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The goal of this paper is to present a unified algebraic-analytic framework for (static and dynamic) deterministic
measurement theory, which we find to be fully adequate in engineering and natural science applications. The starting
point of this paradigm is the notion of a quantity algebra of a measured system and that of a measuring instrument,
underlying the causal linkages in classical‘system + instrument’ interactions. This approach is then further enriched
by providing a superimposeddata lattice of measurement outcomes, intended to handle the information flow from the
measured system to its measurand’s designated instrument.
We argue that the language ofBanach and von Neumann algebras is ideally suited for the treatment of quantities, en-
countered in theoretical and experimental science. These algebras and convex spaces ofexpectation functionals thereon
together with information (co)channels between them provide a comprehensive information-theoretic framework for
measurement theory. Concrete examples and applications tolength and position measurements are also discussed and
rigorously framed within the proposed quantity algebra andassociated information channel paradigms.
In modeling physical systems, investigators routinely rely on the assumption that state spaces and time domains form
a continuum (locally homeomorphic to the real line or its Cartesian powers). But in sharp contrast, measurement and
prediction outcomes pertaining to physical systems under consideration tend to be presented in terms of smalldiscrete
sets of rational numbers. We investigate this conceptual gap between theoretical and finitary data models from the
perspectives of temporal, spatial and algebraicdiscretization schemes.
The principal innovation in our approach to classical measurement theory is the representation of interactive
instrument-based measurement processes in terms of channel-cochannel pairs constructed between dynamical quan-
tity algebras of a target system and its measurand’s measuring instrument.
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1. INTRODUCTION AND BACKGROUND

IN THE NATURAL SCIENCES, engineering, and technologi-
cal applications, the aim of a measurement process is to

obtain verifiable numerical information about thetarget sys-
tem’sextantstate. Partial information about the system’s state
at a given site and moment of time is made available by mea-
suring the system’s designated quantity (i.e., a pre-existing
quantitative attribute to be measured) – called ameasurand–
at that site and time. The measurement process involves
the determination of the value of a suitablepointer quantity,
which has become maximally correlated to the measurand’s
actual value, thanks to a direct physical interaction between
the target system and the measurand’s measuring instrument
– designed for reading the values of its pointer quantity. In-
formation about the system’s state together with the system’s
validated theoretical model can be used in predicting some of
the results of future measurements.

The algebraic-analytic framework for measurement theory

∗Corresponding author: zdomotor@sas.upenn.edu

presented in [4] approached measurement as an interaction
between a target (measured) system and a measuring instru-
ment, designed and calibrated to measure some specific quan-
tity instantiated by the target system. With the target sys-
tem and the measuring instrument modeled by their respec-
tive quantity algebras(formally Banach algebras), the main
aspects of deterministic measurement were modeled by natu-
ral algebraic constructions, such as tensor products of quan-
tity algebras (representing the compound‘target+ measuring’
system), temporal dynamics on tensor products of quantity al-
gebras (representing the dynamical measurement coupling of
the target system and the measuring instrument), and more.
It was also shown how a fundamental theorem in analysis,
known asGelfand representation, guarantees that the syntac-
tic framework of autonomously specified quantity algebras
(and various constructions effected from them) comes with
a realist semantics (interpretation) on which autonomously
specified quantity algebras can be identyfied with concrete
algebras of observableson uniquely determinedtopologi-
cal spacesof the kind commonly used by scientists asstate
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spacesof natural systems in the world.
Because the initial presentation of this algebraic-analytic

framework was only brought up as a viable alternative to
the representational theory of measurement, several episte-
mologically and methodologically important issues pertain-
ing to real world measurements remained unexplored. These
issues will be addressed in the present paper, which enriches
and refines the framework of Banach algebras, so as to obtain
conceptually and formally adequate models of the following
aspects of measurement:

(i) Error and uncertainty in measurement:Because real
world measuring instruments do not possess unlimited
degrees of accuracy, all scientific measurements are sub-
ject to uncertainty in general, and deterministic and ran-
dom errors in particular. The inherent element of ran-
domness and uncertainty, however, is not reflected in
the framework of Banach algebras, where quantities are
presumed to besmoothor continuous, and where mea-
surements are treated asideally perfectdeterminations
of such quantities’ values. To make our algebraic mod-
els of measurement epistemologically and methodologi-
cally more realistic, we will introduce a mathematically
broader notion ofmeasurable(random) quantities, and
will use von Neumann algebrasas our quantity alge-
bras for modeling measurement interactions whose re-
sults are known only to the extent that they belong to cer-
tain measurable sets of reals with such-and-such prob-
ability. Analogously to the earlier mentioned Gelfand
representation for Banach algebras, we will show that
another theorem in analysis, known asRiesz represen-
tation, provides us with a semantic interpretation of au-
tonomously specified von Neumann algebras in terms of
concrete von Neumann algebras of random variables on
suitablemeasure spaces.

(ii) Relations between infinite/continuum theoretical mod-
els and finite/discrete measurement data:Theoretical
science relies extensively on modeling natural phenom-
ena using families of differential equations over real-
or complex-valued functions (based on the ontological
assumption that the underlying domains of time, space
and system states are furnished with the structure of a
topological continuum). On the other hand, real-world
measurements can yield only finite amounts of informa-
tion about a target natural system. As a result, quan-
tities in theoretical models may take on numerical val-
ues which cannot be experimentally determined with any
fixed finite amount of measurement and computational
resources (e.g., in the case of transcendental reals), or
even in the limit of infinite precision allowed by highly
idealized measuring instruments (if the measurand’s val-
ues are non-computable or random reals). A theory of
measurement, we believe, should explore this gap be-
tween theontologicallymotivated continuum-based the-
oretical models and our resource-boundedepistemicac-
cess to the modeled natural systems through finite and

discrete measurement data. To this end, the present paper
will follow [ 2] by introducing the notion of (spatial and
temporal)discretizationof continuum dynamical mod-
els, and investigate the formal relationships between con-
tinuum theoretical models and their discretized versions
in the context of measurement interactions. Along the
way, we also exploit the fact that Gelfand and Riesz rep-
resentations – which relate dynamical algebras and topo-
logical dynamical models – also holds for discretized
versions of these algebraic and topological dynamical
models.

(iii) Information channel perspective on measurement:As a
matter of scientific practice, a given quantity instantiated
by a target natural system can be measured in differ-
ent ways, with varying degrees of accuracy, using dif-
ferent measuring instruments, different background laws
involved in the design and calibration of measuring in-
struments, and so on. Yet, despite being quite differ-
ent qua physical interactions, such measurements have
something in common which makes them all measure-
ments ofone and the same quantity. Clearly, this com-
mon property shared by physically distinct methods of
measuring a given quantity cannot be captured at the
physical level of description, except by trivial disjunc-
tive descriptions of all the different physical processes
underlying such measurements. On the other hand, this
common property can be handled at a ‘higher’ (concep-
tually more general) level, called afunctionalistperspec-
tive on measurement – the perspective which abstracts
measurement away from its specific underlying physical
processes and allows us to view it as atransfer of infor-
mationabout the measurand from its instantiating target
system to the instrument’s pointer module. The motiva-
tion for this functionalist perspective on measurement is
quite analogous to that behind the machine-independent
perspective on computability, which abstracts away from
specific equivalent models of computation (e.g., a Tur-
ing machine, Post production system, Markov algorithm,
etc.) and focuses on the general properties ofcom-
putable functions. In this paper we will explore several
formal and conceptual advantages of this functionalist
information-theoretic perspective on measurement by in-
troducing and studying the notion of achannelas a for-
mal model of the causally directed transfer of informa-
tion about the measurand to the measuring instrument.
Of special importance to this investigation will be a the-
orem known asUmegaki representation, which guaran-
tees that every information channeltarget system−→
measuring instrumentcomes with its dual conversely di-
rectedcochannel: measuring instrument−→ target sys-
tem. The latter will be used in modeling theestimation
(reconstruction) of the measurand’s objective value from
the measuring instrument’s output.

By way of concluding this introduction, we would like
to emphasize that the rather technical algebraic-analyticap-
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proach to measurement presented in this paper is motivated by
(and ultimately gives support to) ourphilosophicalcommit-
ment to therealist conception of quantities– the conception
which opposes the instrumentalist view of quantities underly-
ing the well-knownrepresentational theory of measurement,
and on which (i) quantities aretheoretical entities of science
interpreted asobjective characteristicsof natural systems in
the world, and (ii) measurement is a physical process of (ap-
proximate)determinationor estimationof the value posed by
a quantity under consideration, as instantiated by the target
natural system.

2. ALGEBRAIC-ANALYTIC FRAMEWORK FOR

CLASSICAL MEASUREMENT THEORY

In this section we recall the general mathematical structure
of classical physical measurement we shall need.Instrument-
based measurement of a quantityof interest (e.g., electric cur-
rent, volume, temperature, mechanical stress, X-ray energy,
etc.), commonly called ameasurand, is a physical process in-
volving a target systemthat (i) instantiates the measurand in
a particular amount or degree, (ii) is dynamically coupled to
the measurand’s designatedmeasuring instrumentduring the
act of measurement, and (iii) contingently upon its state, the
system sends information about the measurand’s extant value
via the composite‘system + instrument’bipartite system to
the instrument’spointermodule, ready for readout.

Although the formal structure of much of classical physics
and systems science is nothing more than a suitable dynam-
ics (traditionally described by differential or difference equa-
tions) and a statistics of quantities, the mathematical frame-
work for physical measurement processes ordinarily involves
the following three major algebraic-analytic and probabilistic
ingredients: (1)quantity algebrastogether with their (deter-
ministic and probabilistic)state spaces, independently repre-
senting the target system and the measurand’s measuring in-
strument, (2) joint physicaldynamicsof the ‘system + instru-
ment’compound system, and (3) a superveninginformation
channelfrom the system’s state space to that of the instru-
ment’s pointer module. To see the details, we need to recall
some basic concepts pertaining to mathematical measurement
theory. We start with the characterization of quantity algebras
and accompanying state spaces.

2.1. Quantity algebras of measured and measuring systems

Here we follow the algebraic-analytic framework for mea-
surement theory, outlined in [4] and further developed in [5].
It is impracticable to study classical physical measurement
without an explicit commitment to appropriate (continuous,
measurable, smooth, discretized, etc.)quantities, such as en-
ergy, force, electric charge, pressure, and so forth, and law-
like relations between them. Accordingly, the starting point
of measurement modeling in engineering and the natural sci-
ences is the specification of a physically relevantalgebraAS

of quantities that is believed to correctly describe the quan-

titative attributes and behavior of the natural systemS under
consideration. For reasons of mathematical tractability,the
quantity algebra can not be exhaustively detailed. Many as-
pects of the natural system of interest are deliberately omitted,
suppressed or enhanced. The system’s quantity algebra is not
intended to be an exact mathematical copy of reality. Instead,
it is constructed with special regards to formulating scientific
concepts and ideas that facilitate the model builder’sunder-
standingof the system’s structure and function. In practice,
the algebra is generated by a remarkably short list of quan-
tities (e.g., positions and momenta of point particles or pres-
sure, volume and thermodynamic temperature of gases in ves-
sels, or currents and potential differences in electric circuits)
that meets the aims of quantitative modeling of measurement
at a given level of idealization and simplification. The dis-
crepancy between the degrees of freedom present in the target
natural systemS and those captured by the representing quan-
tity algebraAS inevitably leads to variousmodeling errors.
This is not a serious problem as long as the selected algebra is
sufficiently close to the actual system in the sense that the dif-
ferences between measurement results and model-generated
predictions (and explanations) that could tell them apart are
well within the bounds of antecedently specified admissible
errors. Overidealization or overabstraction embodied in the
system’s quantity algebraAS can lead not only to information
reductionin the sense that not all quantities or behaviors of in-
terest are faithfully encoded in its structure, but also to infor-
mationdistortion, meaning that the algebra allows behaviors
which are not present in the natural system under consider-
ation. This is the price a modeler has to pay for incorrectly
handling system complexity and for failing to delineate the
model’s domain of applicability.

In practice, all measurands which are believed to be de-
cisive in the description of the target system’s structure and
behavior of interest are automatically included in its associ-
ated quantity algebraA. To uphold the standard laws of addi-
tion of quantities of the same physicaldimensionand those of
distributive multiplication relied upon in secondary quantities
(such as density, pressure, stress, and so on), the algebraA is
presumed to have the structure of a unital commutative ring.
In particular, for any pair of quantitiesf ,g in A we have their
associative and reversibleaddition f+ g, and a bilinear, as-
sociative and commutativemultiplication f•g with a unique
(constant)unit quantity1 satisfying1• f = f •1 = f , all in A.
Rational scale changes of quantities prompt to include the op-
eration ofscalar multiplication, which assigns to each quan-
tity f in A and a scalarc in the field of realsR the unique
scalar product quantity, denotedc · f , again inA. In this way,
the quantity algebra is automatically also a linear space over
R. In view of topological and measure-theoretic properties
of many quantitative attributes arising in physics and engi-
neering, quantity algebras tend to come with anorm, i.e., a
non-negative real-valued function‖·‖ : A−→R satisfying the
usual norm axioms and the inequality‖ f •g‖ ≤ ‖ f‖ · ‖g‖ for
all f ,g ∈ A. A topologically complete, normed, real, uni-
tal, commutative algebra described above is important in its
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own right and therefore has a special name – it is called a real
(unital, commutative)Banach algebra. It is good to bear in
mind that there is no proof that the algebraic language of Ba-
nach algebras is fully universal in the sense that within it all
mainline physical measurements of quantities can be framed.
What we can claim, however, is that allknownempirically ad-
equate theories of classical measurement processes involving
continuousquantities admit a Banach algebra formulation. Of
special appeal is the fact thatnoncommutativeBanach alge-
bras over the immutable complex field provide an established
framework for reasoning about quantum measurement and,
moreover, certain assignments of appropriate Banach algebras
to space-time regions are well suited to the study of relativistic
mechanical and electromagnetic field measurements. Banach
algebras are furnished with as much algebraic and geomet-
ric structure as a measurement theorist could ever wish for in
her theory. We now extend the foregoing primer on Banach
algebras with a few facts on probabilistic states thereon and
channels between them.

2.1.1. Banach algebra approach to physical measure-
ment

We devote this part of Subsection 2.1 to setting down, in pre-
cise terms, the definitions of states, and information channels
between the state spaces of measured and measuring systems.
In the second part we shall confine our attention to the prop-
erties of von Neumann algebras of measurable quantities and
their Riesz representation.

In support of dimensional analysis, some quantitiesf (e.g.,
volume and area, needed for defining density and pressure, re-
spectively) are presumed to come with a uniqueinversequan-
tity f−1, satisfying the equalitiesf • f−1 = f−1 • f = 1 and
( f •g)−1 = f−1 •g−1, if both f andg are invertible. It is easy
to check that the set of invertible quantities (i.e., the ones that
possess an inverse) in a Banach algebraA is a group with re-
spect to the multiplication operation•, conveniently denoted
by GrA. Importantly, each quantityf in A has a uniquevalue
(spectral) space

Val( f ) =d f {c∈ R | c·1− f /∈GrA}

that abstractly(i.e., without any evaluation device) specifies
the quantity’s set ofpossiblenumerical values. The value
space captures the standard lore about quantities as attributes
possessing values that match their concrete instantiations in
degrees or amounts. Specifically, if experimenters were to
measure measurandf , ideally they would obtain exactly one
of the values in Val( f ) as the measurement outcome. How-
ever, as everybody in the trade knows, the measurement out-
come in a normal real-world measurement process is at best
only the value of the measuring instrument’spointer quantity
©1 f (chosen for measuringf ) that is presumed to correctly
approximate the actual value off .

A good mathematical source of examples of Banach alge-
bras are the rings of continuous real-valued functions on a
topological space. Concretely, ifX is a compact Hausdorff

space, then the spaceC(X ) of all continuous real-valued
functions of the formf : X −→ R is a real (unital, commu-
tative) Banach algebra under pointwise-defined algebraic op-
erations (inherited fromR) and the supremum norm. In this
case it is elementary to verify that the value space Val( f ) of
f equals to its numerical range{ f (x) | x ∈X } ⊆ R. Quan-
tities of a more complextype (e.g., vector and tensor quan-
tities) come with values belonging toRn (for some natural
numbern) or other more involved sets constructed from the
host ground fieldR of reals.

We mentioned that most quantity algebras arising in appli-
cations tend to befinitely generated. Recall that a finite subset
of linearly independent quantities, say,{ f ,g} of a Banach al-
gebraA, finitely generatesthe entire algebraA just in case
the set of all linear combinations of monomials of the form
f m•gn, wherem,n are natural numbers, istopologically dense
in A. In particular, quantity algebras used in classical me-
chanics, thermodynamics, optics, and electromagnetism tend
to be finitely generated. For example, in the formal treatment
of measuring instruments, chosen to measure quantityf , we
shall frequently rely on the pointer module’s Banach algebra
A

(©1 f
)
, generated by the instrument’s pointer quantity©1 f

and unit1. It is elementary to check thatA
(©1 f

)
is the small-

est Banach algebra containing©1 f . To see the measurement-
theoretic significance of finitely generated quantity algebras,
consider again the case of measuring quantityf that results
(say) in the outcomec ∈ Val( f ). Since for any continuous
functionξ : R−→ R the valueξ (c) can always be calculated
(perhaps only approximately and of course likewise for all
finitary combinations of the form1+ f + f • f + f • f • f + · · · ,
etc.), there is no need to perform another measurement of
measurandξ ◦ f . Simply, because measuringf automatically
takes care of the measurement ofall quantities in the algebra
A( f ) generated byf (albeit only indirectly via computation),
we can regard the measurement off as a physical process of
extracting information from the target system about all quan-
tities in the algebraA( f ). More generally, in the case of a
joint measurement of quantitiesf andg the extracted infor-
mation pertains to the finitely generated algebraA( f ,g), and
so on.

