
Banach algebras are the finite dimensional matrix algebras and the algebras of real-valued continuous functions on closed intervals with the supremum norm.
Additional terminology and results can be found in any textbook on Banach algebras, for instance, in Larsen (1973). Banach algebras offer a near-perfect
blend of algebra and analysis.
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tities with scalars α, β, γ in R, but also all linear combina-
tions of arbitrarily complex products of quantities of the form
α ·p • v+β ·v • t+γ ·t • p, and so forth. And, finally, the alge-
bra A(p, v, t) also includes the limits of all Cauchy sequences
of quantities with respect to the norm defined below. For any
quantity f in A(p, v, t), its norm ‖·‖ is defined by

‖f‖ =df inf
{
α
∣∣α · 1− f ∈ A+(p, v, t) &

α · 1 + f ∈ A+(p, v, t)
}
,

where A+(p, v, t) denotes the so-called positive cone of ele-
ments of A(p, v, t) (i.e., the subset of all quantities f having
the square form f = g2 = g • g for some g).

The norm closure condition ensures that the algebra
A(p, v, t) also includes more complex elements of the form
ϕ(p, v, t), where ϕ : R

3 −→ R is any continuous function.
Clearly, if there are measuring instruments for measuring
quantities p, v and t, then in principle it is possible to con-
struct an instrument that measures the quantity p+ v + t. All
it takes is to enter the results of measurement obtained from
the basic quantities into a pocket calculator and add them.
Quite similarly, the value of quantity ϕ(p, v, t) is obtained by
applying the function ϕ to the measurement outputs for p, v
and t, using a convenient software for computing the values
of ϕ.

It should be born in mind that in view of its closure re-
quirements, the quantity algebra A(p, v, t) is bound to include
many highly complex quantities that are of no practical interest
in characterizing the thermodynamical system under consid-
eration. It is of interest to ask what happens, if the algebra
comes with algebraic equations relating some of the quanti-
ties. In view of the ideal gas law – allowing the (absolute)
temperature quantity to be definable in terms of pressure and
volume, the algebra must be quotiented out by all terms that
are rendered equal. In full analogy with filters of Boolean al-
gebras, each family of equations gives rise to a unique Banach
algebra ideal9 that in turn specifies a congruence relation on
A, rendering equivalent quantities equal. We will make use
of (maximal) ideals in the next subsection when dealing with
function algebra representations of quantity algebras.

Upon reverting to the functional representation, we find
that in the absence of the gas law, the basic quantities in
A(p, v, t) are represented by continuous projection functions
of the form p̂, v̂, t̂ : R

3
+ −→ R. For example, the pressure

observable p̂ assigns to each positive triple (a, b, c) of possible
values of pressure, volume, and temperature its first coordi-
nate, i.e., a. However, in view of the gas law, the measurement
domain is given by the strictly smaller subset (hypersurface)

X =df

{
(a, b, c) ∈ R

3
+

∣∣∣∣a · b = κ · c

}
,

where as above, we have a = p̂(a, b, c)), and similarly for the
other quantity values. We postpone the discussion of repre-
sentation of quantities in terms of state functions until the next
Section.

It is important to emphasize that the algebraic-analytic
framework for quantities is completely autonomous and self-
contained. Specifically, to each natural system S of interest we
assign a minimal quantity algebra AS of an appropriate type,10,
whose values completely characterize the system from an as-
sumed perspective.

A significant advantage of the algebraic approach that fo-
cuses on the topological (smooth or measurable) algebra struc-
ture of quantities is its impressive formal flexibility which
allows for incorporation of the following three major con-
structions on Banach as well as other algebras:

1. Tensor product and compound systems:

Consider two natural systems S and S′, described by
quantity algebras AS and AS′ , respectively. The de-
scription of the compound system S + S′ (consisting
of two systems that interact with each other) obeys the
fundamental composition law

AS+S′
∼= AS ⊗ AS′ ,

stating that the quantity algebra associated with a com-
pound target system S + S′ is isomorphic to the tensor
product of the respective algebras of constituent sys-
tems. In the isomorphism above, a quantity f of system
S is identified with the quantity f⊗1 of the joint system
S+S′, and likewise a quantity f ′ of S′ is identified with
1 ⊗ f ′.11 From a physical point of view, measurement
of a target system’s measurand relies on a measurement
coupling in the form of a tensor product of the target
system’s algebra and the algebra of the measurand’s
measuring instrument, joint dynamics thereon, and in-
terconnection laws between them. It is important to bear
in mind that by necessity or by choice, in general not
all quantities in AS are suitable for measurement, and
those that are selected for measurement, are usually not
measurable directly. In view of a limited set of feasi-
ble measurands and their indirect measurements, mea-
surement procedures are bound to provide only partial
information about the target system.

Completely similar systems (e.g., two copies of the same
system located in different places) possess isomorphic
quantity algebras. In general, the assignment of algebras
to systems is unique only up to an algebra isomorphism.
In this manner, it is possible to study an entire class of
stereotype natural systems with the help of an associ-

9Recall that a linear subspace Jof a Banach algebra A is an ideal in Aprovided that it satisfies the closure condition f ∈ J & g ∈ A =⇒ f • g ∈ J

for all f and g in A. For later use we also recall that an ideal J is said to be maximal just in case J 
= A and J is not contained in any strictly larger ideal.
10Commutative unital Banach algebras are usually reserved for continuous quantities of classical physics, the so-called R-algebras are appropriate for

smooth quantities, and measurable quantities in the sense of measure theory tend to form a von Neumann or Riesz algebra.
11Recall that here 1 denotes the unit of the algebra, encoding the trivial quantity, having a constant value equal to 1. In this manner the algebras of

constituent systems can also be seen as subalgebras of their product algebra.
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ated category of quantity algebras and transformations
between them.

