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The paper suggests algorithms enabling self-calibration of measurement channels with linear as well as nonlinear conversion 

functions. To approximate conversion characteristics, interpolation methods are used. They are widely known; however, the essence of 
the suggested self-calibration method is the current modernization of interpolating functions parameters due to a suitable procedure. 
It enables correction of the two essential error components which may appear in the measurement channel  by means of evaluating  
the current value of the real slope of the conversion characteristic as well as of the components describing nonlinearity generated by 
disturbing factors. The methods of self-calibration for measurement channels cooperating with non-electrical quantities sensors are 
compared. Interpolation of conversion functions is assumed as linear in intervals and polynomial. 
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1.   INTRODUCTION 

EASURING SYSTEMS operating during prolonged 
measurements as well as in terms of significant scat-
tering of measurement points require specific 

procedures of self-diagnostics and analysis of technical state 
for individual elements of a measurement channel. 
Likewise, an analysis of self-calibration methods of the 
system measurement channels is necessary, independently on 
the initial calibration of the measurement channel. They 
facilitate the rendering of independent measurements results 
from possible changes influenced by parameters of electronic 
elements. Procedures of self-calibration most frequently refer 
to the accomplishment of prolonged measurements 
(monitoring) of non-electrical quantities. Also, they enable 
either to avoid troublesome initial adjustment of the 
measurement channels elements, or to use cheaper elements of 
lower quality, without worsening the accuracy and stability of 
the whole measurement system [1]. Self-calibration 
procedures are mostly limited to the electronic parts of 
measurement systems and consist of current evaluation of 
present values of the conversion functions parameters. It is 
necessary to employ calibrating reference elements 
(depending on the sensor type, e.g. standard voltage sources, 
standard resistors, voltage dividers etc.). Two elements are 
necessary for a linear conversion function; more than two for 
a non-linear one [2], [3]. For a vast majority of cases, self-
calibration procedures do not include sensors, because they 
would require troublesome and frequently difficult realization, 
using measured non-electrical quantity standards. 

2.   MEASUREMENT CHANNEL SENSITIVITY 
Conversion function of a channel for the measurement of a 
non-electrical quantity (Fig.1) may be expressed as a composi- 
 

 
 
tion of a sensor conversion function f and an electronic part of 
the measurement channel g [2]. For a general case of non-
linear functions  f  and g: 
 )(xfy = , (1) 
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where: a0,a1,…an – parameters of the conversion channel of 
the measuring apparatus, which may change due to time, 
temperature, or other influencing factors. Substituting (1) into 
(2) we have: 
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Fig. 1   Measurement channel diagram. 
 
Assuming that sensitivities of the measuring apparatus and the 
sensor are SA and SS respectively, the measurement channel 
sensitivity is: 
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The resultant sensitivity of a measurement channel is a 

product of sensitivities of all its elements. Such approach 
makes it possible to mould the total measurement channel 
sensitivity by means of the choice of individual element’s 
sensitivities. 
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Let us consider a case when the sensor conversion 
characteristic is either linear or non-linear, but known and 
invariable; however, the parameters of the channel conversion 
function may vary with time or disturbing factors during a 
prolonged measurement. Let us assume, additionally, that the 
conversion function of the apparatus SA(y,a0,a1…an) may be in 
a general case non-linear. As a matter of fact, at the stage of 
manufacturing the apparatus it is possible to fit its parameters 
so as to eliminate non-linearity errors. However, during the 
exploitation, particularly within a prolonged working cycle 
with a significant influence of the disturbing factors, the 
possibilities for changes in the conversion function parameters 
and emergence of non-linearity errors have to be taken into 
account. By means of multipoint calibration [4], [5] (Fig. 2) it 
is possible to evaluate the present values of the conversion 
function parameters. The results of measurements between the 
calibration points are evaluated by means of interpolation: 
linear, linear in intervals, or with polynomial functions, when 
interpolation knots are determined by the values of calibrating 
quantities y0,y1…yn, substituting during calibrating procedure 
the output signal y of the sensor. Depending on the type of the 
sensor output quantity, as the reference quantities voltage 
sources, standard resistors, voltage dividers etc. are accepted. 
Position “y” of the switch P denotes the function of 
measurement of the unknown non-electrical quantity x. 

 

 
 

Fig. 2   Schematic diagram of a measurement channel  
self-calibration. 

 

3.   ALGORITHM OF A CHANNEL SELF-CALIBRATION BY MEANS 
OF LINEAR IN INTERVALS INTERPOLATION OF THE 

CONVERSION  FUNCTION 

Let’s present interpolation of a conversion function of a 
measuring apparatus with spline functions of 1st order (so 
called functions linear in intervals) in closed interval <α; β> 
for (n+1) calibration points y0,y1,…yn, while: 

 
 βα =<<<<= − nn yyyy 110 K . (5) 

 
Points yi  for i = 0,1, …n  (n≥1) determine a partition of the 
interval <α; β> to n subintervals, and assuming that this 
partition is uniform, we have: 
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Let us represent linear in intervals interpolation ϕ(y) of the 

conversion function of measurement apparatus g(y,a0,a1…an) 
(2): 

[ ] niyzyzyzzhy iiiiiii ,,1)()(1)( 111 K=−+⋅−⋅= −−−ϕ . 

(7) 
 

It is easy to notice that at the interpolation knots, determining 
i-th interval <yi-1; yi>, the values of interpolating function are: 
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Using notations: 
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we get the final relationship for the interpolating function 
within the i-th interval: 

 
    niqypy iii ,,1)( K=+⋅=ϕ . (10) 

 
For the assigned n+1 standard values y0,y1,…yn (Fig. 2) it 

is necessary to determine n+1 corresponding output values z0, 
z1,…zn of the equipment (according to (8)) and then to 
determine coefficients pi   and  qi of the interpolating function 
according to (9). 