Some (dimensionally homogeneous) quantities admit
quantitative comparisons. A quantityf ∈ A is said to bepos-
itive provided that it has the formf = g2 = g•g for some
quantityg in A (e.g., the quantityarea = length • length is
positive). If f is positive, then we shall writef ≥O, and f ≤ g
is understood to meang− f ≥ O, whereO denotes thezero
quantity with value space{0}. In this manner,A is also fur-
nished with a natural partial-order structure that is crucial in
the statistical treatment of quantities. Positive quantities are
particularly important in defining square roots and generally
nth roots of quantities of the formn

√
f . Specifically, the square

root of a positive quantityf , denoted
√

f , is the unique posi-
tive quantityg such thatg•g = f . The set of positive quanti-
ties ofA forms a linear lattice.

After a quantity algebraA has been correctly chosen for
the natural system under consideration, there is a generalal-
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gebraic way to describe the system’s possible (pure)deter-
ministic and (mixed)probabilistic statesin terms of suitable
expectation functionalson A.1 In preparation for the correct
conceptual setting for states, recall that the set of continu-
ous linear functionals of the formE : A −→ R is a Banach
space (under pointwise-defined addition inherited fromR and
scalar multiplication), symbolized byA∗ and called the alge-
braic dual of Banach algebraA.2 An expectation functional
E on A is a unital, positive, continuous linear functional of
the form above that ascribes a unique expected valueE ( f ) to
the quantityf of interest, contigently upon the system’s extant
(deterministic or probabilistic) state, encoded byE . We shall
write

S (A) =d f
{
E ∈ A

∗∣∣E ≥ 0 & E (1) = 1
}

for the set all expectation functionals onA. Here the posi-
tivity constraintE ≥ 0 meansE ( f ) ≥ 0 for all f ≥ O and,
to reiterate, the numberE ( f ) is thought to be theexpected
valueof quantity f , when the target system is in a state repre-
sented byE . Each expectation functionalE is accompanied
with its dispersionfunctional (algebraically emulating stan-

dard deviation), defined by DspE ( f ) =d f

√
E ( f 2)−E ( f )2

for all quantitiesf .3

Expectation functionals are needed for (i) extracting empir-
ical content from the syntactic formalism of the quantity alge-
braA, (ii) determining the extant values of quantities during
measurement, and for (iii) handling quantitative information
about the target system in general.4 The so-called algebraic

1As will become increasingly evident as we proceed, adeterministic state
of a target system at a given instant of timet is the system’s ‘fine-scale mode
of being’ att as seen from the perspective of the quantity algebraA, brought
about by its previous history, involving various preparations and causal in-
teractions with other systems. States are essential in determining the extant
values of quantities (using calculations or measurements) and in the reversed
direction, the values of quantities at a given moment of time arecollectively
sufficient for individuating the system’s prepared state at that time. In order
to capture the supervening uncertainty or randomness inherent in repetitive
measurement interactions and complex (e.g., chaotic) behaviors of systems,
it is necessary to consider also a more general notion of stateat any partic-
ular time t (that prompts a substantially wider algebraic-analytic treatment
of physical states), called aprobabilistic state, intended to capture the sys-
tem’s ‘gross mode of being’ att, i.e., its objective higher-levelindefiniteness
relative toA. Complete identification of a deterministic state comes with a
maximum of information about exactly ‘how the the target systemis in itself’
at a given time (when nobody looks), considered in relation toA. This infor-
mation together with the system’s governing laws is sufficientfor specifying
any state into which the system will evolve in the future. By contrast, in gen-
eral, knowledge of a probabilistic state results only in a less-than-maximum
information about the system.

2A Banach spaceis a linear space overR equipped with a norm‖·‖ that is
also a complete metric space under the metric induced by the norm.Banach
spaces are the most important linear spaces arising in classical analysis. The
so-calledLp spaces are the prime examples of Banach spaces.

3To simplify our language, we shall often refer to an expectation func-
tional somewhat loosely as a (deterministic or probabilistic) state, even
though it is more precisely amathematicalrepresentation of a physical state,
relative to a selected quantity algebra, summarizing the target system’s in-
stantaneous situation or mode of being.

4The principal benefit of considering probabilistic states rather than just
the customary deterministic states is that we immediately gain full access to
a quantity-basedalgebraic probability calculus, needed for the treatment of

evaluationmap

A×S (A)
BC−−−−→ R,

defined very simply by taking the expectationBC( f ,E ) =d f

E ( f ) of quantity f when the system is in stateE , handles
the algebraic specification of expectation values of quantities
arising in calculations and measurements. A key observation
we wish to make here is that each natural systemS of in-
terest can be completely characterized by a quantity algebra
AS alone and there is a universal way to specify the algebra’s
state spaceS (A) together with the evaluation mapBC. Note,
however, that atheoreticalaccount of the valueE ( f ) does not
automatically pop into a measuring instrument or into the ex-
perimenter’s mind without a reproducible measurement pro-
cess, based on a suitable physical interaction (i.e., exchange
of energy and information) between the target system and a
calibrated measurement apparatus forf . Referring toE ( f ) is
of little value without having direct access to specific methods
that actually generate, at the least, its rough estimate.

One may object that even if a measurement is instrument-
based or involves a physically correct measurement coupling,
the outcome is still at best the expectation off and not the
quantity’s actual value. Here it is necessary to exercise care
and not to jump to conclusions. As we shall see next, the
outcome of measuring quantityf decisively depends on the
specific nature of the system’s state encoded by a suitable ex-
pectation functional and on the physical nature of the quan-
tity itself. For a simple example, iff is two-valued, meaning
Val( f ) = {0,1}, thenE ( f ) specifies theprobability that the
actual value of quantityf is 1, given that the system is in the
stateE . Other examples are provided below.

A distinguished role is played by the so-calledextremalex-
pectation functionals ofS (A), i.e., functionals that do not
admit any proper convex decomposition. Formally, an expec-
tation functionalE is said to beextremalprovided thatE =
c ·E1 +(1−c) ·E2 impliesE = E1 = E2 for all 0 < c < 1, E1,
andE2. Equivalently, a functionalE is extremal just in case
it is multiplicative, i.e., the equalityE ( f •g) = E ( f ) · E (g)
holds for all quantitiesf and g in A. Extremal functionals
E are precisely dispersion-free, i.e., we have the condition
DspE ( f ) = 0 for all f . For future reference, the set of ex-
tremal expectation functionals is denoted byS ex(A).5 It turns
out that its elements capture the so-called underlyingdeter-
ministic states, involving minimal randomness and hence pro-

errors and uncertainties. We mention in passing that the pair〈A,E 〉 con-
sisting of a Banach algebraA and an expectation functionalE thereon can
be thought of as aBanach algebra probability spacethat significantly gen-
eralizes Kolmogorov’s classical notion of a probability space. For example,
quantitiesf andg are said to beprobabilistically independentrelative toE

provided thatE ( f •g) = E ( f ) ·E (g). The algebraic analog ofvariancerel-

ative toE is defined by Var( f ) =d f E

((
f − E ( f ) · 1

)2
)

for all quantities

f . Many other probabilistic and statistical notions (e.g., covariance, correla-
tion and conditional expectation) automatically carry overto Banach algebra
probability spaces on an analogy with the corresponding concepts in classical
probability and statistics.

5The value space of quantityf can now be given quite simply by Val( f ) =
{E ( f ) | E ∈S ex(A)}.
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viding maximal information about the system’s mode of being
at a given moment of time. Since there is no dispersion when
measuring a quantityf in a deterministic state encoded by its
extremal functionalE , the expectationE ( f ) determines the
precise value off . The objective of the remainder of this sec-
tion is to clarify how and why mainline measurement prob-
lems pertaining to target systems can be framed in the set-
ting of a suitable algebraA of quantities (some of which are
to be measured) and its associated compact convex subspace
(topologically a simplex)S (A) ⊂ A

∗ of expectation func-
tionals (serving as principal means of obtaining measurement
outcomes), linked by an algebraic real-valued evaluation map
BC. We mention in passing that the simplexS (A) of states
comes with the latticeFace

(
S (A)

)
of its faces. Recall that

a face is an convex subsetF ⊆ S (A) such that the condi-
tion c · E + (1− c) · E ′ ∈ F =⇒ E ,E ′ ∈ F holds for
all 0 < c < 1. Two statesE andE ′ in S (A) are said to be
orthogonaljust in case the respective faces to which they be-
long are disjoint. As we shall see, the orthogonality relation
between states and its cousins turn the lattice of faces intoa
rich playground for measurement theory.6 We now digress
briefly to recall some crucial facts about mappings between
state spaces and between their underlying quantity algebras,
needed for a particularly attractive information-theoretic de-
scription of physical measurement.

Let S (A) andS (A′) be state spaces associated with Ba-
nach algebrasA andA

′, respectively, where in measurement
applications the first algebra represents a target system and the
second algebra models a measuring instrument or its pointer
module. Then a mapC∗ : S (A)−→S (A′) between them is
called astate channelor simply an informationchannelfrom
input A to outputA′ provided that the following three condi-
tions are satisfied for all statesE andE ′ onA, quantitiesf in
A
′, and reals 0≤ c≤ 1:

(i) Affine Property:C∗
(
c · E + (1− c) · E ′

)
= c ·C∗

(
E

)
+

(1−c) ·C∗
(
E ′

)
.

(ii) Unity:
[
C
∗(E )

]
(1) = 1.

(iii) Positivity: f ≥O =⇒
[
C
∗(E )

]
( f )≥ 0.

We call a state channelC
∗ : S (A)−→S (A′) deterministic

just in case it maps deterministic states to deterministic states,
encoded by extremal expectation functionals.7 It is easy to
check that a cascade composition of two channels is also a
channel. Additional properties of channels will be discussed
later on. The measurement-theoretic significance of channels
can be summed up as follows. Measurement is a physical
operation performed on a target system, aimed at extracting
information from the system that is transmitted via an infor-
mation channel to the coupled measuring instrument’s pointer

6We regard the quantities inA to be instantiated in the target dynamical
system collectively at all run times, while the states inS (A) occur in the
system only individually, one at a time.

7Strict determinism is usually reserved for bijective channels that preserve
the orthogonality relation between states.

module for readout or storage. The input information is pre-
sumed to be encoded by an appropriate expectation functional
that the system-to-instrument channel transforms during the
measurement process into another closely related expectation
functional at the receiving end, ready for decoding and in-
terpretation. It is important to bear in mind that a channel
captures not only the underlying causal mechanisms of the
sender, receiver and transmitter, but also all physical (usually
random) disturbances in the system – from source to destina-
tion – and randomness originating in the measurement process
itself. In addition, we wish to emphasize that since channel
transmission is inherently a finite process, in an actual realiza-
tion each continuous input quantity will appear at the output
in some discrete form.

In [13], Umegaki shows that each state channelC
∗ :

S (A) −→ S (A′) defined above determines a unique dual
channel, called aquantity channelor simply acochannel, hav-
ing the mathematical formC : A′ −→A (with the arrow direc-
tion reversed and the superscript star symbol removed), such
that the following conditions hold for all expectation function-
alsE onA, quantitiesf ,g in A

′, and realsa,b∈ R:

(i) Duality: E
(
C( f )

)
=

[
C
∗(E )

]
( f ).

(ii) Linearity: C
(
a· f +b·g

)
= a·C( f )+b·C(g).

(iii) Unity: C(1) = 1.

(iv) Positivity: f ≥O =⇒ C( f )≥O.

And conversely, each dual channel or simply cochannel
(i.e., a linear unital positive map)C : A

′ −→ A determines a
unique (state) channelC∗ : S (A) −→ S (A′) such that the
dualityproperty listed above holds.

Following up on Umegaki’s representation theorem, later
we shall be discussing a general algebraic-analytic approach
to a large variety of measurement processes, systematically
framed in terms of the above defined channel-cochannel dual
pair, succinctly symbolized by the map8

A
′×S

(
A
′) (C,C∗)
−−−−−−−_ A×S

(
A

)

rendering theadjointnessdiagram

A
′×S

(
A

) C×IA−−−−−−−→ A×S
(
A

)

I
A′×C

∗
y

yBCA

A
′×S

(
A
′) BC

A′−−−−−−−−−→ R

commutative. In this diagram,IA denotes the identity map-
ping fromS

(
A

)
to itself and likewiseIA′ stands for the iden-

tity mapping ofS
(
A
′) to itself. Finally,BCA andBCA′ are the

basic evaluation maps, defined earlier. When unpacked, the
commutativity property of the diagram simply states that the
equality E

(
C( f )

)
=

[
C
∗(E )

]
( f ) holds for all statesE and

8To indicate that the channel-cochannel pairs involve two maps, hence-
forth we shall denote them by triangle-headed arrows.
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quantities f . Because in what follows we shall need to re-
fer to various quantity algebras, we prefer to reformulate the
channel-cochannel duality in its above-displayed adjointness
form.9 We take the two-way map(C,C∗) (shown above) to
be a fundamental concept in its own right that captures the
information-theoretic essence of instrument-based measure-
ment.

After these preliminaries we are now ready to define at least
one major species (out of many possibilities) of a channel-
theoretic measurement model as follows. LetAS be the quan-
tity algebra of a natural systemS under consideration and let
f ∈ AS be its measurand. Furthermore, take©1 f ∈ AM to
be the measurand’s pointer quantity in the measuring instru-
ment’s quantity algebraAM. Then a dual pair(M,M∗), con-
sisting of a linear unital positive map of the formM : AM −→
AS and its associated affine unital mapM∗ : S

(
AS

)
−→

S
(
AM

)
is said to represent anunbiased measurement of f

with pointer quantity©1 f provided thatM(©1 f ) = f . A
closely related measurement model(M′,M′∗) with additive
error is defined byM′(©1 f ) = f +u, whereu is an appropri-
ate ‘noise’ quantity. Because the mathematical ways in which
channels or cochannels are specified in applications tend toin-
volve only one of them and the other is automatically derived
from their duality property, often we shall refer to a cochan-
nel (quantity channel) as the measurement model of interest,
without explicitly specifying its corresponding (state) chan-
nel, or vice versa.

Up to this point we have been treating quantity algebras
and their state spacessyntactically, i.e., in an axiomatic or
presentation-independent way that treats all quantities on the
same footing, intended to abstractly characterize and reason
about the system’s quantitative attributes of interest, with lit-
tle regard forconcrete numerical values presented in specific
units, and methods or means of identifying these values. Like-
wise, states were modeled abstractly by positive normalized
linear functionals on quantity algebras. The question thus
arises: given the target system’s quantity algebra and its ac-
companying state space, when can we say that they are ‘cor-
rect’ or meet our representational aims? Our basic problem
is simply to find a method of quantity model validation. For
that we need aninterpretational framework,10 which secures
a concrete physical meaning of quantities, their data proposi-
tions and laws – enabling a validation of propositions using
measurement outcomes. Another way to express this is to say
that in addition to the foregoing syntactic algebraic quantity
and state apparatus, intended for effectivetheoreticalanaly-
sis, we need their mathematically concreterealizations, im-
plementationsor distinguishedrepresentations, which allow
us to designate a specific frame or basis, in which all perti-
nent physical variables and coordinates can be fixed for cal-

9We shall interpret channelC∗ ontologically as aforwardmodel of a mea-
surement process that represents the causal direction of information flow from
the target system to a measuring instrument. And its dual cochannelC is best
thought of epistemically as aninversemodel, representing the measurand’s
reconstructionor estimationoperation, acting on its pointer quantity.