2. Time evolution of quantities of isolated dynamical sys-
tems:

In mathematical control and systems theories (see, e.g.,
Sontag, 1990), the time evolution of an isolated dy-
namical system is usually characterized by state and
measurement equations of the form

dx
dt = F

(
x(t), u(t)

)
m(t) = G

(
x(t)

)
,

where x is a state variable belonging to ann-dimensional
smooth manifold X , u is a control variable that takes its
values in a submanifold of X , the values of measure-
ment function m belong to an Euclidean space R

m, and
the functions F and G are both smooth. The first equa-
tion is used for computing predictions and the second
equation is used for describing measurements.

It has been argued from various sides that what matters
is not so much the equations themselves but their solu-
tion space, i.e., the algebra (or manifold) of quantities
satisfying the equations. Specifically, suppose a quanti-
tative description of the target system S is based on the
quantity algebra AS. Then the system’s deterministic
temporal dynamics (semidynamics) is represented by a
one-parameter family

A
dt−−−−−→ A

of Banach algebra automorphisms (endomorphisms)12

of A into itself, called dynamical transition maps, where
the indexing variable t takes its values in a time group
(time monoid) T, which is usually either the additive
group of reals R or that of the integers Z (the monoid of
positive reals or the monoid of natural numbers), satis-
fying the group-action (monoid-action) laws d0 = 1A

and dt ◦ dt′ = dt+t′ for all t, t′ ∈ T.

The foregoing one-parameter family of Banach alge-
bra automorphisms (endomorphisms) together with the
underlying Banach algebra A is called a dynamical Ba-
nach algebra (semidynamical Banach algebra)13 and is
suggestively denoted by T �

d

A. Our main interest is

of course in the measurement dynamics on the product
algebra AS⊗AM, described by a measurement coupling
dt : AS ⊗ AM −−−−−→ AS ⊗ AM between the target

system S and a measuring instrument M. We mention
in passing that the so-called crossed product Banach
algebras are appropriate for representing the dynamics
of time-varying natural systems, characterized by non-
autonomous equations.

3. Discretization of quantity algebras:

Analytic measurement theory should be able to account
for all constituents of a measuring process. In mea-
suring a quantity of interest f on a target system S,
described by a quantity algebra AS containing f , we
need a measuring instrument M that is designed for its
measurement. In addition, we need the instrument’s as-
sociated pointer (output or indicator) quantity14 ���f in
AM, whose value can be ascertained by reading the in-
strument. Now, if the measurement interaction has been
of the proper kind, then the value of ���f , read from the
instrument M, can be strongly correlated with the un-
known numerical value of the measurand f , as it existed
in the target system S right before the measurement act.
It will be useful to allow the value space of ���f to be
different from that of f . For the sake of clarity, it should
be mentioned that a measurand f can be measured with
several distinct instruments M(���f), M′(���′f), . . . , de-
signed differently and based on entirely different pointer
quantities.

Whatever value the instrument’s pointer assumes, due
to limited physical discernibility, its reading is inher-
ently coarse-grained. This means, in particular, that the
experimenter’s reading of the measurement result for f
takes place only on the pointer quantity’s allocated dis-
crete reading scale Rn(���f) =

{
a1, a2, . . . , an

}
⊂ R

of a finite resolution n, specified by the set of ratio-
nal representative points of a finite (or denumerable)
partition (consisting, e.g., of half-open intervals) of the
pointer quantity’s value space. There are several argu-
ments showing that only discretized versions of quanti-
ties are experimentally accessible.15

More particularly, each reading scale Rn(���f) induces
(by restriction) a discretization (coarse-grained version)
���fn of the pointer quantity ���f of measurand f . What
this means is that only the ‘readable’ values of ���f

are available, giving rise to the coarse-grained quan-
tity ���fn. Now, suppose we consider a directed se-
quence of discretization levels in terms of reading scales
Rn(���f),Rn+1(���f), . . . of increasingly finer degrees
of resolution for the pointer quantity ���f of f such that

12Recall that if Aand Bare Banach algebras, then a mapping d : A−→ Bbetween them is a Banach algebra homomorphism provided that it preserves all
algebra operations of A and obeys the norm inequality ‖d(f)‖ ≤ ‖f‖ for any f ∈ A. A Banach algebra endomorphism is a Banach algebra homomorphism
from an algebra to itself, and an automorphism is simply a one-to-one and onto endomorphism.

13Some authors call it simply a T-Banach algebra or a Banach dynamical system. Algebraic dynamical systems relative to other types of algebras are
defined similarly.

14In analog devices the pointer quantity of a measurand is typically a (continuous, smooth, etc.) geometric attribute (e.g., length or angle), representing the
pointer’s possible positions or angles on the dial.

15For example, at the information-theoretic level, due to limited memory and other resources, all measurement outcomes must be described by finite means,
digitally or by rational number estimates of continuous-scale pointer positions.

138



MEASUREMENT SCIENCE REVIEW, Volume 8, Section 1, No. 6, 2008

at stage n the successor reading scale Rn+1(���f) is
obtained from partitions of the elements of its prede-
cessor reading scale Rn(���f). Then, as partitions ap-
proach points in the refinement process when the maxi-
mum size of the partition intervals goes to zero, the se-
quence ���fn,���fn+1, . . . of experimentally accessible
quantities (gradually increasing the accuracy of mea-
surements) reconstructs ���f in the limit. Because the
numerical computations of quantity values from equa-
tions are also discrete, it is natural to lift the notion of
discretization to the world of quantity algebras.

