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Linear deformation of the myocardium results in a linear transformation of orthogonal electrocardiosignals under the condition of 

topological invariability of the depolarization and repolarization processes in the myocardium. The relation between the linear 
transformations in the physical and functional spaces was found. Several practically important conclusions follow as a logical 
consequence of these statements. The parameters of linear transformations of the vectorcardiogram (eigenvectors, eigenvalues, 
rotation angles, determinants) may be used as indices of the heart position and haemodynamic changes. 
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1. INTRODUCTION 

OMPARISON OF single beats within one electro -
cardiographic (ECG) recording or consecutive ECG 
recordings from the same patient during cardiologic 

evaluation and in long term monitoring is an essential part of 
the contemporary non-invasive electrocardiologic diagnosis.  

Variations of the ECG signals from one heartbeat to 
another are affected by a number of factors, which do not 
reflect the electrophysiological state of myocardium itself and 
complicate the analysis of ECG signals. These factors are 
usually treated as distortion or extracardiac factors [1]. 
Considering the comparison of consecutive ECG cycles from 
the same patient, the main distortion factors are the patient's 
breathing movements, possible changes in position, and 
haemodynamic alterations invoking (arousing) rotation and 
deformation of the myocardium.  

A simple biophysical model of excitable media is proposed 
to describe the dipole moment changes after deformation of 
the excitable media (myocardium). The first approximation of 
the deformation is linear transformation. 

2. SUBJECT & MODEL 
Suppose that the excitable medium (region M, Fig.1) was 

deformed by the linear transformation T (region MT, Fig.1): 

 ,rρ T=  (1) 

where  Τ∈′= Μ),,( ζηξρ   is   the   new   position   

of the myocardium point Μ∈′= ),,( zyxr  after 

transformation T  ( ′, transpose symbol). Let  )(J , rd  and 

)(J, TT ρd  be the dipole moments and current densities 
before and after the transformation T, respectively. The dipole 
moment vectors are expressed as integrals of current density 
over the excitable media regions: 
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Fig.1   Deformation of myocardium. The point Τ∈′= Μ),,( ζηξρ  
is the new position of the myocardium point Μ∈′= ),,( zyxr  

after transformation T . 
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For the bidomain model of the excitable medium the 
current density is determined by gradient of the 
transmembrane potential [2], then before and after 
transformation T the current densities are: 

 )U()J( i rr r∇−= σ , )(U)(J TiT ρρ ρ∇−= σ , (3) 

where iσ  is the intracellular conductivity; )U(r , )(UT ρ  are 
the transmembrane potentials before and after 
transformation T; ( ) ( )ζηξ ∂
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Assume further that the state of myocardial cells does not 
change after transformation T, and transmembrane potential 
remains the same, so 

 )U()(U)(U TT rr == Tρ . (4) 

The main aim of the present reasoning is to obtain the 
relation between dipole moments before and after the 
deformation of the excitable medium. Using (1) – (4), taking 
into account that gradient of a function is a contravariant 
tensor of rank 1, after several simple manipulations and 
change of variables  ρr 1−= T , the relation is obtained: 
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3.  RESULTS & COROLLARIES 
For the bidomain model a linear deformation T of the 

excitable media leads to the linear transformation G of the 
dipole moment under the condition of topological invariability 
of the activation propagation. The relation between these two 
linear transformations is: 

  ( ) ., 1
T TTGG −′== dd  (6) 

Assume further that the vectorcardiogram (VCG) reflects 
the heart vector evolution during the depolarization process in 
the heart. Let {f0(t), f1(t), …, fn(t)} be a sequence of n QRS 
loops (Fig.2A), and Gi be the linear transformation that maps 
f0 (reference loop) to approximate fi with the minimum root 
mean square error εi:  

 niiiiii  , ... 1, ,   ,  0 =||  || = += eefGf ε . (7) 
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Fig.2   Approximation  of the QRS loops by linear transformations of 
the reference loop (A), and normalization of the QRS loops to 
eliminate extracardiac factors (B). 
 

The inverse transformations Gi
–1

 applied to the 
corresponding QRS loops give curves that are similar to the 
reference loop and lie quite near it (Fig.2B).  