10Also known as aquantity algebra semantics, i.e., an endeavor of provid-
ing a mathematically specified empirical content for quantities and states.

culation, measurement, and testing.
This leads us to recall an important representation (realiza-

tion) of Banach algebras. The so-calledGelfand represen-
tation theorem (see [6] and [11]) states that every abstractly
given real (unital, commutative) Banach algebraA, satisfying
the so-calledR-property‖ f‖2 ≤ ‖ f 2 + g2‖ for all quantities
f andg, is isomorphic to (and hence can be identified with)
the concrete Banach algebraC(X ) of all real-valued contin-
uous functions (with the usual supremum norm) on a com-
pact Hausdorff topological spaceX , defined (among other
options) by the space ofmaximal idealsin A and furnished
with the so-calledGelfand topology.11

The Gelfand duality between quantity algebras and topo-
logical state spaces, alluded to above, has proved to be sur-
prisingly effective in thesemanticalstudy of measurement
processes. As an additional element of concreteness, the so-
called Riesz representation theorem (see [15] or Theorem 6.3
in [14]) states that the algebraic dualC(X )∗ (formally a Ba-
nach space that includes all expectation functionals) of the
mathematically concrete Banach algebraC(X ) is isomor-
phic to (and hence can be identified with) the Banach space
of all regular Borel measures on the Borel measurable space
〈X ,F 〉 associated withX .12 And far more is mathemati-
cally true. The convex spaceS

(
C(X )

)
of expectation func-

tionals on the algebraC(X ) is in a bijective correspondence
with the spaceP(X ) of all regular Borel probability measures
on the induced Borel measurable space〈X ,F 〉. Explicitly,
each probability measureP on the Borel state space〈X ,F 〉
comes with itsinducedexpectation functionalEP on C(X ),
defined by the integralEP( f ) =d f

´

X
f (x) P(dx) for all f in

C(X ), and all expectation functionals arise in this way.
Conversely, it follows at once from Gelfand and Riesz rep-

resentation theorems that for any underlying Banach algebra
A and a quantityf in it, each stateE ∈S (A) determines a
unique probability measurePE , f ∈ P

(
Val( f )

)
such that

E
(
ξ ( f )

)
=

ˆ

Val( f )
ξ (x)PE , f

(
dx

)

for all observablesξ in C
(
Val( f )

)
. Indeed, it is easy to

see that sinceA( f ) is a subalgebra ofA and isomorphic to
C

(
Val( f )

)
, there is an embeddingf ♯ : C

(
Val( f )

)
−→ A, de-

fined by the continuous functionf ♯(ξ ) =d f ξ ( f ) = ξ ◦ f̂ for
all ξ , where f̂ Gelfand-representsf along the lines discussed
in the next paragraph. This representation result is convenient
in formulating the notion of perfect measurement. By way of
illustration, takeAS to be the quantity algebra of target sys-
tem S and let f ∈ AS be its measurand. Furthermore, take

11Here the term ‘abstract’ refers to those quantity algebras which are pre-
sented in a ‘coordinate-free’ manner – needed by the engineeror scientist to
reason freely about the physical processes themselves, without invoking the
unnecessary details of any specific numerical or other measurement-theoretic
domains. However, the choice of these numerical domains is crucial in es-
tablishing a bridge between the world of numbers and the physical system’s
behavior, embodied in the representing quantity algebra andstates thereon.

12Here the measure-theoretic Borel sigma-fieldF on X is generated by
the open sets of the topological spaceX .
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©1 f ∈ AM to be the measurand’s pointer quantity in the mea-
suring instrument’s quantity algebraAM. Then a cochannel
(linear unital positive map) of the formM : AM −→ AS (to-
gether with its dualM∗) is said to represent aperfect mea-
surement of measurand f with pointer quantity©1 f provided
that Val(©1 f ) = Val( f ) andM

(
ξ (©1 f )

)
= ξ ( f ) for all con-

tinuous mapsξ : Val( f )−→R. Returning to the general case,
observe that the above-discussed passage

S (A)
BC∗f−−−−−→ P

(
Val( f )

)∼= S

(
C

(
Val( f )

))

from the abstractly given convex space of expectation func-
tionals onA to the concrete space of probability measures on
the value space of a given measurandf , defined byBC f (E ) =
PE , f , leads to an important commutative passage

S
(
AS

)
S

(
AM

)

P
(
Val( f )

)
P
(
Val(©1 f )

)

M
∗

BC∗f BC∗©1 f

M
∗
f

from a given (measurement) channelM
∗ to a Markov channel

M
∗
f between the measurand’s value space input to its pointer

quantity’s value space output. In this way, a measurement
channel can be thought of concretely as a transfer of input
probability distributions on the measurand’s values to suitable
output probability distributions on its pointer quantity values.
Such transfers are perfect if the distance between these two
probability distributions is minimal.

Joint measurement of two measurandsf andg is captured
by the commutative diagram

P
(
Val( f )

)

S
(
AS

)
P
(
Val( f )×Val(g)

)
BC∗f ,g

Pπ
BC∗f

in which for each stateE we setBC∗f ,g(E ) =d f PE , f ,g, so that
for all continuous mapsξ : Val( f )−→ R we have

E
(
ξ ( f )

)
=

ˆ

Val( f )×Val(g)
ξ (x)PE , f ,g

(
dx,dy

)

and similarly for E
(
ζ (g)

)
with ζ : Val(g) −→ R. Al-

ternatively, if we rephrase the foregoing representation
of joint measurement in a contravariant cochannel setting
BCf ,g : C

(
Val( f )×Val(g)

)
−→ AS, we obtainBCf ,g(ξ ⊗ 1) =

ξ ( f ) andBCf ,g(1⊗ζ ) = ζ (g).
Coming back to the representation of states, recall that

the extremal functionals inS ex

(
C(X )

)
are in one-to-one

and onto correspondence with the so-calledDirac probabil-
ity measures on〈X ,F 〉, i.e., probability measures of the

form Dx, concentrated at a single pointx in X such that
EDx

( f ) = f̂ (x), where f̂ : X −→ R (with Val( f̂ ) = Val( f )
and‖ f̂‖ = ‖ f‖) is theGelfand representationof quantity f ,
specified by the chosen isomorphism ˆ :A −→ C(X ). Be-
cause the set of Dirac probability measures is also in a bi-
jective correspondence with the spaceX (i.e., we have the
isomorphismS ex

(
C(X )

) ∼= X ), the traditional state space
terminology, usually reserved for spaceX alone, is consis-
tent with the one introduced earlier.13 Considerations from
Gelfand and Riesz representation results lead to the following
mathematically concrete topological representation (realiza-
tion) of the algebraic evaluation mapBC, introduced above:

C(X )×P(X )
BCX−−−−−−→ P(R),

where for ‘observable’f̂ : X −→ R (Gelfand representing
quantity f ) in C(X ) and a probability measureP (encoding
the system’s extant probabilistic state) we setBCX ( f̂ ,P) = Q
with Q(B) =d f P

(
f̂−1(B)

)
for all Borel subsets ofR. Thus,

under a specific realization of the algebraic evaluation mapBC
the numberP

(
f̂−1(B)

)
gives the probability that upon (ideal)

measurement the value of quantityf will fall into the Borel
subsetB, given that the system is known to be in a state cap-
tured by the probability measureP. It is here that the quan-
tity algebra actually makes contact with the natural system
of interest. However, as we have already intimated, the ex-
pressionP

(
f̂−1(B)

)
provides only atheoretical determina-

tion of the value of quantityf , since it says nothing about
exactly howthe determination was made. For that we need a
concrete measurement process which is described by a suit-
able tensor product of quantity algebras and its relations to
the constituent quantity algebras, independently characteriz-
ing the target system and measuring instrument. The specifics
will be discussed later on.

13Recall that in classical physics it is customary to attributetwo kinds of
states to any physical system under consideration: (i) the so-called ground-
level,pure, deterministic (maximally informative) states that are encoded by
the points of a representing compact topological spaceX (or any of its iso-
morphic copies), and (ii) the logically higher-level probabilistic states, cap-
tured by probability measures inP(X ). For example, from the standpoint
of classical physics, a falling coin used in statisticians’coin-tossing exper-
iments can certainly be viewed deterministically as a classical dynamical
system with two distinguished terminal states, corresponding to the famil-
iar headsand tails. However, since the solutions to the coin’s equations
of motion (not well known at the moment) are bound to be pathologically
sensitive to initial conditions, a deterministic prediction of, say, the coin’s
landing with heads up, is not feasible in view of prohibitivelimitations on
the experimenter’s memory, time, and other cognitive or physical resources,
encountered in attempts at specifying the coin’s initial conditions with per-
fect accuracy. Nonetheless, this macroscopic deterministicsystem exhibits
in a structurally stable way also a (logically higher-level) unique probabilis-
tic state, seen as an objective indefiniteness in its behavior, encoded by a
probability measure, whose values are approximable by the frequencies of
occurrence of heads. So, due to the extreme complexity of the coin’s deter-
ministic dynamics and states (challenging our resource-sensitive knowledge
of the coin’s precise initial state) and the inaccessible details regarding the
coin’s possible trajectories, it is incomparably more effective to work with
the coin’s probabilistic state than with its deterministicheadsandtails. The
fact that it isconceptuallypossible to eliminate the element of uncertainty
lurking in a coin-tossing experiment is of little empirical significance, if in
fact such uncertaintiy is notactuallygoing to be removed. For more details
regarding the stochastic aspects of scientific models, see [2] and [8].
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It should by now come as no surprise to the reader that
when we analytically reason about, for example, the motion
of a simple pendulum in a vertical plane, we may simply
choose the real Banach algebraA(p,v), finitely generated by
thepositionp of the pendulum’s bob and itsvelocityv (with
respective value spaces Val(p) = C and Val(v) = R)14 and
frame all pertinent kinematic problems in it. However, if
our task is tocalculateor measurethe value of the pendu-
lum’s position at a given time, we need to pass to the quan-
tity algebra’s concrete realization, namely the Banach algebra
C

(
C×R

)
of all continuous real-valued functions on the state

spaceC×R of all position-velocity pairs. Under this rep-
resentation the position is now given by the first continuous
projection map ˆp : C×R−→ C⊂ R, wherep̂(a,b) = a for
all position-velocity pairs(a,b). And, as anticipated, the sec-
ond projection ˆv : C×R−→ R captures the pendulum’s ve-
locity quantity. A prime example of a secondary quantity in
this representation is the all-important pendulum’s totalen-
ergy, i.e., the so-calledHamiltonian, specified in terms of ˆp

andv̂. Under the foregoing quantity semantics, all probabilis-
tic predictions of pendulum positions are readily handled by
the evaluation map

C
(
C×R

)
×P

(
C×R

)
BCR−−−−−→ P(R),

implemented by a suitable measurement process. Proceed-
ing a stage further, it is important to realize that since these
concrete mathematical models live in aninfinitely resourced
realm (where they can be subjected to infinitely precise math-
ematical operations), the (probability) values inR generally
demand an infinite resource (e.g., unlimited time and memory
for storage) to specify them precisely. In contrast, calculations
and measurements are performed in afinite-resourceframe-
work, with strictly finite amounts of information. To bridge
the gap between theoretical continuum dynamical models and
finitary data structures, we need to construct appropriate con-
verging families ofdiscretizeddescent or offspring dynamical
models of their continuum parent models. Details are given in
Section 3 below.

2.1.2. Von Neumann algebra approach to physical mea-
surement

In addition to real (unital, commutative) Banach algebras of
continuous quantities, we shall also make frequent reference
to von Neumann algebrasN of measurable(random) quanti-
ties, satisfying the customary algebraic closure condition

f ,g∈N & c∈ R =⇒ f +g, f •g, c· f ∈N,

interpreted in a standard way. A real (unital, commuta-
tive) von Neumann algebraN is a real (unital, commutative)

14We recall for the reader’s convenience thatC denotes the so-calledcircle
group, defined by the half-open interval[0,2π) of reals – furnished with a
cyclic group structure and topologically isomorphic to the unit circle that is
obtained by identifying 2π with 0. The standard algebraic notation for the
cyclic groupC is R/2πZ.

normed algebra that is an algebraic dual (viewed as a Banach
space) of a unique Banach spaceN∗, called the algebra’spre-
dual space, such thatN = (N∗)∗. Although the language of
von Neumann algebras closely parallels that of Banach alge-
bras, there are several subtle formal and interpretationaldif-
ferences.

We have seen that in the world of Banach algebras quanti-
ties are the primary entities and (deterministic and probabilis-
tic) states are treated via algebraic duality. In the universe of
von Neumann algebras the quantity-state duality often pro-
ceeds in the reversed direction, in the sense that this time the
quantity algebra is the unique dual of its presumed so-called
predualBanach space, involving states. Remarkably, there is
a measure-theoretic analog of the Gelfand representation re-
sult, known as the so-calledspectral theorem(see [7], sections
9.3 - 9.5 for a proof). It states that any abstractly given real
(unital, commutative) von Neumann algebraN with a normal
stateE thereon15 is isomorphic to (and hence can be identi-
fied with) the mathematically concrete von Neumann algebra
L∞(X ,F ,P) of boundedmeasurablereal-valued functions
(moduloP-probability measure zero) on a suitable classical
probability space〈X ,F ,P〉, where theessential supremum
norm‖·‖∞ of L∞(X ,F ,P) is defined by

‖ f‖∞ = inf{k > 0 | | f (x)| ≤ k for P-almost all x ∈X },

and the algebra operations are defined pointwise, inherited
from R. Furthermore, under the chosen isomorphism ˆ :
N −→ L∞(X ,F ,P) the expectation functional is given by
E ( f ) =

´

X
f̂ (x)P(dx) for all measurablequantities f in N

with ‖ f‖∞ < ∞. The spectral theorem provides a concrete
mathematical semantics for abstractly conceived measurable
(random) quantities and conversely, it shows how classical
probability spaces are algebraically encodable by von Neu-
mann algebras of quantities, equipped with normal states.
(For technical details, see [12], Chapter 1, page 45.)

In addition to a concrete representation of mea-
surable quantities, there is also a concrete repre-
sentation of states. Specifically, the Banach space
L1(X ,F ,P) = L∞(X ,F ,P)∗ of all P-integrable func-
tions on〈X ,F ,P〉 is the predual ofL∞(X ,F ,P), so that
we haveL1(X ,F ,P)∗ = L∞(X ,F ,P). Importantly, the
subsetS

(
L1(X ,F ,P)

)
=d f {p∈ L1(X ,F ,P) | p≥ 0 &

‖p‖ = 1} of probabilistic states is actually the convex space
of all density functionson 〈X ,F ,P〉.16

Unlike Banach algebras (convenient for smooth and con-
tinuous quantities), von Neumann algebras tend to have many
idempotent(two-valued, projection) quantitiesf satisfying
f • f = f (forming, roughly speaking, a Boolean sigma alge-
bra under the partial ordering4, defined by f 4 f ′ if and

15A stateE on N is said to benormal provided that for every increasing
sequencef1, f2, · · · of positive random quantities converging tof in N we
have limnE ( fn) = E ( f ). Normalcy is a technical counterpart of the countable
additivity property of probability measures.

16We mention in passing thatL∞(X ,F ,P) can also be obtained from the
Banach algebraC(X ) of continuous real-valued functions onX by com-
pletion under the so-called weak topology. For a detailed account of von
Neumann algebras see [12].
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only iff f • f ′ = f for all quantitiesf and f ′), and are blessed
with excellent convergence properties. For example, in the
Banach algebraC([0,1]) of continuous real-valued functions
on the closed unit interval[0,1] there are onlytwo continu-
ous idempotent (projection) quantities, namely, theconstant
quantitiesk0,k1 : [0,1] −→ R, defined byk0(x) = 0 and
k1(x) = 1 for all x, respectively. In sharp contrast, the char-
acteristic function 1B : X −→ R of each Borel measurable
subsetB ⊆ X of any compact Hausdorff spaceX is au-
tomatically an idempotent (two-valued) quantity in the von
Neumann algebraL∞(X ,F ,P), playing the role of events in
the sense of Kolmogorov. In particular, the expected value
P
(

f̂−1(B)
)

= EP
(
1 f̂−1(B)

)
is the probability that the value of

quantity f lies in the real Borel setB, when the system is
in a state encoded byEP.17 Since the algebraL∞(X ,F ,P)
contains only measurable functions, modulo probability mea-
sureP zero, it can be generated by the set of characteristic
functions 1B of measurable subsetsB⊆X . (Any measurable
quantity can be approximated arbitrarily well by a suitable
linear combination of characteristic functions.)

It is time for an example. Along Newtonian lines, consider
a quantity algebra for the kinematic behavior of a simple pen-
dulum, swinging in a vertical plane. Earlier we mentioned that
the correct quantity algebra for this target system is givenby
the Banach algebraC

(
C×R

)
continuous real-valued func-

tions of the form f : C×R −→ R. The operations are de-
fined pointwise and the norm of a quantity is the supremum
of its absolute values. The points ofC×R encode the pendu-
lum’s deterministic states (classically, in terms of its instan-
taneouspositionandvelocityvalues), and each Borel proba-
bility measureP thereon specifies a probabilistic stateEP in
S

(
C(C×R)

)
via the expectation integralEP( f ) =

´

C×R
f dP

for all quantitiesf .
In a von Neumann algebra setting the pendulum’s algebra

of measurable quantities is given by the concrete von Neu-
mann algebraL∞(C×R,F ,Λ) of boundedΛ-measurable
real-valued functions onC×R, where the relativizing de-
fault measure is the Lebesgue measureΛ. Here again, the
operations are defined pointwise and the norm is the earlier-
introduced essential supremum norm. The predual Banach
space

L1(X ,F ,Λ) = L∞(C×R,F ,Λ)∗

of absolutely integrable functions contains all probability den-
sity functions onC× R, comprising the convex subspace
S

(
L1(X ,F ,Λ)

)
of probabilistic states. Note that in this

formalism the probabilistic states are conveniently encoded
by probability density functions. And as above, the pendu-
lum’s position and velocity quantities are given by the mea-
surable projections on the probability space〈C×R,F ,Λ〉.

Now we come to quantity algebras representing measuring
instruments. Earlier we noted that in general it is not pos-
sible to obtain quantitative information about the target sys-
tem’s extant state without a physical interaction between the

17As common in probability theory, here as well as in what follows, the
expression 1S denotes the characteristic function (indicator) of the setS.

system and a measuring instrument, chosen for the measur-
and. In attempts at modeling the measurand’s measuring in-
strument we assume that in addition to several constituents
(e.g., sensor, transducer, and processors), the instrument has
a pointer (or some other display) module that moves during
the measurement process along a calibrated scale in such a
way that different pointer positions on the scale correspond
to different measurement outcomes. More particularly, there
are two principal ways of modeling a measuring instrument.
The first of these treats the instrument as an ordinary natu-
ral system, so that its characterizing quantities can be mea-
sured by other measuring instruments. Second, in the context
of measurement involving the instrument under consideration
we use a representation that focuses primarily on the instru-
ment’s pointer module, display of measurement results, anda
statistical treatment of measurement errors.