With these brief remarks we recall the following impor-
tant definition: Given a parent quantity algebra A of
a target system, a discretization-dediscretization proce-
dure for algebra A consists of a directed sequence of
finite dimensional quantity algebras (usually comprised
of vectors or matrices)

A∞

Π∞,n

−−−−−−→←−−−−−−
In,∞

An
−−−−−−→←−−−−− · · ·

· · · −−−−−−→←−−−−− A2

Π2,1

−−−−−−→←−−−−−
I1,2

A1

where each embedding algebra homomorphism In,n+1

sends a given approximating finite-dimensional quantity
algebra An to the next strictly finer finite-dimensional
quantity algebra An+1 that in turn is projected by the
algebra homomorphism Πn+1,n back onto An, as the di-
agram above indicates. This kind of directed sequence
of approximating algebras comes with a so-called direct
limit quantity algebra A∞ that tends to be close enough
(in some metric sense) to the parent algebra A, showing
that the parent algebra is adequate and was correctly
chosen. The technical notion of a direct limit of the se-
quence of discretized algebras An that we have in mind
here is the one used, e.g., by Benatti and Cappellini
(2005), in the category of von Neumann algebras. We
conclude this subsection by emphasizing that model val-
idation involves a comparison of measurement results
with those predicted by the model. For a valid model,
it should always be theoretically possible to recover the
model from its directed sequence of discrete offspring
models in the limit, as discretization approaches zero.

4. Geometric logic of quantities:

Although this is not always made explicit in the lit-
erature on classical measurement, in parallel with the

assignment of a minimal quantity algebra AS to a tar-
get system S, there is also an association of a propo-
sitional language LS, intended for expressing various
claims about quantities of S in terms of their values or
more generally for making statements about the target
system’s properties. Propositional languages come in
three basic flavors. 16

In the simplest deterministic and most idealized situa-
tion, there is a consideration of an elementary equational
evaluation mapping �: AS × R −→ LS that assigns to
each quantity-magnitude pair (f, a) a unique primitive
atomic proposition (written in an infix form) f � a. Its
physical meaning under a classical realist interpretation
is as follows: Quantity f has a value and that value is
equal to a.17 In order to be able to reason about the
values of quantities in a systematic fashion, axioms are
needed in LS for deductive inference. For example, it
is natural to include among these axioms the additivity
law (

f � a & g � b
)

=⇒ f + g � a+ b

together with an obvious multiplication law, and more
generally the composition law(

f � a & g � b
)

=⇒ �(f, g) � �(a, b)

for any (continuous, smooth, measurable) function
� : R

2 −→ R and its generalized variants with n

arguments. In addition, there is a longer list of logical
rules, governing the basic logical connectives.18 De-
tails of axioms are not given – they are easy to provide
and the interested reader will find some help in vari-
ous textbooks on the foundations of physics, including,
e.g., Beltramenti and Cassinelli (1981). Under a realist
interpretation, we do not equate the values of a quan-
tity with its measurement outcomes. We stipulate that
measurement outcomes, relying on pointer quantities,
provide only a discrete approximation of such values.

A considerably more general and less idealized class
of propositions is based on a membership mapping
�: AS × BR −→ L

′

S that assigns to each quantity f
and a Borel measurable subset ∆ of the real line R the
primitive atomic proposition (written suggestively in an
infix form) f � ∆. Its intended physical meaning un-
der the realist interpretation is the following: Quantity
f has a value and that value lies in the real Borel sub-
set ∆.19 Reasoning about quantities and their values

16Remember that quantities are assumed to possess distinguishable degrees or amounts, expressible by numbers, specifying their value spaces.
17Here we wish to emphasize that in classical physics quantities are presumed to possess their values independently of whether or not they are measured.

In contrast, empiricists interpret propositions of the form f � a in a considerably weaker counterfactual manner thusly: If f were measured by a designated
measuring instrument M, then the result would be a. These two diametrically opposing interpretations are particularly significant in the theory of quantum
measurement.

18As adduced in the previous paragraphs, according to the empiricists, if a given quantity f is measured by a measuring instrument M and f ′ is measured
by the instrument M′, then conceptually there is a compound measuring instrument M + M′, consisting of M, M′ and a calculator for addition, that measures
f + f ′. Somewhat more generally, there is an obvious instrument �(M, M′) for any ‘well-behaved’ function � : R2 −→ R .

19In applications, instead of using arbitrary Borel subsets ∆ it is sufficient to use only closed intervals [p, q] with rational end-points p ≤ q.
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in L
′

S requires additional logical axioms, including the
conjunction(

f � ∆ & f � ∆′
)
⇐⇒ f � ∆ ∩∆′

and disjunction(
f � ∆ ∨ f � ∆′

)
⇐⇒ f � ∆ ∪∆′

laws. The associated propositional language L
′

S pro-
vides a formal framework for constructing propositions
about the target system’s quantities and its logic delin-
eates the admissible forms of deductive reasoning about
them.