The application of this type of interpolation is known; 
however, the essence of the suggested method is the current 
modernization of the interpolating function parameters p and q 
due to the application of a suitable self-calibration procedure. 
It is then possible to correct two essential error components 
(sensitivity and non-linearity errors), which may appear in the 
measurement channel, by means of evaluating the current 
value of the conversion characteristic real slope and the 
components describing non-linearity generated (or modified) 
by the disturbing factors in the measurement channel. 

 

4.   SELF-CALIBRATION ALGORITHM USING POLYNOMIAL 
INTERPOLATION OF THE CONVERSION FUNCTION 

Let us expand the conversion function of the apparatus 
g(y,a0,a1…an) (2) into Taylor series according to the variable y 
powers within zero neighborhood (a0,a1…an are the function 
parameters): 
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and taking them into account in (11) we obtain for n+1 knots 
y0, y1, … yn, for which the values of the interpolated function 
are equal z0,z1,…zn , a system of n+1 equations with searched 
coefficients a0,a1,…an of the conversion function. Using n+1 
calibration points (n+1 knots) and accepting order n of the 
interpolating polynomial, for an arbitrary spacing of 
interpolation knots yi it is possible to evaluate the Lagrange 
interpolating polynomial ϕ(y): 
 

 ∑
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where: 
 )())(()( 10 nn yyyyyyy −−−= Kω , (14) 
 
and )( in yω′  is the value of the polynomial )(ynω  derivative at 
the point yi . 

To approximate real conversion function (2) of a 
measurement apparatus with a polynomial of the nth order it is 
necessary to assign n+1 standard values y0,y1,…yn  (Fig. 2) and 
to determine n+1 corresponding output values z0,z1,…zn. 
Interpolating polynomial, which enables to determine z value 
for arbitrary y from among  yi  and  yj,  is determined on the 
grounds of (13) and (14).  

The essence of the suggested method is the current 
modernization of the interpolating polynomial parameters due 
to the application of a suitable self-calibration procedure (Fig. 
2).  

A similar effect of self-calibration may be achieved also 
with other interpolating functions. In any case,  it is necessary 
to use reference standard quantities (Fig. 2). Their accuracy 
and stability will determine self-calibration procedure 
accuracy and efficiency. 
 

5.   COMPARISON OF SELF-CALIBRATION ALGORITHMS 

The efficiency of the discussed self-calibration methods 
depends on the type of nonlinearity of the real conversion 
characteristic of measurement apparatus as well as on the 
number of interpolation knots  (number of calibration points) 
used. The interpolation error for conversion characteristic is: 
 
 ( ) ( )yyySA ϕ−⋅=∆ . (15) 
 
As a comparison criterion we will use the limit error value: 
 
 ∆=∆ maxmax . (16) 

The paper presents  the comparison of self-calibration 
methods with linear in intervals and polynomial interpolation 
of conversion characteristics. The comparison was made for 
exemplary, typical measurement channels, containing the 
following converters in the apparatus: ‘relative change of 

strain gauge bridge unbalance voltage’ to frequency, 
conversion function of which is [2]: 
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where:  
z – frequency, y – relative bridge unbalance voltage,  
k1÷k3 – parameters of measurement apparatus, as well as a 
dual-slope integrating A/D converter with conversion 
function: 
 
 )]e1(1[ln kykz −−⋅+⋅= , (18) 
 
where:  
z – relative time (output time to integration time),  
y – relative voltage (output to reference voltage),  
k – aggregated parameter of A/D converter. 

The influence of the real values of electronic elements 
expressed by apparatus’ parameters k and k1÷k3 and their 
possible changes caused by disturbances were taken into 
consideration in these channels.  

To exemplify the case, Fig. 3 shows the dependence of the 
limit error (16) on the number of calibration points 
(interpolation knots) for the converter ‘relative change of 
strain gauge bridge unbalance voltage’ to frequency (17), 
taking into consideration real properties of amplifiers (offset 
causing nonlinearity). Fig. 4 shows the dependence of the 
limit error (16) on the number of calibration points 
(interpolation knots) for the dual-slope A/D converter (18), 
taking into consideration dielectric loss of the integrating 
capacitor. The self-calibration methods used are  linear in 
intervals interpolation of conversion function (curve 1 in the 
figures) and polynomial interpolation of conversion function 
(curve 2 in the figures). 
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Fig. 3.   Limit error (16) versus the number of calibration points 
for the converter ‘bridge unbalance voltage’ to frequency. 
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Fig. 4.   Limit error (16) versus the number of calibration points 
for the dual-slope A/D converter. 

 
On the basis of the diagrams it may be ascertained that for the 
analyzed exemplary measurement channels the polynomial 
interpolation method shows a more rapid decrease of the limit 
error. For the two interpolation knots (n=1), the effects of the 
methods efficiency agree, which is obvious; so, the values of 
the limit error (16) are identical. For three and higher number 
of interpolation knots, the error of polynomial interpolation 
decreases rapidly, giving satisfactory values by three knots. In 
the case of interpolation with function linear in intervals, the 
interpolation error decreases very slowly. For the example 
from Fig. 3, the error of linear interpolation decreases for two 
orders not before 11 interpolation knots, while for polynomial 
interpolation 3 knots are enough, as in the 
example from the Fig. 4. Delimiting further decrease of the 
error (Fig. 4) to the value of 10-15 is the result of limited 
exactness of calculations performed in the Matlab 
environment. When the self-calibration procedure is 
accomplished, the application of polynomial interpolation will 
enable us to delimit essentially the number of necessary 
reference sources (Fig. 2). 
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