For most practical purposes, then, even though a measur-
ing instrumentM( f ) (designed to measure quantityf ) comes
with its own theoretical quantity algebraAM( f ) that com-
pletely characterizes the instrument’s physical structure and
behavior (important in explaining how the instrument works),
for the sake of simplified analysis of a given measurement
process we shall assume that the instrument’sworkingquan-
tity algebraA(©1 f ) is specified more modestly by the mea-
surand’spointer (output) quantity©1 f , whose values (thanks
to calibration) provide quantitative information about the ob-
jective values of measurandf . Abstractly, the instrument’s
pointer (e.g., a needle) can be thought of as a particle mov-
ing continuously in one dimension only (e.g., on a half circle)
and its other degrees of freedom are simply ignored. This is
a theoretical view of classical measuring instruments. How-
ever, due to the instrument’s limited sensitivity, discrimina-
tion, accuracy, finitary resources, and external noise, theac-
tual position information provided by the pointer quantity©1 f
about its measurandf is bound to be only partial and un-
reliable in general. Characteristically, normal measurement
outcomes are small intervals containing the pointer quantity’s
values. For example, suppose the experimenter reads the dial
(or digital display) of the measuring instrumentM( f ) and re-
ports that the value of©1 f (in some given units) is 3.450.
What this means is that the pointer quantity’s actual value lies
in the interval[3.4495,3.4505], providing only anestimateof
the objective value of measurandf . In Section 3 we shall
be discussing several related problems from the standpointof
discretizationof quantities and their algebras.

Having introduced the quantity algebras for measuring in-
struments we will be using later on, we now briefly mention
the formal description of their (deterministic and probabilis-
tic) states. In the case of continuous quantities, we may set
the model of the instrument’s pointer module (for measurand
f ) to be the Banach algebraC

(
Val(©1 f )

)
of (bounded) con-

tinuous real-valued functions on the value space Val(©1 f ),
viewed as the pointer’s underlying state space. In this way,
we have access not only to the measurand’s internal pointer
quantity1f : Val(©1 f ) −→ R (defined by the subspace inclu-
sion1f (x) = x for all x), but also to all continuous functions
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defined on its set Val(©1 f ) of measurement outcomes. As an-
ticipated, probabilistic states are encoded by expectation func-

tionals inS

(
C

(
Val(©1 f )

))
.18

In the ambience of measurable quantities, the instrument’s
pointer module for measurandf is conveniently modeled by
the von Neumann algebraL∞

(
Val(©1 f ),F ,Λ

)
of all bounded

measurable real-valued functions on the pointer quantity’s
value space Val(©1 f ), equipped with the Lebesgue measure.
As we have already indicated, probabilistic states are usually
encoded by density functions on Val(©1 f ). We break off our
discussion of quantity algebras and their states, since we have
gone far enough to show how they work. We now turn to the
discussion of (prediction and measurement)data latticesof
quantities.

2.2. Data lattices of quantity algebras

In this subsection we embark on a brief study of quantities
in terms of their data lattices. Although this is not always
made fully explicit in the literature on classical measurement
theory, in parallel with the assignment of a minimal quantity
algebraAS to a target systemS there is also an association
of a data lattice– symbolized byLS, intended for express-
ing various claims about quantities possessed byS in terms
of their values19 and designed for reasoning about the target
system’s instantaneous continuous or measurablefeaturesand
estimates thereof. Data lattices come in three basic flavors: (i)
equational, (ii) comparative, and (iii) probabilistic.

In the simplest deterministic and most idealized situation,
there is a consideration of an elementaryequational evalua-
tion mapping≏: AS×R−→LS that assigns to each quantity-
magnitude pair( f ,c) a uniqueelementaryproposition (writ-
ten in an infix form) f ≏ c.20 Its physical meaning under the
classicalrealist interpretation is as follows: Quantityf has an
objective value and that value is equal toc at a given instant
of time.21 We mention in passing that reasoning about quan-

18Here we would like to emphasize again that in general these so-called
theoreticalmodels of quantities and states assume that the underlying do-
mains are continua (i.e., they are locally homeomorphic to the real line). Yet
all measurement outcomes are known to be relatively small discrete ratio-
nal numbers or histograms constructed from simple relative frequencies. The
recurring point is that for reasons of effective mathematicaltractability, theo-
retical models are bound to be far more idealized than warranted by the actual
resource-sensitive physical situation they purport to represent.

19Remember that quantities are assumed to be instantiated by the target
system in distinguishable degrees or amounts, expressible by numbers in
some units, comprising their value space.

20Since propositionf ≏ c is logically equivalent tof −c ·1 ≏ 0, formally
it is sufficient to consider only equational propositions ofthe form f ≏ 0,
satisfying the equivalence( f ≏ 0∨g ≏ 0) ⇐⇒ f •g ≏ 0 for all quantitiesf
andg.

21Here we wish to emphasize that in classical physics the realist position
is that quantities possess theirvaluesindependently of whether or not they
are measured. Furthermore, quantities possess their empirical meaninginde-
pendently of the measurement methods which may be available for them. In
contrast, someempiricistsinterpret propositions of the formf ≏ c in a consid-
erably weaker counterfactual manner thusly: If quantityf were measured by
a designated measuring instrumentM( f ), then the measurement result would
bec. For us, if f were measured by a designated instrument, then in general
the measurement result provided by the pointer quantity©1 f of f would only

tities and their values in the data latticeLS requires several
logical and algebraic rules that – bearing in mind space limi-
tations – we do not list. Although we shall continue to work
in a Banach algebra framework, obviously, the assignment of
data propositions to quantity algebras works equally well also
in the context of von Neumann algebras.

At this point we are interested in knowing when is an ele-
mentary data proposition of the formf ≏ c true? In classical
measurement such data propositions (serving as units of pre-
dictive or measurement information) and their logical com-
binations describe certain instantaneous features of the target
system that are either possessed or not possessed by the sys-
tem, depending onhow the system is, independently of any
measurement or experimenter. In this way, the system’s (de-
terministic) state becomes essential in specifying whether or
not the foregoing data proposition is true. Explicitly, thestate
spaceXS of the quantity algebraAS (determined uniquely by
the Gelfand representation to within a homeomorphism) pro-
vides an effectiverealist semanticsfor all propositions about
quantities in the associated data latticeLS. It is easily estab-
lished that each deterministic statex ∈XS assigns to propo-
sition ‘ f ≏ c’ a unique truth value. Concretely, proposition
‘ f ≏ c’ is said to betrue about quantityf (and the content
of what it signifies is actualized by the target system) in state
x exactly whenf̂ (x) = c, where f̂ : X −→ R is the Gelfand
‘observable’ representingf . Evidently, the truth value of a
complex data proposition is a logical combination of truth val-
ues of its simple constituents. Formally, the topological state-
space semantics of propositionf ≏ c is given by the (closed
or measurable) subset

J f ≏ cK=d f
{
x ∈X

∣∣ f̂ (x) = c
}

of those states in which the representing ‘observable’ of quan-
tity f takes the valuec. Thus, we have specified a semantic
valuation map

J·K : LS −→ SubXS

from the target system’s data lattice to the concrete lattice of
subsets ofXS. Here the technical details depend on whether
f̂ is assumed to be continuous or measurable. For example,
in the von Neumann algebra framework of measurable quan-
tities, the logic ofLS is Boolean. However, since in the case
of continuous quantities the setJ f ≏ cK= {x∈X | f̂ (x) = c}
is aclosedsubset of the compact Hausdorff topological space
XS, the resulting lattice is Brouwerian. In general, data lat-
tices mirror the underlying geometric structure of their state
spaces. Because in a von Neumann algebra setting the charac-
teristic function 1J f≏cK is automatically a two-valued (idem-
potent) measurable quantity (with 1J f≏cK(x) = 1 if f̂ (x) = c,
and 0 otherwise), the expectationE

(
1J f≏cK

)
gives the proba-

be anestimateor anapproximationof c. These two diametrically opposing
interpretations are particularly significant in the theoryof quantum measure-
ment. In general, the actual value of a quantity at a given time –assumed to
exist from the perspective ofAS – cannot be known exactly. Quantum effects
may even prevent the existence of such a value. However, various approxi-
mationsof this idealized value are presumed to be known or knowable.
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bility PE

(
f ≏ c

)
that quantityf has the valuec, given that the

system is in a state encoded byE .22

One major disadvantage of equational data propositions is
that in view of various resource limitations, in general experi-
menters cannot know the exact values of quantities. However,
in the case ofcomparativepropositions of the formf ⋖ c –
expressing the fact that quantityf ∈ AS has a value and that
value is strictly smaller thanc – things are rather better. In par-
ticular, compound data propositions of the forma⋖ f ⋖b lead
to an important interval calculus for the treatment of quantity
values. Since the state-space semantics proceeds on the same
line of reasoning as in the case of equational propositions,it
seems unnecessary to go through the details. Measurement
outcomes encoded by data propositions of the form©1 f ≏ c
provide complete information about the value of measurand
f at a given time. However, most measurements extract only
partial information about the measurand, discussed below.

A considerably more general and less idealized class of
propositions is based on amembershipmappingA: AS ×
BR −→L

′
S that assigns to each quantityf and a Borel mea-

surable subsetB of the real lineR the propositionf A B, writ-
ten once again in an infix form. Its intended physical meaning
under the realist interpretation is the following: Quantity f
has an objective value and that value lies in the real Borel
subsetB.23 Reasoning about quantities and their values in
the extendedBorel data latticeL ′

S requires additional logi-
cal and algebraic rules we do not list. Regarding semantics,
a proposition ‘f A B’ is said to betrue about quantityf (and
its corresponding state of affairs is realized in the targetsys-
tem) in statex ∈X provided thatf̂ (x) ∈ B. In general, the
state-space semantics of a data propositionf A B is given by
the subset

J f A BK=d f
{
x ∈X

∣∣ f̂ (x) ∈ B
}

= f̂−1(B)

of those states in which the associated observable of quantity
f takes values belonging toB. Thus, we have now specified a
new semantical valuation mapJ·K : L

′
S −→ SubXS from the

target system’s extended data lattice to the concrete Borelor
Brouwer algebra of subsets ofXS.

Since physical measurements are regularly subjected to un-
certainties and randomness, results of measurement are fre-
quently represented in terms ofprobabilistic propositions of
the formE

(
1J fABK

)
= p or PE

(
f A B

)
= p, stating that the

value of quantityf lies in the real Borel subsetB with proba-
bility p, given that the system is in stateE . As we have seen,
the probability measurePE on X is obtained by a concrete
representation of the expectation functionalE in S (AS), us-
ing Riesz representation result.

We now know that each quantity algebraA comes with
its associated (equational or Borel) data latticeLA, endowed

22We mention in passing that we also have thealgebraic semanticsof
propositions, given by the subsetJ f ≏ cKalg =d f {E ∈S ex(A)| E ( f ) = c} of
extremal functionals. However, in view of Gelfand representation, the differ-
ence between the algebraic and topological semantics is largely conceptual.

23In applications, instead of using arbitrary Borel subsets,it is sufficient to
use only open (or closed) intervals with rational end-points.

with a convenient logic to reason about quantity values.24

An equational data lattice of propositions represents the tar-
get system’s actual or potential instantaneous measurablefea-
tures. The association of equational propositions with quanti-
ties is illustrated in Figure 1 below:

f •
• g

A

f≏a
g≏b

LA

Fig. 1 Data lattice of quantity algebras

Before leaving this subsection, we make a quick remark
about the relevance of data lattices in von Neumann alge-
bra settings. Because each proposition of the forma⋖ f ⋖ b
(and its Borel subset generalizations involving a measurable
quantity f ) canonically transforms into a two-valued quan-
tity 1Ja⋖ f ⋖bK that receives value 1 just in case the value off
lies strictly between the realsa < b, and 0 otherwise, we can
also think of the indicator 1 :L′S −→ NS as an embedding
function that maps data propositions to two-valued (idempo-
tent, projection) quantities of the von Neumann algebraNS .
In particular,E

(
1Ja⋖ f ⋖bK

)
is equal to the probability that the

objective value of quantityf lies in the open interval(a,b),
given that the system is in stateE . Seen in this light, the inti-
mate relationship between quantity algebras and data lattices
goes even deeper. By analogy with channels and cochannels
between von Neumann (Banach) algebras, there are Boolean
(Brouwer) channels between data lattices, traceable to the
two-valued evaluation mapBC : LS×XS −→ {0,1}, defined
byBC

(
f ≏ c,x

)
= 1 if f̂ (x) = c and 0 otherwise.

2.3. An example of a static length measurement with error

We now have at our disposal several concepts and methods of
characterizing simple measurement processes and their out-
comes in algebraic settings. In this subsection we present an
elementary example of a classical, comparison-based,static
measurement of length, involving deterministic (systematic)
and probabilistic (random) measurement error.

Suppose we want to measure the length of a flagpole (or
that of a medium-size straight rod, and so forth), using a yard-
stick or a tape measure, marked with carefully calibrated uni-
form subdivisions in inches, centimeters, or in some other

24As usual in logic, themeetoperation in the data lattice corresponds to
conjunction and thejoin operation refers to disjunction of propositions. It is
not difficult to see that the false sentence1 ≏ 0 specifies the bottom element
⊥ and the true sentence1≏ 1 determines the top element⊤ of the equational
data lattice. It is well known that in classical physics datalattices carry the
structure of a Boolean algebra or that of a Brouwer algebra, whereas in quan-
tum physics the lattice structure is only weakly modular, orthocomplemented,
and decisively nondistributive.
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units of the length dimension. Obviously, the target natu-
ral system instantiates several geometric, thermodynamical
and other quantities, including length, diameter, temperature,
and so on, but we shall focus only on the flagpole’s length
quantityℓ with its value space defined (for concreteness) by
Val(ℓ) = [0,L].25 Continuing in the spirit of the previous sub-
sections, it may be natural to assume that in view of continu-
ity being an important regulative principle for reasoning about
length, flagpole length measurements should be modeled by
the Banach algebraA(ℓ) ∼= C

(
Val(ℓ)

)
generated byℓ, and

we may want to proceed similarly in modeling the yardstick.
This approach is adequate in the context ofstatic determin-
istic measurement. However, since any mathematical model
of length measurement with random error and uncertainty in
the measurement outcomes will have to account for the inher-
ent element ofrandomnessin order to be adequate, we find
it more appropriate to represent the target system by the von
Neumann algebraN(ℓ), generated by quantityℓ and Riesz-
isomorphic to a concrete algebraL∞([0,L],F ,P), whereℓ is
now regarded as a real-valued random variable with a prob-
ability distribution P.26 It should be noted that in measur-
ing lengthℓ, the quantity algebraN(ℓ) automatically extends
its measurement results also to squaresℓ•ℓ (built from flag-
poles), cubesℓ•ℓ•ℓ, and a host of other systems that instan-
tiate quantities definable in terms ofℓ. In a deterministic sit-
uation it is standard to assume that the flagpole has a defi-
nite (albeit unknown) length, sayℓ ≏ λ , and therefore its state
(relative to the representing algebraN(ℓ)∼= L∞([0,L],F ,P))
is captured by the maximally informative Dirac probability
measureDλ on [0,L], giving Dλ

(
Jℓ ≏ cK

)
= 1, if c = λ , and

0 otherwise. However, in view of our interest in measure-
ment error, we wish to consider epistemically less idealized
situations in which the flagpole’s actual length is described
nondeterministically by a probabilistic state that is different
from Dirac probability distributions.

In measuring the flagpole’s length using a yardstick, gen-
erally it is impossible to determine the exact length value for
at least two simple reasons: (i) the scale of the yardstick is
known to have a limited resolution and accuracy, specified by
finitely spaced marks and less-than superbly calibrated sub-
division, and (ii) stepping off the yardstick against the flag-
pole usually involves small length disparities in its imperfect
placements alongside the flagpole, misjudgments of tiny frac-
tions of length on the scale, and parallax errors in outcome

25The upper boundL of the closed real interval[0,L] of possible length
values can be set to exceed the lengths of all possible real-world flagpoles or
it can simply be the Hubble length, specified by the size of the observable
universe.

26This algebraic model seems reasonable, since at any given time the flag-
pole’s actual length is subtly determined also by fluctuatingtemperature,
pressure and other changes in the flagpole’s material composition and its
environment – not to mention randomness stemming from the measurement
procedure itself. We mention in passing that our treatment of length measure-
ment carries over, with only notational changes, also to mass measurement on
a chemical balance with a calibrated pointer system, volume measurement of
liquids using a graduated measuring cup, and so forth. And of course, the
measurement model is meant to apply to any and therefore all flagpoles or
rods.

reading. We cast all this in the framework of an associated
randompointer quantity ℓε with its finite value space de-
fined (for example) by Val(ℓε) = εN∩ [0,L], where the set
εN = {0,ε,2ε, · · ·} is comprised of integer multiples of a
fixed unit lengthε, say, one inch, chosen by the measurer. In-
tuitively, the yardstick-based measurement process will round
off the flagpole’s actual length to that integer multiple of
the chosen unit which isclosestto it. Naturally, yardsticks
marked off in smaller length unitsε will provide appropri-
ately more accurate measurement results, but of course they
will not be brought into a one-to-one correspondence with the
possible lengths in[0,L].