In passing, perhaps we should point out that proposi-
tions about the target system specified in LS (telling
us, e.g., that the system’s quantity of interest has this
or that value) are theoretical. For example, a proposi-
tion “energy � 10π” about the energy value of a pen-
dulum in motion is perfectly meaningful in classical
mechanics, even though it is impossible to verify it by
measuring the pendulum’s energy quantity. In addi-
tion to the finitary nature of pointer readings, there are
various instrument errors, including deterministic and
probabilistic errors in the instrument’s physical compo-
nents, errors in calibration, and ultimately errors gen-
erated by thermodynamical and quantum fluctuations.
These errors obstruct the exact individuation of the value
10π among continuum many other real numbers in its
arbitrarily small nonempty neighborhoods. However,
repeated measurements of energy at increasingly finer
levels of resolution will output a sequence of nested in-
tervals [30, 40], [31, 32], [31.4, 31.5], [31.41, 31.42], . . .
with rational endpoints that converges to the value 10π
as the number of consecutively refined measurements
of energy goes to infinity. But again, each interval in
the sequence provides only a finite amount of informa-
tion about the real number 10π and in view of finitary
memory and computational resources, the approximat-
ing sequence must be finite, so that convergence belongs
to the theory. Thus, as noted earlier, measurement of
a quantity is best understood as a reconstruction or ap-
proximation procedure that requires a separate proposi-
tional language, built over an appropriately discretized
quantity-value space. Needless to add, a less useful no-
tion of so-called classical deterministic ideal measure-
ment of a quantity can and is assumed to be absolutely
accurate. In this case we have the equivalence

ft � a ⇔ ���ft+∆t � a,

stating that if the value of measurand f prior to the mea-
surement act at time instant t is a, then the associated
pointer quantity’s numerical value read from the instru-
ment right after the measurement interaction at t+∆t is
also a, and conversely. As we know, a real-world mea-
surement provides only results of a considerably less

informative nature, namely ���fn � a with a given level
of resolution n, serving only as an estimate of the actual
value of measurand f .

Because physical measurements are regularly subjected
to uncertainties, the result of measurement is often
represented by probabilistic statements of the form
P
(
f � ∆

)
= p, stating that the value of quantity f

lies in the real Borel subset ∆ with probability p. Tech-
nically, the probability measure P is obtained from a
non-negative element of the dual algebra A

∗ of A, by
normalization.

The third and epistemically least idealized framework
for reasoning about the values of measurands is based
on probability density functions defined on a host space.
Concretely, to each measurand f in AS we assign a
particular probability density function pf on R that
represents, when f is measured, the information on
the possible outcomes of measurement. In the pres-
ence of probability density functions, the probabil-
ity value above is obtained by integration, defined by
P
(
f � ∆

)
=df

∫
∆

pf (x) dx. The convex space D(R)
of probability density functions on R has its own logic
– familiar to statisticians, given by mixing, product and
conditionalization of probability density functions. The
basic notion is simple enough: We start with atomic
propositions of the form f ∼ p, expressing the fact
that the possible values of quantity f are distributed
in accordance with the probability density function p.
Now, if measurands f and g are statistically indepen-
dent, meaning the information obtained about the values
of f does not affect the information about the values of
g and conversely, then the following convolution law
holds:

(f ∼ p & g ∼ q) =⇒ f + g ∼ p ∗ q,

where p ∗ q is the convolution of densities p and q. Of
special interest are the familiar rules governing condi-
tional probability density functions, but we do not need
to recall them here.

This concludes our brief survey of the algebraic and logi-
cal approaches to quantities. Needless to add, there are many
more constructions that are important in the algebraic treat-
ment of measurands, but there is no room in this paper to
describe them. However, we hope that enough has been said
to convince the reader that quantity algebras and associated
propositional languages provide a sensible framework for the
development of analytical approaches to measurement. We
now turn to the state-space semantics of quantities.

7. State-space semantics of quantities

It is essential to bear in mind that measurement, to be un-
derstood as an objective process of estimating, approximating
or reconstructing the numerical values of quantities (intended
to capture their manifestations in an object of measurement,
phenomenon or some other observed bearer), refers directly
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to (and hence provides information about) the state of affairs
of the quantity per se, and only indirectly to its bearer that
happens to instantiate it. Clearly, many distinct objects may
instantiate a given quantity in identical amounts, degrees or
manifestations, so that the corresponding measurement data
pertain specifically to the quantity itself and not to its actual
or possible bearers. Therefore, what matters in analytic ap-
proaches to measurement is not so much the object as a target
on which measurement is perfomed, but the object’s internal
condition or “the way the object is” at a given instant of time.

So, in answering the question “Why does ideal measure-
ment of a given quantity possessed by an object result in a
particular value at time t?”, a realist response is that the ideal
measurement value is what it is, because the target object
happens to be in a particular mode of being or simply in a
particular state at time instant t that fully determines the quan-
tity’s measurement value in question. Now, if we pursue the
matter further and ask “What constitutes a state of an object
at t?”, a common reply is that the object’s state at t is fully
specified by the stock of information, stored in the collection
of (ideal) measurement values of all observables, instantiated
by the target object at t. We see at once that there is an inherent
circularity in this form of reasoning about states and quantities
manifested in objects.