The transformations Gi of the reference QRS loop are 
represented by the rotations Oi and dilatations Si : Gi = Oi Si. 
Any linear transformation in the Euclidean space may be 
obtained by sequential executing rotation and dilatation (in 
any sequence). This provides a separate analysis of these two 
kinds of transformations. The rotation of the reference QRS 
loop is characterized by the eigenvector of this transformation 
and the angle of turn around this vector.  

The dilatation of the reference QRS loop is characterized 
by the coefficients of dilatation along three orthogonal 
directions, or, in other words, by the eigenvalues 

),,( 321 iii σσσ  and three orthogonal eigenvectors of this 
transformation. The product of these three eigenvalues is equal 
to the factor of the volume expansion for any three-
dimensional body after the transformation.  

Looking back to the corresponding myocardium 
transformations Ti  through (6), it is possible to calculate the 
eigenvalues ( 321 ,, iii λλλ ) and eigenvectors that 
characterize the myocardium expansion (or contraction) for 
the i-th beat against reference beat. The product of eigenvalues 

321 iiiii λλλλ == T  may be treated as the end-diastolic 
heart volume dilatation (or contraction) relative to the 
reference beat. 

The simple relations between the eigenvalues of linear 
transformations in the physical and functional spaces are 
obtained using (6): 
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The same results may be obtained when analyzing the double 
layer activation front deformation (Fig.3), and for more 
general cases. The dipole moment is proportional to the 
integral of the transmembrane potential over the closed 
surface of the excitable medium region. Calculation of the 
relation between dipole moments before and after 
transformation and integration over the whole surface of 
excitation gives the same equations (6), (8). 
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Fig.3   Elementary cube and surface element dilatation along three 
eigenvectors of transformation S. 

4.  DISCUSSION 
The influence of the ventricular volume on the electric 

heart vector is usually explained by the Brody effect [1], not 
mentioning the changes of myocardium that contain the 
sources of the electric field. The Brody effect means that the 
intracardiac blood surface plays the role of an imperfectly 
reflecting curved mirror. Changes in VCG are caused both by 
myocardial deformation and by its reflection on intracardiac 
blood. It is important to find out their relative input. The same 
changes of VCG after changes of the left ventricular end-
diastolic volume may be easily explained by the Brody effect 
[1], as well as by the linear deformation of myocardium. 

There were at least two experimental investigations that 
substantiate the proposed model. 

In [3, 4] the linear transformation along with its polar 
decomposition into rotation and dilatation and corresponding 
eigenvectors and eigenvalues were used to describe the left 
ventricular dynamic geometry in the intact and open chest 
dogs. This description was in good agreement with 
experimental measurements, and parameters of its 
decomposition into dilatation and rotation were 
physiologically and anatomically meaningful. 

The presented model was used in [5], where a set of 
vectorcardiograms recorded during the parabolic flights of a 
laboratory aircraft was analyzed. In all normal cases, the QRS 
loop for each person, as a curve in the three dimensional (3D) 
vectorcardiographic space, remains unchanged (invariant)  
 

after the proper 3D linear transformation (the relative error of 
approximation was less than 0.05). The distance between the 
superposed QRS loops served as an indicator of changes in the 
heart depolarization process. Changes of the QRS volume 
factor iG  were in accordance with haemodynamic changes 
due to gravitation acceleration. 

5.  CONCLUSIONS 
A simple biophysical model is proposed to describe the 

dipole moment changes after deformation of the excitable 
medium (myocardium). Using the bidomain model, it is stated 
that linear deformation of the excitable medium leads to linear 
transformation of the dipole moment under the condition of 
topological invariability of the repolarization and 
depolarization processes.  

The proposed model was experimentally substantiated by 
measurement in the intact and open chest dogs [3, 4] and by  
analyzing vectorcardiograms recorded during the parabolic 
flights of a laboratory aircraft [5]. 

The parameters of linear VCG transformations 
(eigenvectors, eigenvalues, rotation angles, determinants) may 
be used as indices of the heart position and haemodynamic 
changes. 

The real interrelation of VCG transformations and 
myocardium deformations is complicated. The accuracy of the 
presented biophysical model and its diagnostical possibilities 
should be determined in the future theoretical and 
experimental investigations. 
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