For future technical needs, let⌈λ⌉ be the integer part
of real numberλ , so that we haveλ − 1 < ⌈λ⌉ ≤ λ and
λ −⌈λ⌉ is the fractional part ofλ . We now have at our dis-
posal a natural (generally nonlinear) projectiveround-offmap

ℜε : [0,L]−→ [0,L]ε , defined byℜε(λ ) =d f

⌈
λ
ε + 1

2

⌉
·ε, that

will play a crucial role in our study of discretization in Sec-
tion 3. The term is aptly chosen, sinceℜε literally rounds
off a given length (specified by a real number) to the integer
multiple ofε that is numerically closest to it. We also have an
accompanyingembeddingmapℑε : [0,L]ε −→ [0,L] such that[
ℜε ◦ℑε

]
(k ·ε) = ℜε(k ·ε) = k ·ε and

[
ℑε ◦ℜε

]
(λ )≤ λ + 1

2
for all λ . Finally, note thatℜε(2k · ε + 1

2) = (k+1) · ε.
Just as in the case of the flagpole’s length quantity, so too it

is appropriate to model the measuring instrument and associ-
ated comparison-based measurement process by the von Neu-
mann algebraN(ℓε), generated byℓε and Riesz-isomorphic
to L∞([0,L]ε),F ε ,Pε), wherePε is reserved for a probability
distribution of error-laden measurement outcomes that is es-
timated from a sequence of independently repeated measure-
ments.

From our brief remarks above it follows that in the most
common deterministic case, length measurement with a yard-
stick will display the round-off value (i.e., the nearest integer
multiple of the chosen measurement unitε > 0) ℜε(λ ), given
that the flagpole’s actual length isλ . In the language of data
propositions this can be summarized by the conditional

ℓ ≏ λ =⇒ ℓε ≏ ℜε(λ ).

We have already emphasized that states (encoded by expec-
tation functionals) are essential in determining the values of
quantities. Accordingly, adeterministic measurementof the
flagpole’s length quantityℓ with the yardstick’s pointer quan-
tity ℓε is specified by a projective deterministic state channel

S
(
L∞([0,L],F ,P)

) M
∗

−−−−−→S
(
L∞([0,L]ε ,F ε ,Pε)

)
,

satisfyingM
∗(EDλ ) = EDℜε (λ )

for all λ in [0,L], where (fol-
lowing Riesz representation)M∗(EDλ ) is the extremal linear
functional specified by the Dirac probability measureDλ . For
all practical purposes the foregoing state channel abstractly
captures a trivial fact, namely, that in measuring the length
of a flagpole using a yardstick, we shall generally obtain an
outcome that is onlyapproximatelyequal to the flagpole’s ac-
tual length, with an error less thanε units. This implies, again
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trivially, that in view of the yardstick’s limited accuracy, static
deterministic measurement will classify different flagpoles as
equally long and henceepistemically equivalent, given that
their round-off values are detected as equal. Thisunderdeter-
minationof the flagpole’s real length is encoded by the state
channel’s projective (onto) property.

Now, if we change our point of view somewhat and switch
to the dual quantity channel (cochannel) representation, spec-
ified by the deterministic measurement model

L∞([0,L]ε ,F ε ,Pε)
M−−−−−→ L∞([0,L],F ,P),

whereM is now a von Neumann algebra embedding, obtained
from ℜε and specified by the step functionM(ℓε) = ℓ̂ with
ℓ̂(λ ) = k·ε, if ε

2 ·(2k−1)≤ λ < ε
2 ·(2k+1) for all k≥ 1, and

ℓ̂(λ ) = 0 for λ < 1
2, we obtain a recipe for thereconstruction

of ℓ in terms ofℓ̂ from measurement data. The graphs ofℓ and
ℓ̂ are given in Figure 2 below.

0

1

2

3

4

0 1 2 3 4 λ · ε

ℓ(λ ), ℓ̂(λ )

Fig. 2 Step function approximation of the actual length
quantity

We see that̂ℓ is the bestestimatorfor the flagpole’s length
quantityℓ, based on the measuring instrument’s pointer quan-
tity ℓε . In addition, note that̂ℓ is discontinuous at points with
maximal error. However, in view of the measurement error
(maximal bias) specified by‖M(ℓε)− ℓ‖= 1

2ε, the measure-
ment model under consideration is not able to reconstructℓ
from its pointer quantityℓε with perfect accuracy. Referring
again to Figure 2, what this means is that the pointer quan-
tity ℓε by itself provides only an inexact knowledge of the
flagpole’s actual length. And this brings up another point.
Even though the cochannelM does not specify an unbiased
measurement model ofℓ, in view of M(ℓε) = ℓ± ε ′ with
0 ≤ ε ′ ≤ 1

2, it is close enough to being unbiased, so thatℓ̂
can still be used as a reliablereconstructionof measurandℓ.
In this way the cochannelM – in its role of a measurement
model – offers an optimal reconstruction of the measurand,
relative to the chosen pointer quantity.

At this stage the reader may feel that our treatment of
length measurement has tended to be simple and its techni-
cal part ended up being somewhat of an algebraic overkill.

It should be aparent by now that the example we discussed
above was meant to illustrate static measurement of a deter-
ministic variety that we believe helps the reader to become
aware of a large variety of modeling options. There is a gen-
eral scheme for length measurement that includes the mea-
surement model we have chosen above. We will pause only
to present a variant of such a scheme and will not explore
the details further, since they properly belong to Section 4.
First, heuristically speaking, Dirac probability measures can
alternatively be viewed from the perspective of a measurable
mapping of the formD : [0,L] −→ Pex

(
[0,L]ε

)
⊂ P

(
[0,L]ε

)

that assigns to each length valueλ a unique Dirac proba-
bility measureDλ on [0,L]ε . Secondly, it is then natural to
consider more general measurable mappings of the formT :
[0,L]−→P

(
[0,L]ε

)
, calledtransition probabilitiesor Markov

kernels, that map each length valueλ to a unique probabil-
ity measureTλ on [0,L]ε . For example, we may specifyTλ
by stipulating thatTλ

(
ℓε ≏ ℜε(λ )

)
= p with 1 > p > 0.75,

Tλ
(
ℓε ≏ ℜε(λ )− ε

)
= Tλ

(
ℓε ≏ ℜε(λ )+ ε

)
= 1−p

2 , and zero
otherwise. The basic idea behind the transition probability
Tλ is that, intuitively speaking, the probability of getting the
measurement outcomeℜε(λ ) is quite high (above 75%) but
not certain, since the result could be different fromℜε(λ ) on
both sides in the amount of±ε with the remaining probabil-
ities 1−p

2 and 1−p
2 , respectively, and zero otherwise. Last but

not least, in modeling length measurement with error we as-
sume that the target system is in an unknown state encoded
by a probability measureP ∈ P([0,L]) that is mapped to the
probabilistic stateM∗(P) ∈ P([0,L]ε), defined by

[
M
∗(P)

]
(E) =

ˆ

[0,L]
Tλ (E)P(dλ )

for all eventsE in F ε , whereTλ denotes the discrete proba-
bility distribution on possible measurement outcomes, given
that the flagpole’s actual length isλ . In general, the transi-
tion probability Tλ models the ‘noise’ or uncertainty in the
readings of measurement. In the dual algebraic setting, the
cochannel counterpart

M : L∞([0,L]ε ,F ε ,Pε)−−−→ L∞([0,L],F ,P),

defined byM(ℓε) = ℓ̂ with ℓ̂(λ ) = ∑l∈[0,L]ε ℓε(l) ·Tλ ({l}) for
all λ , models the measurand’s reconstruction with a statistical
error, using the pointer quantityℓε . SinceTλ ({l}) denotes the
probability that the flagpole’s objective lengthλ is measured
by the yardstick inε unitsas lengthl , in general the measure-
ment error (bias) can be arbitrarily large. However, if the tran-
sition probabilityT is such thatTλ ({l}) = 1 for ℜε(λ ) = l and
0 otherwise, then we obtain the earlier discussed deterministic
case.

Another concept that plays an important role in our study
of length measurement is that of acomparison of measure-
ment methods. Suppose we have two yardsticks or more gen-
erally two different ways of measuring the flagpole’s length.
The first of these iscoarser, using a measurement unitε in,
say, centimeters, and the second method isfiner, with a mea-
surement unitε ′ in millimeters, so that we haveε ′ < ε. The
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commutative diagram below shows the projective (onto) re-
lationships between theparentvalue space[0,L] and its two
descentdiscretized value spaces.

[0,L]

[0,L]ε ′ [0,L]ε

ℜε ′ ℜε

ℜε ′,ε

We can readily see thatℜε ′,ε
(
ℜε ′(λ )

)
= ℜε(λ ) holds for all

λ . It is of interest to consider the cochannel representationsM

andM
′ of measurements of measurandℓ with the respective

pointer quantitiesℓε andℓ′ε of unequal accuracy, shown in the
commutative diagram below:

N(ℓε) N(ℓε ′)

N(ℓ)

M
′M

R

In the diagram above, the connecting mapR handles the re-
finement relationship between two different methods of mea-
surement. Obviously, the discrete steps of the estimatorℓ̂′,
specified by measurementM

′, are smaller and therefore closer
to ℓ, than those of̂ℓ, determined by the cochannelM.

Having developed a general algebraic approach to static
length measurement, we can now ask: What happens to length
measurement in the limit, when increasingly more refined
yardsticks are used with smaller and smaller measurement
unitsε, ad infinitum? For example, suppose we setεn = 1

10n

with n≥ 1 to specify a sequence of pointer quantitiesℓ1, ℓ2, . . .
with respective round-off accuracies110, 1

100, . . ., given (say)
in decimal fractions of a centimeter. In this way we ob-
tain a corresponding sequenceM1,M2, . . . of deterministic
measurement models for measuringℓ with increasingly finer
pointer quantitiesℓn, as displayed in the direct limit diagram
below.27

N(ℓ1) N(ℓ2) · · · N(ℓ∞)

N(ℓ)

M1 M2 ··· M∞

M12 M2• M•∞

Since von Neumann algebras of random quantities possess ex-
cellent convergence properties, the measurement model repre-
senting the measurement ofℓ with the limit pointer quantity
ℓ∞ = limnℓn is perfect. Suffice it to say, in summary, that
a foundationally important classical criterion for judging the
worth of an estimator̂ℓ for measurandℓ is to consider the

27It must be noted that the analysis presented here is based on the ideal-
izations of classical physics. The so-called Planck lengthof 1.616· 10−33

centimeters renders the quantum mechanical interpretation of the direct limit
of the foregoing sequence of discrete quantity algebras meaningless.

limit of a nested sequence of estimators as their measurement
errors go to zero.

Next, we focus our attention on tensor products of quantity
algebras, crucial in the treatment of measurement coupling
between target systems and measuring instruments.

2.4. Tensor products of quantity algebras and compound
systems

Since dynamical measurement of a quantityf – realized in a
natural systemS we wish to study – is based on a physical in-
teraction between the quantity-bearing system and a measur-
ing instrumentM( f ) designed to measuref , understanding of
the physics of the measurement process under consideration
requires a correct mathematical representation of the compos-
ite system, henceforth denoted byS+M( f ). In this subsec-
tion we briefly review the pertinent tensor product machinery.

Suppose we have a natural systemS and a measuring instru-
mentM( f ), chosen to measure quantityf instantiated byS.
Let AS andAM( f ) be the respective Banach algebras describ-
ing the target system and instrument forf . It is well known
(see, for example [1]) that thecompoundsystemS + M( f ),
including S andM( f ) as its well-defined subsystems which
physically interact with each other for a certain period of time,
obeys the fundamentalcompositionlaw

AS+M( f )
∼= AS ⊗ AM( f ),

stating that the quantity algebra associated with the‘system
+ instrument’ compound systemS + M( f ) is isomorphic to
the (projective) tensor product28 of the respective algebras
of constituent systems. In the algebra isomorphism above, a
quantityu of systemS is identified with the quantityu⊗1 of
the compound systemS+M( f ), and likewise a quantityv of
M( f ) is identified with1⊗v. For example, since a measurand
f and its pointer quantity©1 f tend to belong to different al-
gebras, thetheoretical errorquantity is conveniently defined
by their differencef ⊗ 1− 1⊗ ©1 f that employs the tensor
product.29

28Here there are only two things that we need to know about tensor prod-
ucts of quantity algebras. The first is thetensor calculusof quantities. Sim-
ply, if ( fi) and (g j ) are bases of algebrasA andB, respectively, then the
family ( fi ⊗ g j ) of simple tensor products is a basis of the tensor prod-
uct algebraA⊗B, where⊗ : A×B −→ A⊗B is a bilinear map that
sends each pair( f ,g) in the Cartesian product quantity algebra to the sim-
ple tensor quantityf ⊗g. Distributivity laws( f +g)⊗h = ( f ⊗h)+(g⊗h)
and h⊗ ( f + g) = (h⊗ f ) + (h⊗ g) together with the associativity prop-
erty c · ( f ⊗ g) = (c · f )⊗ g = f ⊗ (c · g) automatically hold for all quanti-
ties in the tensor product algebra. In addition, we have( f ⊗g)•( f ′⊗g′) =
( f • f ′)⊗ (g•g′) for all quantitiesf , f ′ ∈ A andg,g′ ∈B. The second fact
to know about tensor products is theiruniversalproperty. Concretely, tensor
products are specifically designed to turnbilinear mapsthat do not belong
to the category of Banach algebras into legitimate Banach algebra homomor-
phisms. The empirical justification of tensor products of quantity algebras in
algebraic-analytic measurement theory is based on their natural one-to-one
correspondence with the Cartesian product of their representing state spaces.

29Recall again that symbol1 denotes theunit of the constituent algebras,
encoding the uninformative quantity, having a constant value equal to 1. In
this manner, the algebras of constituent systems can also be seen as indepen-
dent subalgebras of their tensor product algebra. As may be expected, subal-
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From the point of view of physics, instrument-based dy-
namical measurement of a target system’s measurand involves
(i) a measurement couplingrepresented by the tensor product
of the target system’s quantity algebra and the algebra of the
measurand’s designated measuring instrument, (ii) joint dy-
namics thereon, and (iii) interconnection laws between them.
It is important to bear in mind that by necessity or by choice,
in general not all quantities inAS are suitable for instanta-
neous measurement, and those that are selected for measure-
ment, are seldom measurable directly. In view of a limited
set of feasible measurands and their indirect measurements,
real-world measurement procedures are bound to provide only
partial information about their target systems. What is of par-
ticular measurement-theoretic interest here is aninformation-
ally completesubset of measurands. Such subsets completely
characterize the measurands’ target system at any given in-
stant of time.

Besides tensoring quantity algebras, we must also tensor
their (deterministic and probabilistic) state spaces. Suppose
we are given expectation functionalsE andE f (representing
states) on algebrasAS andAM( f ), respectively. Then there is a
unique tensor expectation functionalE ⊗E f on the tensor al-
gebraAS ⊗ AM( f ), defined by[E ⊗E f ](u⊗v) = E (u) ·E f (v)
for all u in AS andv in AM( f ). The probabilistic state repre-
sented by the expectation functionalE ⊗E f is appropriately
called the (affine)tensor productof states represented byE
andE f . The (affine) tensor product of states which we have
just described can be formulated in the abstract setting of the
following commutative diagram:

S (AS)×S (AM( f ))

S (AS)⊗S (AM( f )) S
(
AS ⊗ AM( f )

)

⊗ ̥

̥′

Closely paralleling tensor products of algebras, for everybi-
affine mapping̥ (possesses the affine property in both argu-
ments) of states there exists a unique affine mapping̥′ such
that̥ = ̥′ ◦⊗.

We said that to dynamically measure the value of a given
quantity f , it is necessary to allow the target system to interact
with a designated measuring instrument off for a certain pe-
riod of time. In view of a law-based measurement coupling,
the instrumentM( f ) behaves in such a way that if the tar-
get system is initially in the unknown stateE0 and the instru-
ment is in the familiar ‘null position’ or ‘reference’ stateE f

0 ,
then after the interaction is turned on, the composite system
S + M( f ) evolves (ideally after an infinite duration of time)
from the initial tensor product stateE0⊗E

f
0 into an entangled

final tensor product stateEt belonging toS
(
AS ⊗ AM( f )

)
,

determined by the dynamics of the interaction, terminated at
time t. Now, this final joint post-measurement state of the

gebras of a quantity algebra can also be used in characterizing subsystems of
the target system. Tensor product represents an interactive‘conjunction’ of
quantities.

‘system + instrument’bipartite system determines a unique
stateEt

∣∣A©1 f of the measuring instrumentM( f ), specified by
the following simplerestrictionoperation:

[
Et

∣∣A©1 f
]
(v) =d f

Et(1⊗ v) for all instrument quantitiesv. And the ‘reduced’
instrument state in turn determines the (expected) value ofthe
pointer quantity©1 f , interpreted as the final outcome of mea-
suring quantityf . We shall return to this matter in Section 4,
where it will be more adequately discussed in the language of
information channels.