This apparent circularity is broken by the celebrated
Gelfand representation result (see Genfand, 1939), stating
in essence that any quantity f in the target system’s Banach
algebra A (R-algebra) is uniquely representable by a contin-
uous (smooth) real-valued function f̂ : X −→ R, called
the Gelfand transform or the observable of f , where X is
a compact Hausdorff topological space (smooth simplectic
manifold), uniquely determined by A, modulo a homeomor-
phism (diffeomorphism) and interpreted as the target system’s
state space.20 Specifically, the Gelfand representation theo-
rem asserts that any real commutative unital Banach algebra A

satisfyinhg the R-property is, up to isomorphism, exactly the
real unital Banach algebra C(X ) of real-valued continuous
functions (with the usual supremum norm) on a compact Haus-
dorff topological space X , defined (among other options) by
the space Max A of all maximal ideals of A and furnished with
the so-called Gelfand topology. The observable f̂ associated
with quantity f is specified pointwise in terms of characters
of maximal ideals: f̂(x) =df Charx(f) for all maximal ideals
x in X .21

Gelfand representation of quantities in terms of observ-
ables suggests that instead of focusing on measurement do-
mains that are comprised of physical objects or individual
manifestations of a particular measurand – as common in the

representational approach, it is far more effective to specify
the measurement domains of quantities universally in terms of
state spaces, consisting of states of a target system on which
measurements are to be performed, and treat the observables of
a target system in a unified manner as real-valued (continuous
or smooth) state functions of the form f̂ : X −→ R.

We will make a systematic use of the Gelfand representa-
tion result when dealing with measurements of quantities, and
we shall try to maintain a sharp distinction – both in concept
and notation, between quantities f in a quantity algebra A

of a target system and their representation f̂ : X −→ R in
the corresponding function algebra C(X ), isomorphic to A.
Here a leading mathematical idea is that algebraic structures
can be traded for topological ones (playing a semantic role)
and conversely. In particular, each additional structure on X

that is defined in terms of its topology can also be defined in
terms of the structure of algebra A, isomorphic to C(X ). And
of course conversely: a given topological structure is repre-
sentable by certain more or less familiar algebraic notions. We
mention in passing that a Gelfand-style representation is also
applicable in the ambience of R-algebras of smooth quantities
and in the framework of von Neumann algebras of measurable
quantities. Specifically, any given R-algebra A is uniquely
represented (up to an R-algebra isomorphism) by the algebra
C
∞(X ) of smooth (infinitely differentiable) functions on a

smooth manifold X , so that each abstractly given smooth
quantity f is uniquely represented by a concrete smooth func-
tion f̂ : X −→ R. (For more details, see González and de
Salas, 2003.)

The state space X (determined uniquely by A to within
a homeomorphism) is crucial in providing a realist semantics
for all basic propositions about quantities in the associated
language L. Concretely, a proposition of the form f � a

(stating that the value of quantity f is a) is represented by the
subset

�f � a� =df

{
x ∈ X

∣∣∣ f̂(x) = a
}

of states in which the associated observable f̂ has value a.
In a similar manner, the proposition f � ∆ (stating that the
value of f lies in the Borel subset ∆) is represented by the
measurable subset

�f � ∆� =df

{
x ∈X

∣∣∣ f̂(x) ∈ ∆
}

= f̂−1(∆)

of X . Thus, we have specified a fundamental semantic rela-
tion �·� : L −→ Sub X between the propositional calculus
of L and a Boolean algebra of subsets of X . Here the techni-
cal details depend on whether f̂ is assumed to be continuous,

20At the risk of being pedantic, perhaps we should point out that the Gelfand representation result is framed within the framework of commutative unital
C∗-algebras over the complex field C. However, under a minor technical constraint ‖f‖2 ≤ ‖f2 + g2‖ for all quantities f and g, known as the R-property,
the representation idea works equally well also within the universe of Banach algebras over the field of reals. The interested reader is referred to Nassapoulos
(1999) for further details.

21Recall that the character Charx of a maximal ideal x is a unique multiplicative linear functional Charx : A −→ R, defined by Charx(f) =df c with
f − c · 1 ∈ x for all f in A, where 1 is the unit element of the algebra A. Under the usual empiricist interpretation, each state x of the target system is
completely specified by pointer readings of all measuring instruments associated with the target system’s quantities. But the formal encapsulation of these
pointer readings is precisely a Banach algebra (R-algebra) homomorphism into the real line, given by the character Charx. In this way, we can also say with
the empiricists that the target system is fully specified by a complete collection of measuring instruments.
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smooth or measurable. For example, in the framework of
measurable functions, the logic of L is classical. However,
since in the case of continuous observables the subset of states
�f � a� is a closed subset of the compact topological space
X , the resulting logic is intuitionistic (Brouwerian).

We said that in classical measurement all propositions of
the form f � a, f � ∆, f ∼ p and their logical combinations
express certain properties of the target system that are either
possessed or not by the system, depending on how the system
is, independently of any measurement. Thus, properties are
objective. This interpretation of system properties compels us
to extend the realist interpretation also to states.22 The con-
cept of state of a system is essential in determining whether
or not a proposition in L is true. Each state x ∈ X assigns
to each atomic proposition ‘f � a’ a unique truth value. For
example, proposition ‘f � a’ is said to be true about f and
its signified property is possessed by the target system that
is in state x exactly when f̂(x) = a. Likewise, proposition
‘f � ∆’ is true about f and its corresponding property is pos-
sessed by the system that is in state x provided that f̂(x) ∈ ∆.
The truth value of a complex proposition is a logical combi-
nation of truth values of its atomic constituents. Finally, a
probabilistic measurement result can take the statistical form
P
(
���f � ∆

∣∣x) = p, stating that the value of the pointer quan-
tity of f is in ∆, given that the target system is in state x, with
probability p.