We round off the present subsection with a brief remark
about tensor products of data lattices. Suppose we have a nat-
ural systemS with measurandf and a measuring instrument
M( f ) chosen for its measurement, characterized by the re-
spective quantity algebrasAS andAM( f ). We already know
that the description of thecompoundsystemS + M( f ) is
accomplished by the tensor product quantity algebraAS ⊗
AM( f ). Here the basic result is the associated data lattice iso-
morphism law

LS+M( f )
∼= LS ⊗LM( f ),

stating that the data lattice associated with the compound sys-
temS+M( f ) is lattice isomorphic to the tensor product of the
system’s data lattice and the measuring instrument’s data lat-
tice.30 As in the case of the underlying quantity algebras, the
latticesLS andLM( f ) are naturally embedded into their tensor
product lattice. In particular, a pair of elementary propositions
f ≏ c (about the systemS) and©1 f A B (about the instru-
mentM( f )) is mapped to the simple tensor product proposi-
tion

(
f ≏ c

)
⊗

(©1 f A B
)

(thought of as a joint proposition)
of the bipartite system. We can now analyze the determinis-
tic relationship between a measurandf having the valuec at
a given time and its pointer quantity©1 f responding with a
determined value in a Borel setBc in terms of implications of
the form

( f ≏ c)⊗⊤ =⇒ ⊤⊗ (©1 f A Bc)

in the tensor data latticeLS ⊗ LM( f ), where⊤ denotes the
unit element in constituent data lattices. In a law-like man-
ner, thisforward relationship links an unknown precise equa-
tional item of information about the system’s measurandf to
a generally less precise item of information about the instru-
ment’s pointer quantity©1 f , expressing some form of approx-
imation. To obtain information about the measurand’s actual
value from the value of its pointer quantity, experimenters
must resort to certaininversemethods of estimation. This
is not a problem in Bayesian approaches, because in stateE

the conditional probabilityPE

(©1 f A Bc | f ≏ c
)

is intimately
linked to its ‘causal converse’PE

(
f ≏ c | ©1 f A Bc

)
by the

Bayes theorem.

30The notion of a tensor product of two lattices parellels thatof Banach
algebras. It is based on a lattice bihomomorphism⊗ : LS ×LM( f ) −→
LS ⊗ LM( f ) that assigns to pairs(Φ,Ψ) of propositions in the Cartesian
product lattice their tensor productΦ⊗Ψ proposition in such a way that the
usual distributive laws(Φ∨Ψ)⊗Θ = (Φ⊗Θ)∨ (Ψ⊗Θ) andΘ⊗(Φ∨Ψ) =
(Θ⊗Φ)∨ (Θ⊗Ψ) hold for the join operation∨, and likewise for the meet
operation∧.
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Since in von Neumann algebra settings of quantity alge-
bras the characteristic functions of the form 1J f≏cK or 1JgABK

are two-valued quantities (and so is their tensor product
1J f≏cK⊗1JgABK = 1J f≏cK×JgABK), data lattices of propositions
can be identified with the quantity algebra’s lattice of two-
valued quantities. The details are omitted since we will not
need them.

2.5. Temporal evolution of quantities in dynamical systems

In the absence of a time structure, quantity algebras are ap-
propriate forstaticmeasurements, such as measuring the di-
ameter of a shaft with a micrometer. However, in the case of
quantity algebras oftemporally varying quantitiesand in their
continuous measurements(in which information is continu-
ally extracted from the system about the measurand), there is
a need for an important additional structure, namely, the alge-
bra’s temporal dynamicsthat tells us how quantities change
from an earlier time to a later time and how measurement
information varies. Mathematically, we are provided with a
one-parameter family of mapsdt : A −→ A from the rep-
resenting Banach algebraA to itself, called the target sys-
tem’s time-indexed dynamicaltransition maps(where the in-
dexing variablet takes its values in atime monoid〈T,0,+〉,
which is usually either the additive monoid of non-negative
reals〈R+,0,+〉 or the monoid of natural numbers〈N,0,+〉),
satisfying the following so-calledmonoid-actionlaws for all
t, t ′ ∈ T and for all quantitiesf andg in A:

(i) Banach algebra endomorphism requirements:

(a) dt(1) = 1,

(b) dt( f +g) = dt( f )+dt(g), and

(c) dt( f •g) = dt( f )•dt(g).31

(ii) Identity: d0 = IA.

(iii) Monoid action:dt ◦dt ′ = dt+t ′ .

The one-parameter family
(
dt

)
t∈T

of dynamical transition
maps defined above represents the target system’s irreversible
(dissipative)deterministic temporal dynamics. In more de-
tail, the transition mapdt specifies the temporal evolution of
quantities by sending a given quantityf0 considered at time
t = 0 to the quantityft =d f dt( f0) considered at timet that
evolved from f0 in a dimensionally homogeneous manner.
A Banach algebraA equipped with a one-parameter family(
dt

)
t∈T

of dynamical transition maps, which encodes the ir-
reversible action of a time monoidT on the algebraA, is
called aT-dynamical Banach algebraor simply adynami-
cal Banach algebra(when the time domain is clear from the
context), and in view of the time monoid-action on quantities,

31 As is obvious from the linearity requirement, the dynamical evolution
of a quantity in essence means a temporal change of its values. As for the
temporal evolution of product quantities, they vary in accordance with the
temporal changes in their factors. Of course, the unit quantity never changes
its value.

it is suggestively denoted byT y
d

A. This concept will be

used extensively throughout this paper in representing natural
time-dependent systems. As an aside, we mention that sev-
eral additional dynamical algebra structures become available
upon passing from time domains to spatial, spacetime or other
parameterizing domains, arising, for example, in the context
of systems described by partial differential equations.

Transition maps on quantities are often determined by the
target system’s underlying laws of motion. Classically, the
target system’s time evolution is given by an ordinary differ-
ential equation of the formdx

dt = F(x) (satisfying the Lips-
chitz existence condition), in which the unknown quantity is
represented by a state-valued function (describing a signal)
x : T−→X such that its valuex(t) encodes the system’s de-
terministic state at timet. We know that the general solution
of the equation above involves an arbitrary constantx0, de-
termined by the equation’s initial condition. Since solutions
depend both on the time parametert and an initial valuex0, we
can represent all of them by a single jointly continuous tran-
sition mapδ : T×X −→X , satisfying the followingcon-
tinuous monoid-actionproperties for all time instantst, t ′ ∈ T

and for all statesx in X :

(i) Identity property:δ (0,x) = x, and

(ii) Group property:δ (t,δ (t ′,x)) = δ (t + t ′,x).

As in the case of dynamical Banach algebras, a monoid
time-domainT acting on a topological state spaceX , spec-
ified by a jointly continuous transition mapδ satisfying the
monoid-action properties listed above, defines a (determinis-
tic) topological dynamical model, denotedT y

δ
X . Our in-

terest in topological dynamical models is motivated by their
Gelfand-style relationship to dynamical Banach algebras.
Specifically, the foregoing jointly continuous transitionmap
δ on the state spaceX induces a unique family of dynamical
transition maps of the formdt : C(X )−→ C(X ) on the Ba-
nach algebraC(X ) of continuous real-valued functions on
X , defined bydt(g0) =d f gt , wheregt(x) = g0

(
δ (t,x)

)
for

all x.
There is also an induced (dual) dynamics on states,

having the form of affine (convex) endomorphisms
d
∗
t : S

(
C(X )

)
−→S

(
C(X )

)
on probabilistic states

(preserving their convex combinations), defined by the com-
positiond

∗
t (E ) = E ◦dt for all statesE . Under this dynamics,

a stateEt at time t evolves into the stateEt+t ′ = d
∗
t ′(Et)

for all t ′ ≥ 0. Importantly, this dynamics induces in turn
a dynamics on the spaceS ex(A) of extremal expectation
functionals (representing deterministic states), so thatby the
Riesz representation theorem we are permitted to return to
the topological dynamicsδ (t, ·) : X −→X we have started
from. This implies that we may work, as convenient, in a geo-
metric setting with topological dynamical models of the form
T y

δ
X or in an algebraic framework with corresponding

dynamical Banach algebras of the formT y
d

C(X ). The fact

that a modeler deals with the dynamics on the probabilistic

150



MEASUREMENT SCIENCE REVIEW, Volume 9, No. 6, 2009

state spaceS
(
C(X )

)
rather than on the deterministic state

spaceX is directly related to his or her ignorance about the
target system’s precise initial state.

Of central importance is the construction of tensor products
of dynamicalBanach algebras. As we shall see, the tensor
product

(
T y

d

AS

)
⊗

(
T y

d′
AS′

)
= T y

d;d′
AS ⊗ AS′

of dynamical Banach algebrasT y
d

AS andT y
d′

AS′ is the

cornerstone of the algebraic model of measurement coupling
between a time-varying target systemS and a measuring in-
strumentS′ . As expected, the transition mapd;d′ on the
tensor productAS ⊗ AS′ algebra is given by the tensor prod-
uct d ⊗ d

′ of constituent transitions. Later on, we shall be
discussing several applications of tensor product quantity al-
gebras. At this stage, however, we briefly mention just one,
touched upon earlier.

Algebraic approaches tomeasurement errorusually rely
on a comparison of the measurand’sf actual values with the
measured values of its associatedpointerquantity©1 f . How-
ever, sincef is an element of the target system’s quantity
algebraAS and its pointer quantity©1 f belongs to the in-
strument’s algebraAM( f ) designed to measuref , no straight-
forward comparison makes mathematical sense. Nevertheless
upon passing to the measurement dynamics

AS ⊗ A©1 f
mt−−−−−→ AS ⊗ A©1 f

on the tensor product algebraAS ⊗ AM( f ), the much needed
comparison is readily expressed by the tensorialmeasurement
error quantity

1⊗©1 ft − f0⊗1

in AS ⊗ AM( f ), given by the difference between the tempo-
rally evolved pointer quantity©1 ft under dynamicsmt at time
instantt > 0 immediately following the termination of mea-
surement and the measurandf0 at the pre-measurement time
instantt = 0, immediately preceding the act of measurement.
Unfortunately, because the actual value of the measurandf0
cannot be known exactly, it is usually replaced with anopera-
tionalizedvalue, that can (at least in principle) be obtained by
the most accurate measurement method.

Several important classical measurement processes can
now be put into the above dynamical Banach or von Neumann
algebra framework. As a simple application of tensor prod-
ucts, we now take up the example of length measurement, dis-
cussed in some detail in Subsection 2.3. Recall that in model-
ing the measurement a flagpole’s length, using a yardstick as
our designated measuring tool, we relied on von Neumann al-
gebrasN(ℓ) andN(ℓε), finitely generated by the length quan-
tity ℓ and its associated pointer quantityℓε , respectively. To
obtain a workable model of the pertinent measurement proce-
dure, it became necessary to pass to the corresponding state
space frameworksS

(
N(ℓ)

)
andS

(
N(ℓε)

)
.

To understand the flagpole-yardstick measurement inter-
action better and in order to bring our reasoning about a

large variety of measurement processes under a common con-
ceptual umbrella, we now consider an automorphismm

∗ :
S

(
N(ℓ)⊗N(ℓε)

)
−→ S

(
N(ℓ)⊗N(ℓε)

)
that models the

passage from a pre-measurement stateDλ ⊗D0 (when the
flagpole and yardstick were not yet engaged in any act of mea-
surement) to a post-measurement stateDλ ⊗Dℜε (λ ) (when the
measurement is complete and ready for readout). Obviously,
we setm∗(Dλ ⊗D0) =d f Dλ ⊗Dℜε (λ ) for all length valuesλ
in [0,L].32

A fundamental algebraic feature of interactive instrument-
based measurements is captured by the commutative diagram

S
(
N(ℓ)⊗N(ℓε)

) m
∗

−−−−→ S
(
N(ℓ)⊗N(ℓε)

)

J
∗
x

y R
∗

S
(
N(ℓ)

) M
∗

−−−−−→ S
(
N(ℓε)

)

in which the flagpole’s initial (pre-measurement, determin-
istic) stateDλ ∈ S

(
N(ℓ)

)
encodes its unknown objective

length λ , mapped byJ to the tensor stateDλ ⊗D0 that in-
cludes the yardstick’s ‘null’ or ‘reference’ stateD0. As we
have already remarked, in mirroring the length measurement
procedure, the endomorphismm∗ maps the unknown initial
state to the final joint stateDλ ⊗Dℜε (λ ) that retains the flag-
pole’s length unchanged. However, it appropriately modifies
the yardstick’s readout state. An important final step is the
extraction of the measuring instrument’s known state from the
joint state. As explained above, this is accomplished by there-
striction mapR∗ (emulating the assignment of marginal prob-
ability measures), defined byR∗

(
Dλ ⊗Dℜε (λ )

)
= Dℜε (λ ). It

is elementary to check that the measurement model (formally
a quantity channel)M∗, introduced in Subsection 2.3, is now
specified by the compositionM∗ = R

∗ ◦m
∗ ◦ J∗, obtained

from the diagram above. As we shall see, upon appropri-
ately changing the dynamics, the foregoing diagram automat-
ically carries over to other vastly more involved interactive
instrument-based measurement processes. But first, beforewe
embark on a channel-theoretic approach to measurement, we
outline a few concepts from discretization theory, which are
needed for the presentation of various measurement models.

3. CONTINUUM AND DISCRETE MODELS OF MEASURING

SYSTEMS

In pursuits of powerful technical results under well-chosen
tractability and complexity constraints, most advanced math-
ematical models of natural dynamical systems rely on the as-
sumption that their underlying domains of time, space and
states are furnished with the structure of a topologicalcon-
tinuum, locally homeomorphic toRn for somen ≥ 1 or to

32Since this is a trivial temporal evolution, from anoff moment of mea-
surement to the completedon moment, the time monoidT is given by the
two element{0,1}= Z/2 cyclic group, so thatm∗1 = m

∗ andm
∗
0 = identity.

Under this representation, static measurement can be viewed as a degenerate
case of interactive dynamical measurement. Because probabilistic states are
convex superpositions of deterministic states representedby Dirac probability
measures, extension to more general states is essentially routine.
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its compactified variants under the natural topology. In the
literature on mathematical modeling it is rarely noticed that
this ontologicallydriven structural assumption about mathe-
matical models of dynamical systems is at odds with a cru-
cial epistemic finiteness condition, capturing thefiniteness of
all physical resources(manifested in available time, memory,
laboratory size, measurement, etc.), necessary for theacqui-
sition, transmission and storage of informationpertaining to
the target system’s quantities. It becomes immediately obvi-
ous that any geometric point chosen at random from any of the
continuum domains of mathematical models will have, with
Lebesgue probability measure equal to one, at least one (non-
algebraic) transcendental coordinate that nonormalmeasure-
ment process can ever identify with absolute accuracy. Mod-
els framed in this way raise challenging questions about the
empirical relevance of ideal geometric points. Clearly, a mea-
suring instrument designed to measure a quantityf with a
continuum value space Val( f ) will need a continuum state
space for a perfect measurement of each value off . How-
ever, since such an instrument can only display a finite mea-
surement outcome in finite time, the result will at best be a
small rational number. A major conceptual issue in the the-
ory of mathematical modeling of natural dynamical systems
is bridging the gap between ontologically motivated contin-
uum models and epistemically necessitated discrete models
encountered in computation and measurement.

In this section we introduce the notion ofdiscretization
of continuum dynamical models and study the relationships
between a given so-calledparent continuum model and its
descent(offspring) discrete models, constructed by suitable
discretization methods in the ambience of measurement pro-
cesses and prediction. We start by considering a continuum
model representing a natural dynamical system. This set-
ting is general enough to accommodate the characterization
of measured and measuring systems. Next, we show how to
discretize the model’s underlyingtime domain, state space,
and dynamicsthereon. Of course, these ingredients can be
discretized in different ways, using different time steps and
spatial mesh sizes. The resulting descent discrete models will
in general be quite different and will approximate the parent
continuum model in different ways. The opposition between
continuum and discrete models is not a challenging problem
as long as they agree asymptotically or in the limit in the sense
that a given sequence of descent discrete models rapidly ap-
proaches its parent continuum model as the discretization pa-
rameter goes to zero, so that the former can be used as a more
or less crude approximation of the latter. Unfortunately, as we
shall see, there are many kinds of limits to consider and most
of them fail to bring the epistemic and ontological perspec-
tives together. Discretizing smooth and continuum models is
considerably more subtle than what one may initially think.
As we have already indicated, continuum dynamical models
provide a perfect ambience in which the concept of Gelfand
duality between topological dynamical models and dynamical
Banach algebras operates successfully, and this is also true in
the framework of their discretization. For example, discretiza-

tion of state spaces turns out to be dual to the discretization of
Banach algebras of quantities. Since von Neumann algebras
abstract away all continuity and smoothness properties, they
serve the objectives of discretization particularly well.

Returning to the general situation, given a target system’s
measurandf with a continuum value space Val( f ), theread-
ing scaleof anideal instrument for pointer quantity©1 f is also
a continuum, captured by Val

(©1 f
)
. However, the epistemic

finiteness condition tells us that anormal measuring instru-
ment’s pointer module can only have a finite number of de-
tectable states and that the measurement outcome associated
with a pointer module state is bound to be a rational number.
Thus, in an attempt to read and record the value of©1 f , the
experimenter has no choice but divide its value space into tiny
intervals and then decide which interval actually containsthe
measured value. In this way, the reading scale of a normal
instrument determines only a discrete, coarse-grained version
of©1 f , denoted by©1 ε f and called adiscretizationof pointer
quantity©1 f with discretization parameter (level of resolu-
tion) ε. Simply, the mathematical continuum of an ideal mea-
suring instrument dial is observationally accessible onlyin its
discretized form.

Thus, we can conclude that researchers must distinguish
between ontologically driven mathematical representations of
target systems in the form ofparent continuum modelson one
side, and prediction- and measurement-based tools in the form
of descent discrete modelson the other side. These distinc-
tions are intimately related to the notion of model validation.
This brings us to a brief review of basic discretization meth-
ods of time domains, state spaces and quantity algebras. We
begin by describing the passage from continuum-time dynam-
ical models to discrete-time dynamical models.

3.1. Temporal discretization of continuum dynamical mod-
els

From the standpoint of physical measurement, most (if not
all) time instants are inherently beyond precise observation.
Likewise, from the standpoint of computer analysis, the ideal
elements of classical spaces (based on a continuum) are ac-
cessible only partially in terms of finitary approximations.
Therefore, for purposes of measurement and numerical anal-
ysis, the continuum-time domain〈T,0,+〉, henceforth as-
sumed to be homeomorphic to the monoid〈R+,0,+〉 of non-
negative reals, has to be replaced by a family of information-
theoretically tractable discrete-time monoids〈τN,0,+〉 with
a suitable time-step (sampling) parameterτ > 0, whereτN =
{0,τ,2τ, · · ·} is a submonoid ofR+, comprised of discrete
time-steps (i.e., integer multiples oftau, measured in mil-
liseconds, minutes, days, etc.), determined by experimental
sampling regimes.

Clearly, to extract a workablefinitary information from a
parent continuum-time dynamical modelR+ y

δ
X of a target

system about its phase portrait, some form of time domain
discretization is necessary.33

33Recall that even in classical systems science, solutions of (nonlinear) dif-
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Quite simply, the τ-time discretization of a parent
continuum-time dynamical modelR+ y

δ
X is defined by the

time domainrestriction

(R+ y
δ

X )∣∣τN
=d f τN y

δτ
X ,

of R+ to τN, where δτ(τk,x) =d f δ (τk,x) for all natural
numbersk and statesx in X . Clearly, when a continuous
time function is sampled in discrete time-stepsτ,2τ,3τ, · · · ,
in general, there will be a loss of information that depends on
the size of the time-step. In applications, it is important to
identify sufficiently good discrete-time approximations of the
parent continuum-time model’s trajectories and other dynam-
ical objects. As a matter of further interest, it is easily veri-
fied that there is a transformation on models that transforms
each parent continuum-time dynamical modelR+ y

δ
X into

its discrete-time variantτN y
δτ

X with a positive time-step

parameterτ. Importantly, note that the overall intended inter-
pretation now spreads over two distinct universes of models,
namely, the world of parent continuum-time dynamical mod-
els and that of descent discrete-time dynamical models.

For example, in the familiar continuum dynamical model of
a simple pendulum, the temporal (and spatial) discretization
of smooth trajectories, having the geometric form of ellipses,
results indiscreteellipses, as shown in Figure 3 below, where
the discreteness is controlled by the size of the time-stepτ:

Fig. 3 Temporally discretized elliptical trajectories using two
different time steps in a 2-dimensional Cartesian state space

A possible close fit between a parent continuum-time dynam-
ical model and its associated sequence of (descent) tempo-
rally discretized dynamical models is established by an iso-
morphism between the parent model and the inverse limit of
the chosen sequence of descent discrete-time dynamical mod-
els, as the positive time-stepτ parameter approaches zero. It
is important to bear in mind that a parent continuum-time dy-
namical modelR+ y

δ
X cannot be directly linked to any of its

descent discrete-time dynamical models of the formτN y
δ

X ,
because these models belong to entirely different categories.

ferential equations often prompt approximations by discrete-time difference
equations. Furthermore, the solutions of analytically given differential equa-
tions are usually meant to refer to the underlying ‘reality’ of target system
behaviors, and the associated discretized variants are introduced to capture
that ‘reality’ in an (approximate)epistemically accessiblemanner.

Nevertheless, their empirical interpretations usually overlap
or are closely related.

Since time discretization does not seem to be a serious tech-
nical problem, in what follows, we shall tacitly assume thatit
has already been completed and we shall focus exclusively
on discrete-time (smooth, topological, etc.) deterministic dy-
namical models.

3.2. Spatial discretization of continuum dynamical models

When a system of differential equations is nonlinear, it will
in general be impossible to solve its equations analytically.
Computer solutions inevitably bring in the effects of finite-
ness, round-off, and other truncation operations that can
sometimes be very drastic, making the comparisons of com-
puted and ‘true’ solutions questionable. In a top-down an-
alytic setting, typical in engineering modeling, model con-
struction in the form of equations proceeds in two interleaved
phases. First, a system of (differential, difference, etc.) equa-
tions is derived or determined in some analytic form. Then,
second, its parameter (coefficient) values areestimatedfrom
available measurement data. If the equations are incorrect, no
coefficient values can make the solutions’ predictions match
the target system’s measurement data. Simply, the equa-
tions will have to be revised (e.g., by passing from linear to
quadratic equations). In general, these activities are notper-
formed in the world of continuum models. However, upon
passing to the solution spaces of differential (difference) equa-
tions, we obtain a rigorous universal basis for state space dis-
cretization.

Given a temporally discretized variantτN y
δτ

X of a topo-

logical dynamical modelR+ y
δ

X , whereX is a compact

subset ofRn (for somen≥ 1), in the simplest situation the
associated (descent) discrete state spaceXε is defined by an
n-dimensional countable lattice (grid)Xε = (εZ)n∩X of
homogeneously spaced vectors with a positive space-stepε in
all n directions, serving as centers of ann-dimensional mesh
of cells (squares, cubes, hypercubes orn-cubes in general)
of uniform sizeε.34 In this way, finitary information about
the continuum model’s topological state spaceX (and asso-
ciated phase portrait) is extracted by identifying the pertinent
cells in which the ideal elements ofX are presumed to lie.
Since the cell size and the number of cells have a direct bear-
ing on computational costs, investigators prefer to choosea
relatively small continuum dynamicalsubmodelR+ y

δ
X ′ of

the continuum parent modelR+ y
δ

X on a (compact) sub-

spaceX ′ of X – dictated by importance and interest – and
proceed to study its localized phase portrait. In this case the
submodel’s descent discrete space is finite. To identify the
overall dynamics and soundness of the parent model, several
special submodels ofR+ y

δ
X are investigated.

There are many ways to construct a cell structure over the

34Here and below we adopt the usual notationεZ =
{. . . ,−2ε,−ε,0,ε,2ε, . . .}.
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underlying state space of a continuum dynamical model.35

For example, suppose the parent continuum dynamical model
represents the behavior of a simple pendulum and the inves-
tigator’s main interest is in the verification of one of its el-
liptical trajectories (forming a period-one cycle), specified
by some initial state and a parameter value. For this pur-
pose, it suffices to confine the parent continuum model’s
state space to a smaller two-dimensional rectangular (com-
pact) subspaceX ⊂R2 of position-velocity points, say,X =
[−L,L]× [−L′,L′]. The subspaceX together with its homo-
geneous grid of sizeε = 0.25 inches is illustrated in Figure 4
below.

In approximating the elliptical trajectory by a discretization
algorithm, the investigator is confronted with the problemof
deciding on a mesh, assessing the quality of approximation
with that mesh, and then adjusting or refining it as needed.
Each chosen positive space-stepε determines a uniqueε-cell

�ε =d f

{
(x1,x2)

∣∣∣ −ε
2
≤ x1 <

ε
2

&
ε
2
≤ x2 <

ε
2

}
,

which is geometrically a half-open square of sizeε × ε, cen-
tered in the origin of the subspaceX ⊂ R2. This cell can be
moved anywhere in the state spaceX by translation. For in-
stance, the cell defined by�ε ,(p,v) =d f (ε p,εv)+�ε , which
is easily seen to be equal to the square

{
(x1,x2)

∣∣∣∣ (p− 1
2
)ε ≤ x1 < (p+

1
2
)ε

& (v− 1
2
)ε ≤ x2 < (v+

1
2
)ε

}
,

is centered in the lattice point(ε p,εv) of εZ× εZ. For
concreteness, letXε be the set of lattice points of the form
(ε p,εv) in (εZ× εZ)∩ ([−L,L]× [−L′,L′]).

x

dx
dt

bc

bc

bc

bc

bc

bcbcbc

Fig. 4 Refinement of state space discretizations

In Figure 4, cells are displayed using two different mesh
sizes: larger (mesh sizeε) on the left and more refined (mesh

35In the case of abstract topological state spacesX the starting point is a
coarse grainingin the form of a (measurable, open, etc.)partition (covering,
tessellation) that induces an equivalence relation onX . Then the representa-
tive points (nerves) of the corresponding abstraction classes determine a dis-
crete set of points, giving a locally ‘averaged’ informationabout the points in
X . In this general setting, a major problem is that these types of equivalence
relations fail to be dynamical congruence relations.

size ε ′ < ε) on the right. The empty circles illustrate mea-
surement results from validation experiments, important in
evaluating the discrepancy betweenpredictedandmeasured
quantity values, specifying states.

Next, we need anε-discretizationmap ℜε : X −→ Xε
that sends each statex in the continuum state spaceX to its
nearest discrete stateℜε(x) in the associated discretized state
spaceXε . In general, the structural ingredients of a descent
spatially discretized model of the parent continuum dynami-
cal modelτN y

δ
X of interest are defined as follows:

(i) Discretized state space:For a given (usually small)
space-step(grid size, mesh or lattice spacing)ε > 0 we
define theε-grid or ε-discretization(n-dimensionalε-
lattice) of the parent state spaceX ⊂ Rn as the set

Xε =d f X ∩ (εZ)n.

As signalled above, the descent spatially discretized state
spaceXε comes with itsprojective discretizationmap
ℜε : X −→Xε , defined byℜε(x) =d f (ε p,εv) with x∈
�ε ,(p,v) for all x in X . We have already indicated that
the discretization (round-off) map sends each statex in
the parent continuum model’s state spaceX to a unique
point in its ε-integer lattice subspaceXε that is closest
to it. Naturally enough (in accordance with a computer
discretization procedure), each point is ‘rounded off’ by
its approximant in the integer lattice. This is how the in-
vestigator obtains information about the parent model’s
states or more generally about the phase portrait’s tra-
jectories and other dynamical objects. In the reverse di-
rection we have the dualinjective dediscretizationmap
ℑε : Xε −→X satisfyingℜε ◦ℑε = IXε .

(ii) Discretized dynamics:Given a continuum-space dynam-
ics δ : τN×X −→ X , its discretized transition map
δε : τN×Xε −→ Xε is defined by the base diagram

X
δ (1,·)−−−−−−→ X

ℑε

x
yℜε

Xε
δε (1,·)−−−−−−−→ Xε

and then extended to all discrete time steps by iterations
δε(n+1,x) = δε

(
n,δε(1,x)

)
for all n andx.

It is easy to verify that in the case of the pendulum ex-
ample discussed above we have

δε
(
1,(ε p,εv)

)
= ℜε

(
δ
(
1,(ε p,εv)

))
,

specifying a mapδε(1, ·) : Xε −→ Xε that is quickly
extended to all discrete time instants by iteration.

Given a descent spatially and temporally discretized dynami-
cal modelτN

δτ ,ε
y Xε of a continuum dynamical modelτN

δ
y

X , stroboscopic measurement results of the pendulum’s po-
sitions and velocities at discretized times can be entered into
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the cell diagram, as shown in Figure 4, and make comparisons
with discretized trajectories, given by the parent continuum
dynamical model.

As in the case of temporal discretization, the success of spa-
tial discretization depends on the behavior of (inverse) limits
of converging sequences of descent spatially discretized dy-
namical models, asε goes to zero. Comparing spatial dis-
cretization with temporal discretization, we see that a major
technical problem in spatio-temporal discretization is the cor-
rect choice of a double limit, as the time step and mesh size
approach zero. Here the essential idea is to let the sequenceof
spatial discretizations to be at least logarithmically farahead
of the sequence of temporal discretizations, so as to allow the
dynamics of the latter to correctly converge to the continuum
parent model’s dynamics. (See [2] for a more detailed discus-
sion of why the succession of temporal vs. spatial discretiza-
tions can not be interchanged.)

Because the parent continuum dynamical model’s states are
not observable directly, they must be identified indirectlyin
terms of (smooth, continuous, measurable, etc.) quantities,
whose values are obtained via measurement. Thus, we also
need to look at approximating rational-valued functions ofthe
form fε : Xε −→ Q that are extendable by extrapolation to
functions f̄ε : X −→ R on the entire state spaceX . The de-
tails are investigated further in the next subsection, where we
consider Genfand representation in the context of discretiza-
tion theory.

Every elliptical trajectory in the pendulum dynamical
model is reconstructed from a discrete trajectory of a descent
discrete model via subsequent refinement, as illustrated in
Figure 5.

x

dx
dt

Fig. 5 Discretizing a smooth pendulum trajectory

In this manner, we obtain a descent spatially discretized
dynamical modelτN

δτ ,ε
y Xε (with space-stepε) of the par-

ent dynamical modelτN
δ
y X . As alluded to earlier, dy-

namicists are interested in the asymptotic behavior of the dis-
cretized dynamical modelτN

δτ ,ε
y Xε , as the mesh sizeε goes

to zero. It is well known that discretized models even with
tiny mesh sizesε are not very helpful deterministically, since
the correlation between the behavior of the discretized models
τN

δτ ,ε
y Xε (with varyingε) and that of the parent continuum

dynamical modelτN
δ
y X is usually very weak. Concretely,

the descent discretized dynamical model will generate a va-
riety of discretization-dependent spurious and ‘phantom’dy-
namical regimes (periodic orbits, fixed points, etc.) and other
artifacts that do not correspond to any behavior present in the
parent model. The investigators need to recognize that de-
scent discrete dynamical models are radically different mod-
els that may approximate their parent model in some circum-
stances, but nevertheless they tend to possess properties (e.g.,
degrees of freedom) and structure that are patently inconsis-
tent with those instantiated by the parent model. The difficulty
has to do with the fact that discretization algorithms usually
break the parent continuum dynamical model’s infinitesimal
symmetries, invariant under smooth or continuous dynamical
isomorphisms. This problem would not matter too much, if
one had a well-defined way of taking the limit of a descent se-
quence of discretized dynamical models – in which state space
and time discretizations go to zero – that would ensure not
only a gradual disappearance of inconsistencies (manifested
by spurious regimes) but also a totalreconstructionof the par-
ent continuum model, modulo dynamical isomorphism. Un-
fortunately, presently there are no known general necessary
and sufficient conditions for the existence of a limit of a de-
scent sequence of discretized dynamical models that faithfully
reproduces the parent dynamical model.

3.3. Algebraic discretization

Throughout this work we have emphasized the fact that exper-
imenters do not have direct access to the states of their target
dynamical systems. To obtain a workable model, it is neces-
sary to characterize the states indirectly, in terms of certain
observable quantities, so that instead of observing a stateen-
coded by a pointx ∈X of a representing dynamical model
τN y

δ
X , experimenters measure thevaluesof smooth, con-

tinuous, or measurable observables of the formf : X −→ R

in statex, sufficient to generate informative data propositions
aboutx.

As a prelude to algebraic discretization, recall that in a
topological setting each (discrete-time) continuum dynamical
modelτN y

δ
X comes with its associated dynamical Banach

algebra modelτN y
δ ∗

C(X ), whereC(X ) denotes the Ba-

nach algebra of all continuous real-valued functions on the
underlying state spaceX of τN y

δ
X (interpreted as the

target system’s algebra of continuous quantities), and thein-
duced linear (dynamical) transition mapδ ∗ : τN×C(X )−→
C(X ) is defined byδ ∗(τk, f ) =d f g with g(x) = f

(
δ (τk,x)

)

for all x. The topology in the algebraC(X ) is obtained from
theuniform norm‖ f‖=d f supx∈X | f (x)|.

The same algebraicizing idea works also in the universe dy-
namical von Neumann algebras. Specifically, to each mea-
surable dynamical modelτN y

δ
(X ,F ,P) (whereP is usu-

ally the Lebesgue probability measure onX ) there cor-
responds a unique dynamical von Neumann algebra model
τN y

δ ∗

(
L∞(X ,F ,P),EP

)
such that
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(i) L∞(X ,F ,P) is the von Neumann algebra of essentially
bounded real-valued measurable functions on state space
X , modulo probability measureP zero, with its induced
stateEP in S

(
L∞(X ,F ,P)

)
, and

(ii) the transition map δ ∗ : τN × L∞(X ,F ,P) −→
L∞(X ,F ,P) is defined as before, by[δ ∗(τk, f )](x) =
f
(
δ (τk,x)

)
for all x, where f ∈ L∞(X ,F ,P). Impor-

tantly, δ ∗ preserves the probabilistic stateEP, i.e., we
haveEP◦δ ∗(τk, ·) = EP for all discrete timesτk in τN.

Thanks to Gelfand and Riesz representation theorems, there
is also a reverse construction that transforms algebraic dynam-
ical models back into topological or measurable dynamical
models. There are several other important relations between
topological(or measurable) dynamical models andalgebraic
dynamical models, but in this subsection we shall focus only
on the problem of algebraic discretization.