We turn now briefly to the semantics of probability density
functions. Empiricists assume that the state space X is de-
livered with its associated convex space D(X ) of probability
density functions that are automatically transferred by mea-
surands to their host space R. Probability density functions
are interpreted epistemically as states of information about
measurands. Since all measurements are taken to be uncer-
tain, the result of measurement is not a deterministic value,
but a revised state of information. In a Bayesian spirit, the
final state of information about a measurand is a combination
of a priori, theoretical and measurement outcome-based states
of information.

Having shown how states are determined by quantities,
we now recall how (smooth, continuous, measurable) tempo-
ral changes of quantities are modeled within the state space
framework. A dynamical target system is one which changes
in time, and what changes is the state of the system. Follow-
ing the Newtonian tradition, mathematical systems theorists
represent state changes of natural dynamical systems in the
language of (ordinary) differential equations that are probed
for individual solutions. It was the genius of Henri Poincarè
that initiated a systematic study of mutual relations between
equations and their solutions, and introduced the so-called
qualitative geometric study of solution curves. Of particular
importance was the discovery that in a state space setting, so-
lutions of equations can be treated uniformly as time-functions

parametrized by initial states. The modern mathematical con-
cept of a deterministic topological (smooth, measurable) dy-
namical system (dynamical model or flow) formalizes this
solution-based approach.

Specifically, given a target dynamical system with its quan-
tity algebra A and the associated state space X , and a time
group 〈T, 0,+〉 (that can be discrete or a continuum), by a (de-
terministic) topological dynamical model we mean a jointly
continuous map of the form δ : T×X −→ X (also known
as the model’s transition map) such that the following axioms
of time-group action hold for all time instants t, t′ ∈ T and
for all states x in X :

(i) Identity property: δ(0, x) = x, and

(ii) Group property: δ(t, δ(t′, x)) = δ(t+ t′, x).

Because in what follows, time-group actions will be fre-
quently referred to in representing the temporal evolution of
target systems’ states, henceforth the above-introduced dy-
namical model δ : T × X −→ X is symbolized more
succinctly by the curved time-group action arrow T �

δ
X ,

common in theoretical physics. An impressively large class
of deterministic dynamical models arises from autonomous
systems of ordinary first-order differential equations by sim-
ple state-parametrizations of their solution spaces. Given an
initial state x, we immediately obtain the trajectory (orbit or
solution curve) T(x) =df

{
δ(t, x)

∣∣t ∈ T
}

passing through it.
If the time domain T and the state space X are both smooth
manifolds, and if the transition map δ is also smooth (i.e., in-
finitely differentiable), then T �

δ
X is called a (deterministic)

smooth dynamical model.
In a state space setting, a measurement coupling be-

tween a target system S and a measuring instrument M,
designed for measuring f , is described by a transition map
δ : T×XS ×XM −−−−−→XS ×XM, where δ(t, x, x′) =df

(x, ϑf (x, x
′) with an equationally specified entangled instru-

ment state ϑf (x, x′) for all states x and x′. Thus the instru-
ment’s pointer quantity has the value ���ft+∆t

(
ϑf (x, x

′)
)

that
is perfectly correlated to that of ft, provided that the instru-
ment M is properly chosen and the design of measurement
coupling is theoretically and experimentally correct. Perfect
correlation answers the question as to why a given instrument
successfully measures its measurand.

It is the power of the Banach algebra perspective on quan-
tities that motivates our next step. Any dynamical model
T �

δ
X on a given state space X automatically lifts to a

dynamical model on the associated Banach algebra C(X ) of
continuous functions by a simple composition of functions.
Explicitly, we define δ : T × C(X ) −→ C(X ) by setting
[δ(t, f)](x) =df f

(
δ(t, x)

)
for all f in C(X ), t ∈ T and

x ∈ X . It is easy to check that δ satisfies the above-displayed
group action axioms. We can now reason about temporal

22Empiricists define the notion of state independently of quantities as a class of physically equivalent preparation procedures or as a collection of possible
continually updated information storages that contain just enough information to enable us to calculate the system’s future responses without further reference
to the system’s history.
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changes of quantities in the same way as we do about tempo-
ral changes of states. Since C(X ) is a Banach algebra, it is no
surprise that we have algebraic dynamical models of the form
T �

δ
A for any quantity algebra A. We mention in passing

that the so-called skew-product or cocycle action construc-
tion on quantity algebras can be used to represent controlled
dynamical systems.

We complete the earlier discussion of state semantics by
recalling the notion of state restriction A∣∣D of a quantity alge-

bra A to the intended subdomain of application D ⊂ X . We
have neglected to point out that measuring instruments usually
do not access all possible values of a measurand. For each
measurand, the instantiating target system may be in states
that are not accessible by the allocated measuring instrument.
Furthermore, the state space X may include states that are
physically never realized. In these situations, it becomes nec-
essary to work with a smaller set of states D , compatible with
the instrument’s range.

If the quantity algebra A is Gelfand-represented by the
algebra C(X ) of real-valued continuous functions on a state
space X , then its restriction A∣∣D to an open subset D of X

is represented by the restricted algebra C(D) of real-valued
functions in C(X ), defined only on D . Suppose we wish
to investigate a quantity f only on a smaller open subset D

of states, prompted by local measurement. Then, using the
restricted algebra above, we are free to work with restricted
propositions of the form f∣∣D � ∆, represented by the set

{ x ∈ D | f̂(x) � ∆ }. This approach readily generalizes to
other propositional languages, discussed earlier.

An important example of the restriction construct is fur-
nished by the discretization of state spaces. Suppose the state
space Xn is a discretization of state space X at discretization
level n, obtained from X by a cellular subdivision, where Xn

is defined by the set of centers of its subdivision cells. Then the
state restriction algebra A∣∣Xn

, Banach isomorphic to C(Xn),

provides a convenient framework for modeling pointer posi-
tion readings in a measurement act. We turn now to our final
topic of measuring instruments and deterministic measuring
processes, both treated from an analytic perspective.

8. Modeling natural systems and measuring

instruments with quantity algebras

According to the analytic approach, measurement involves
three principal constituents: measured object, measuring in-
strument, and the measuring process.

8.1 Modeling measurement objects

In AMT, the measurement object or target system S is rep-

resented by a Banach algebra (R-algebra) AS of quantities,
whose values completely characterize the system. Each quan-
tity f comes with its value space Val(f) =df { a | ∃x[f̂(x) =
a] } and state space-interpreted propositions.

The target system’s time evolution is described by a dy-
namical Banach algebra T �

d

A, where T is a suitable time
group or time monoid.

In applications, the object of measurement is a physical
body, substance, field or any other entity in nature of interest
(appropriately isolated from its environment), on which obser-
vations and measurements of certain instantiated quantities are
to be performed. Under the analytic scheme, measurement of
a quantity is intimately tied to the physical interconnection of
and interaction between the observed target system and chosen
measuring instrument. In previous sections we have presented
a dual description of object systems, using the frameworks of
quantity algebras and associated state spaces.

8.2 Models of measuring instruments

Measurement of a quantity is performed by its earmarked sen-
sor, transducer, gauge or by some other calibrated device. A
measuring instrument is typically a man-made physical sys-
tem, comprised of several smaller and simpler analog, digital
or hybrid hardware modules that are often accompanied with
software components for quantity-value restoration. As in the
case of any empirical system, the instrument’s physical sub-
systems and their interconnections are modeled autonomously
by equations in an associated quantity algebra. However, be-
cause measuring instruments can be quite complicated, often
radical idealizations are necessary in providing a tractable de-
scription. Furthermore, because measurement results may be
processed by convenient submodules that are treated as le-
gitimate parts of the instrument, there is a complication in
determining the correct “cut” for instrument vs. processor
separation.

In conformity with modeling natural systems, we assume
that the classes of quantities of a target system S and accom-
panying instrument M are described by respective quantity
algebras AS and AM. Their measurement interaction is speci-
fied in terms of coupling dynamics on a tensor product algebra
AS ⊗ AM, discussed earlier.

Because in applications most quantities of the target sys-
tem S are not measurable directly,23 there is a need for a joint
deterministic (or probabilistic) target system/instrument-based
forward model that uniquely specifies for each measurand f
an easily measurable and readily interpretable quantity ���f ,
instatiated by the assigned instrument M. In simple situations,
the quantity ���f is explicitly given by the forward model’s
law-like linear operator ���f = L(f). However, for complex
instruments the conversion operator can be nonlinear and it

23For example, recall the design scheme of a classical analog voltmeter – intended to measure voltage between two distinct nodes of an electric circuit.
Based on electromagnetic and mechanical laws, analog voltmeters are configured in such a way that the unknown measurand (voltage) is linked to a current
flow that in turn induces a magnetic flux, which finally generates a mechanical torque that is brought to an equilibrium by the instrument’s coil spring. The
value of voltage is then determined (or rather approximated) highly indirectly by its pointer position on a calibrated dial – after a torque-spring equilibrium
has been reached.
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may even include an extra argument for control and other
parameters that are required for the model’s equational pre-
sentation. Quite often such operators are decomposable into
factors, representing the instrument’s building blocks for basic
quantity transformations.

It is assumed that the target system and the measurand’s
designated measuring instrument are prepared (independently
of one another) prior to measurement in their initial states and
then coupled together for the measurement act. After a brief
time-interval interaction between the target system and the
appropriated measuring instrument, when the coupled system
has reached an equilibrium, the instrument outputs a number,
indicated by the position of its pointer on the instrument’s dial
or by a digital display that is naively interpreted as the mea-
surand’s actual value. Here we have to exercise considerable
care in interpreting the measurement result. The point is that
since in general the instrument’s output provides only a limited
amount of information about the measurand, the measurement
result can only be viewed as an estimate or approximation of
the measurand’s value. Needless to add, the numerical value
read from the instrument can meaningfully be correlated with
the measurand’s value only if the measurement interaction
has been of the right kind, meaning that the instrument is
fully operational, and the design of measurement interaction
is theoretically and experimentally correct.

In a state space setting, a typical deterministic forward
model, implemented in the design of the measuring instru-
ment under consideration, is specified by a state space map
� : XS −→ XM such that the diagram of functions below
commutes:

XS

�
−−−−→ XM

f

⏐⏐� ⏐⏐����f

Val(f) −−−−−→
ψ

Val(���f)

That is to say, the equality ���f ◦ � = ψ ◦ f holds, where ψ is a
scaling (pointer) function that sends the measurand’s values to
the values of its associated pointer quantity. As expected, the
pointer quantity ���f associated with measurand f is taken to
be its sole indirect source of measurement data. In particular,
the forward model supports the “forward” implication

f � a =⇒ ���f � ψ(a),

stating that if the value of measurand f is a, then the value of
the instrument quantity ���f , specified by the forward model,
is ψ(a), i.e., a magnitude uniquely determined by a. Clearly,
in general the converse implication does not hold. For the
converse to hold, we need an inverse model’s pointer map
φ : Val

(
���f

)
−→ Val(f) that justifies

���f � b =⇒ f � φ(b).

However, because the measurement reading is always dis-
crete, having the propositional form ���fn � b with a given
discretization level n, it is not sufficient for inferring the exact
value of f . However, we have a weaker implication of the
form

���fn � c =⇒ f � ∆n(c),

where ∆n(c) is the cell or interval of the reading scaleRn(���f)
with representative point c. Thus, if the instrument reading is
c, the conclusion is the same statement as c−ε ≤ f̂(x) ≤ c+ε
when then target system is in state x.

8.3 Deterministic measuring process

As we have already intimated, the classical physical theory of
measurement of a quantity is based on the notion of interaction
between the measured object and the quantity’s instrument that
can in principle be made arbitrarily small and any perturba-
tion produced by the interaction (such as energy loss) can be
indefinitely weakened or precisely compensated. In this way,
we arrive at the concept of ideal measurement that does not
disturb the target system’s properties. But as we have argued
above, even in this ideal setting it is incorrect to take propo-
sition f � c to be equivalent to the measurement proposition
���fn � c, where ���fn denotes the discretized pointer quantity
at discretization level n. Simply, the presence of unavoid-
able errors in meter reading compounds the difficulty of treat-
ing measurement propositions as equivalent to the theoretical
propositions.

Because measurements are typically indirect or derived,24

a deterministic measuring process instantiated in an instrument
proceeds in two consecutive stages:

1. Forward conversion stage: Based on well-established
physical laws of transformation between suitable
system- and instrument-quantities, instantiated by the
instrument, in its forward stage the measuring process
converts the measurement information about the extant
value of the target system’s measurand (on which direct
measurements may not be possible or feasible within the
assumed domain of application) into a more tractable
form of information, encoded in a generally simpler
and readily interpretable (electro-mechanical, electro-
chemical, optical, geometric, etc.) instrument quantity.
In the case of a classical target system it is assumed
that in principle it is possible to measure its measurands
without changing the system in any way. Therefore,
the outcome realized in the course of measurement and
made available via pointer reading is understood to cor-
relate to the pertinent measurand’s value immediately
preceding the completion of its measurement. (This is
of course not the case for quantum systems.)

24Trivially, even the measurement of weight or mass of a small object is indirect, executed by observing the angular pointer position of a balance scale.
Explicitly, the act of measurement relies on a physical law, instantiated by the balance scale, that assigns to mass quantity values appropriate geometric
quantity values that are then inverted by calibration and scaling, allowing the observer to receive meaningful information about the measurement outcome in
the form of a mass magnitude. Likewise, measurement of mass on an equal-arm balance implicitly assumes the basic laws of mechanics governing equilibrium
states. Slightly less trivially, measurement of mass of very large bodies (e.g., the sun) relies on a complex physical theory.
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2. Inverse restoration stage: Based on discretization and
highly effective digital methods of the so-called inverse
problem theory – appropriately realized by the instru-
ment, the post-interaction result of measurement ob-
tained in the forward stage is used in reconstructing,
restituting, estimating or approximating the measur-
and’s actual value and providing a convenient access
to the measurement outcome.

A simple illustration will help to clarify the restora-
tion stage. We have already indicated that in an ana-
log measurement of voltage there is a forward operator
that converts voltage via a chain of electro-mechanical
quantities into a final geometric displacement of the
voltmeter’s pointer. By way of the next and last stage
of the measurement process, the instrument performs
an inversion of the forward operator whose output is no
longer continuous. Simply, the act of inversion consists
of a discretization of the instrument’s continuous quan-
tity, indicated by scale marks that are conveniently dis-
palyed for meter reading by the experimenter. In sum,
the inverse model provides an algorithm for converting
a continuous (or smooth) quantity into a discrete quan-
tity. So the most significant thing at this stage is that the
measuring instrument provides a direct approximation
of the measurand’s (unknown) value, expressed by a
proposition of the form f � ∆n(c) or its probabilistic
variant P

(
���f � ∆n(c)

)
= p, discussed earlier.

9. Concluding discussion

The principal aim of this paper is to provide an analytic frame-
work for the study of quantities and their measurement. The
motivation comes from a desire to circumvent the theoretical
disadvantages of the representational theory of measurement.
One way to escape the problems of RTM is to proceed in a ‘top-
down’ manner, via quantity algebras that meet the conditions
of the Gelfand representation result. Gelfand representation
theorem allows not only to recover the classical state space
apparatus of classical systems theory, it ensures a perfect dual
equivalence between algebras of quantities and certain topo-
logical spaces of states. In this way, abstractly given quantities
can be viewed as continuous real-valued functions on a state
space. Remarkably, Gelfand representation naturally general-
izes also to dynamical quantity algebras in the sense that there
is a dual equivalence between algebraic dynamical systems
and topological dynamical systems.

Beyond the question of “What are quantities?” that we
have answered analytically, lies the question of “How to mea-
sure them?”. To measure a quantity, often referred to as a
measurand, requires a specification of a measuring instrument
together with its instrument (pointer or output) quantity, used
to read the measurement outcomes. The measuring process
is modeled by a physical interaction between the measured
object instantiating the measurand and the measurand’s mea-
suring instrument. The interaction is described by a state trans-
formation of the compound system “object + instrument,” in

which the final state of the instrument completely determines
the instrument quantity’s value that is then used to approximate
the measurand’s value.
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[11] Döring, A. (2005). Observables as functions: Antonymous
functions. arXiv:math-ph/0510.102.
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