In particular, we recall the ever-present pair of projective
discretizationand injectivedediscretizationmaps between a
given continuum parent dynamical model and its descent spa-
tially ε-discretized dynamical model

(τN y
δ

X )
ℜε−−−−−−→←−−−−−−
ℑε

(τN y
δε

Xε),

discussed in the previous subsection. Note that because for
compact spacesX the setXε is a finite discrete (lattice,
grid) state space with spacingε > 0, the associated Banach
algebraC(Xε) is finite-dimensional, comprised of vectors
or diagonal matrices of dimension|Xε |, and likewise for
L∞(Xε ,F ε ,Pε) (wherePε is specified by the Lebesgue prob-
ability of ε-cells). Regarding the empirical interpretation of
‘observables’ inC(Xε), we may assume that they are evalu-
ated onXε in terms of dial readings on appropriate measuring
instruments, interacting with the target system. The values
of discretized quantities in a descent von Neumann algebra
modelL∞(Xε ,F ε ,Pε) can given by the averages of corre-
sponding parent dynamical model quantities overXε -cells.
Having reached this stage, we can now consider ways of lift-
ing the discretizationℜε and dediscretizationℑε maps from
topological models to their Gelfand-given algebraic counter-
partsℜε : C(X )−→C(Xε) andℑε : C(Xε)−→C(X ), re-
spectively. It should be clear that this ‘lifting procedure’ may
be rephrased also in terms of von Neumann algebras.

As we have already remarked in Subsection 3.2, the main
obstruction to providing workable algebraic discretization
schemes lies in finding convenient discretization and dedis-
cretization maps that support an asymptotic or limit corre-
spondence between the continuum algebraic modelτN y

δ ∗
C(X ) and its sequence of descent discretized algebraic mod-
els τN y

δ ∗ε
C(Xε), τN y

δ ∗ε ′
C(Xε ′), . . ., as their ordered se-

quenceε > ε ′ > .. . of spacing parameters goes to zero. It
turns out that the much-studied pair(ℜε ,ℑε) in the discretiza-

tion/dediscretization relations

C(X )
ℜε−−−−−−→←−−−−−−
ℑε

C(Xε)

L∞(X ,F ,P)
ℜε−−−−−−→←−−−−−−
ℑε

L∞(Xε ,F ε ,Pε)

satisfies the definitions of a channel and cochannel, respec-
tively, so that, in particular, the map

S
(
L∞(X ,F ,P)

) ℑ∗ε−−−−−→S
(
L∞(Xε ,F ε ,Pε)

)

is a channel. Since the treatment of discretization works best
in von Neumann algebra settings, we shall devote the rest of
this subsection to the study of discretization of measurable
quantities.

In the case of von Neumann dynamical models, the
discretization mapℜε : L∞(X ,F ,P) −→ L∞(Xε ,F ε ,Pε)
sends each quantityf to its averageon the associated cell of
each lattice state inXε . By way of illustration, we return to
the pendulum example discussed in the previous subsection
and for each measurable quantityf we set

ℜε( f ) =d f fε : Xε −→ R,

to be a discrete function specified byfε(ε p,εv) =d f
´

�ε ,(p,v)
f (x)P(dx). As indicated earlier, at each discrete point

(ε pεv), the value of functionfε is obtained by the average of
f on the cell determined by the point. It is easy to check that
ℜε is a linear positive unital map. Now, since the discretized
quantity fε of f remains real-valued, its measurements dis-
cretize its values by a suitablevalue round-off operation on
Val( f ).

The dediscretization mapℑε : L∞(Xε ,F ε ,Pε) −→
L∞(X ,F ε ,P) is defined by a cellwise interpolation of each
discrete quantity. That is to say, each measurable quantity
ℑε( fε) = f is obtained by settingf (x) =d f fε(�ε ,(p,v)), where
�ε ,(p,v) is a cell inXε containingx. Of course, there are sev-
eral other choices. The goal of algebraic discretization isto
find a convenient discretization-dediscretization pair(ℜε ,ℑε)
such that

lim
ε→0
‖ℑε ◦ℜε(u)−u‖∞ = 0

holds for all quantitiesu in L∞(X ,F ε ,P) and the diagram

L∞(X ,F ε ,P)
dτk−−−−−→ L∞(X ,F ε ,P)

ℜε

y
x ℑε

L∞(Xε ,F ε ,Pε)
d

ε
τk−−−−−→ L∞(Xε ,F ε ,Pε)

linking descent discretized dynamics with its parent contin-
uum dynamics commutes in the limit, meaning that the iden-
tity

lim
ε→0
‖ℑε ◦dε

τk ◦ℜ( f )−dτk( f )‖∞ = 0
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holds for all quantitiesf and discrete time instantsτk. Intu-
itively, the foregoing requirement states that as a descentdis-
cretized dynamical modelτN y

d
ε
τk

L∞(Xε ,F ε ,Pε) becomes

finer and finer under gradually smaller choices of parameter
ε, it will approximate the dynamical behavior of its parent
continuum dynamical modelτN y

d
ε
τk

L∞(X ,F ,P) better and

better, and in the limit, asε goes to 0, the approximation will
be perfect, modulo probability measure zero.

In [3], Fabio Benatti and Valerio Cappellini have noted that
the foregoing limit of spatial discretization crucially depends
on the presence of a logarithmic time scale of temporal dis-
cretization. Concretely, in the ambience of a concrete dynam-
ical von Neumann algebra of measurable quantities on a two-
dimensional continuum torus state space they have shown that
the following double-limit theorem

lim
ε→0

lim
τk→∞

τk<log 1
ε

‖dε
τk ◦ℜε(u)−ℜε ◦dτk(u)‖∞ = 0

holds for all quantitiesu in the dynamical von Neumann al-
gebra modelZ y

δ ∗

(
L∞(C2,Λ),EΛ

)
, whereC2 is the two-

dimensional donut-shapedC × C torus space,Λ is the
Lebesgue probability measure on it and the dynamical tran-
sition mapδ ∗ is specified by some simple equations.

Although the significance of the double limit result above
is smaller than a discretization specialist might have hoped, it
nevertheless indicates an important relationship betweenspa-
tial and temporal discretizations. Informally, this remarkable
result says that if the time evolution of the descent discretized
dynamical model is constrained by the exponential inequality
of the formeτk < 1

ε , stating that as long as the investigator
does not go too far into the future in making predictions – so
that the necessary spatial discretization refinement by choos-
ing a sufficiently smallε can be guaranteed – a suitable form
of commutativity between discretization and dynamics actu-
ally holds. One would hope for similar results to be valid for
general dynamical von Neumann algebras. The problem lies,
as hinted at earlier, in the correct choice of the pair(ℜε ,ℑε).

4. INFORMATION CHANNEL PERSPECTIVE ON

MEASUREMENT

In this section we take up the discussion of the channel-
theoretic approach to measurement, begun in Subsection 2.3.
As we observed there, measurement can conveniently be char-
acterized in terms of channel-cochannel pairs, relating system
and instrument quantity algebras.

Recall again that a classical measurement process involves
(i) a measurand of a physical system of interest with a definite
but unknown value, and (ii) a correctly calibrated measuring
instrument (appropriately chosen for the measurand) – pre-
sumed to be dynamically coupled with the physical system
for a certain period of time, until an (approximate) equilib-
rium state is reached. Now, if the coupling and the resulting
physical interaction are of the proper kind, then the numerical

value read from the measuring instrument’s pointer module
will be found to be strongly correlated with the measurand’s
objective value, as it existed immediately prior to the act of
measurement. In a successful measurement process, a com-
bined initial‘system + instrument’state (consisting of the sys-
tem’s unknown pre-measurement state and the instrument’s
known initial ‘null position’ state) evolves into a unique cor-
related (entangled) composite post-measurement state, deter-
mined by the joint‘system + instrument’physical dynamics.
A subsystem restriction of this joint state to the instrument
completely determines the pointer quantity’s outcome, from
which the measurand’s real value can then be reconstructed or
estimated. Specifically, suppose the physical response of the
measuring instrument is given by thedirect modelequation
 f =£££( f , . . .), wheref denotes the measurand and f stands
for the ‘response signal’.36 Now, the final outcome of mea-
surement, specified by the values of the instrument’s pointer
quantity©1 f – providing support for the measurand’s esti-
mation or reconstruction – is obtained from the values of the
response quantity f , using a variant of thecalibration equa-
tion©1 f = £££′( f , . . .). Needless to add, the pointer quantity
©1 f serves also as an interface between the instrument and a
human observer.

In the spirit of the so-called Heisenberg picture (understood
to be a description of natural dynamical systems in terms of
Banach or von Neuman algebras ofquantitiesrather than in
terms ofprobabilistic state spaces) suppose the target physi-
cal systemS is described by a Banach (von Neumann) algebra
AS and letA©1 f be the Banach (von Neumann) algebra of the
instrument’s pointer module (designed to provide measure-
ment outcomes for measurandf , instantiated by the system
S) with output quantity©1 f .

In modeling the temporal dynamics of the measurement
process, the modeler must come up with a dynamical descrip-
tion of not only the (uncoupled) measuredS and measuring
M©1 f system, but also a complete description of their physi-
cal interaction during the measurement process that involves
an exchange of energy and directed information flow. Let
us assume that the respective dynamical Banach (von Neu-
mann) algebras of the independently prepared target system
and pointer module areT y

d

AS andT y
d′

A©1 f .37 Finally, let

the joint dynamics of the‘system + instrument’bipartite sys-
tem (coupled together at timet = 0) be captured by the family
of time-indexed transition maps of the form

AS ⊗ A©1 f
mt−−−−−→ AS ⊗ A©1 f ,

involving the systems’ energy quantities and energy flow.
Then, as indicated above, the compound system’s statistical

36Note that here we deliberately use the lightning symbol f to denote
the instrument’s internal response quantity as a reminder that in practice me-
diating quantities tend to be electrical or optical in nature, and the ellipsis
in the law serves as a place-holder for unspecified auxiliaryquantities. For
example, in many instruments the transducer comes with an additional input
quantity, capturing environmental interaction, bias, control or modulation.

37As before, the transition map’s indexing domainT is a time monoid,
usually isomorphic to the additive monoid〈R+,0,+〉 of non-negative reals.
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state considered at timet = 0, encoded byE0, evolves in ac-
cordance with the earlier defined dual (state) transition map

S
(
AS ⊗ A©1 f

) m
∗
t−−−−−→S

(
AS ⊗ A©1 f

)
,

into a unique state at timet > 0, denoted by the expectation
functionalEt = m

∗
t

(
E0

)
.

In more detail, during the interaction process, an unknown
pre-measurement system stateE0 the experimenter wants to
learn about together with the instrument’s known ‘initial null’
stateE 0

f at timet = 0, specifying the inputproduct stateby

the affinelifting (extension) channelJ∗(E0) =d f E0⊗E 0
f .38 In

accordance with the dynamics of‘system + instrument’com-
posite (determined by the physical laws of interaction), the
input product state evolves into a correlated compound state
Et = m

∗
t

(
E0⊗E 0

f

)
considered at time instantt > 0. The last

step – as it should be apparent by now – is provided by the
so-calledrestriction channelR∗, defined by the state restric-
tion

[
R(Et

]
(v) = Et(1⊗ v) for any instrument quantityv in

A©1 f (©1 f ).
At the root of interactive (instrument-based) measurement

processes is the following fundamental commutative square
(and its obvious dual):

S
(
AS ⊗ A©1 f

) m
∗
t−−−−→ S

(
AS ⊗ A©1 f

)

J
∗
x

y R
∗

S
(
AS

) M
∗
t−−−−−→ S

(
A©1 f

)

Upon examining the diagram, we see that the system-to-
instrument measurement channelM

∗
t is specified by the com-

positeM
∗
t =d f R

∗ ◦m∗t ◦J∗ for all moments of timet.
One reason why instrument-based measurement theory ap-

pears to be so complex is because it deals with structures at
two distinct levels, one of which complements orsupervenes
on the other. Structures at the most fundamental level – en-
joying a great deal of attention by physicists in view of being
essential to the physical understanding all classical measure-
ment processes – are given by the underlyingphysical inter-
actionsbetween the measured and measuring systems. In the
pursuit of this ground level structure, measurement theorists
regularly take concepts from physics and systems theory, and
apply them to various measuring instruments and measure-
ment processes. For us, this level requires least comment,
since it has been covered already, based on [5].

The second level of structure is best seen in the formal em-
bodiment of afunctionalistview of measurement. As is by

38A lifting channel of the formJ
∗ : AS −→AS⊗A©1 f is said to benonde-

molitionist for the system stateE (or E is invariant with respect toJ∗) pro-
vided that

[
J
∗(E )

]
(u⊗1) = E (u) holds for all system quantitiesu. Nonde-

molitionist channels characterize measurement interactionsthat do not alter
the system’s initial state. We know that various measurement processes tend
to change the measured system. For example, active sensors (e.g, radars and
sonars)add energy to the‘system + instrument’environment as part of the
measurement process, and electrical instruments usuallydraw energy from
the measured system, causing aloading error. Most chemical measurements
damage or destroy at least part of the analyzed substance, andso forth.

now well known, in practice the measurand (e.g., mass, tem-
perature, energy, and so forth) of a target system can be mea-
sured in many distinct and competing ways, and with varying
degrees of accuracy, employing different physical methods
and principles, and yet, by and large, the resulting quantity
of information obtained about the target system in the cor-
responding measurement outcomes is, modulo some errors,
essentially the same. Thus, if what matters is only the trans-
fer of information about the measurand from its instantiating
target system to the instrument’s pointer module, where it is
received in the form of the instrument’s pointer quantity value
to be read off later, and not the specific physical mechanism
underlying the measurement process, then it is more effective
to work with a considerably simplerchannel-theoreticmodel
of measurement, based on quantity and state channels. In
information-theoretic frameworks it is completely irrelevant
which type of measuring instrument is used to perform a mea-
surement and which physical laws are involved. This higher-
level (supervening) approach to measurement processes is ex-
tremely convenient, because it is relatively easy to transform
information between different types of physical carriers (such
as electric currents in wires, light pulses in optical fibers, and
so on). Furthermore, errors, perturbations and possible losses
of information occurring during transmission are also easily
tractable. The viewpoint we adopt next is to regard measure-
ment as a transfer of information from the target system to the
measurand’s pointer module.39

As we have already seen, from the standpoint of algebraic-
analytic measurement theory, the basic strategy is to represent
each step in a measurement process by a suitable channel-
cochannel pair, in which the cochannel maps all quantities of
an input (source) systemM (usually a measurement appara-
tus), described by (say) a Banach algebraAM, to suitablees-
timator quantities of an output (receiver) systemS, in general
represented by a different Banach algebraAS.

Our aim here is to model the measurement process channel-
theoretically (without invoking any details regarding the
physics of measurement coupling), usually by a cochannel
M which maps the pointer module’s measurement quantities
in AM to those quantities in the system’s algebraAS which
serve as optimalestimatorsfor the system’s quantities,given
the instrument’s information aboutS embodied in the pointer
module ofAM. Each cochannelM captures a particular way
in which a measuring system encodes information about the
measured system. Conditionally upon the results of continu-
ous measurement, a cochannel minimally revises and updates
a prior quantitative information about the system’s quantities.

39Here we assume that information is not a concrete thing or substance that
is transported like furniture from one place to another; it is not part of the ma-
terial contents of the world, located somewhere in space. Rather,information
is a fundamental theoretical entity (in the sense of Hans Reichenbach’sab-
stracta), representing that which is brought into existence by an information
source and required to be reproducible at the receiver end ofa communication
channel, if the transmission is to be regarded as a success. Its roundabout de-
scription‘that which is brought into existence’is formally analyzed in terms
of (continuous, measurable, etc.) sequences of probabilistic states.
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4.1. Discrete measurement of angular positions of a physi-
cal pendulum

There are at least three major categories of classical measure-
ment. Historically, the earliest types of measurement were
those based on the principle of direct comparison. We have
already met some of these in Subsection 2.3 and called them
staticmeasurements. Indirect or interactive instrument-based
measurements dominate modern measurement practices. As
well known, these measurements come in two major fla-
vors: discrete-timeandcontinuous-timedynamical measure-
ments. We shall have space to consider only one example of
a discrete-time dynamical measurement.

Suppose we wish to measure the angular positions of a sim-
ple pendulum’s bob at various instants of time. We have al-
ready seen in Subsection 2.1.1 that in the case of instrument-
based measurement of pendulum positions the starting point
is the Banach algebraA(p,v), generated by positionp and
velocity v quantities, and Gelfand-isomophic to the con-
crete Banach algebra of observablesC

(
Val(p)×Val(v)

) ∼=
C

(
Val(p)

)
⊗C

(
Val(v)

)
. Since the value space Val(p) is equal

to the circle groupC = R/2πZ of reals and Val(v) = [0,V] for
some upper limitV of angular velocity that does not exceed
the speed of light, we quickly obtain our start-up dynamical
Banach algebraR+ y

d

C(C)⊗C([0,V]) (together with the

algebra isomorphismA(p,v) ∼= C(C)⊗C([0,V])), intended
for modeling the pendulum’s dynamical behavior. As shown
in [5] and reviewed in Subsection 2.5, the transition map of
this dynamical Banach algebra is derived from the solution
space of classical pendulum equations. Here, as before, the
dynamical Banach algebra represents the temporal evolution
of all quantities that have been found to be decisive in a com-
plete description of the pendulum’s motion under considera-
tion, without any regard for measurement interaction.

In order to meet the requirements of discrete measurement,
we need a discrete variant of the above-discussed parent dy-
namical Banach algebra. To obtain the descent discrete-time
dynamical Banach algebraτN y

dτ
C(C)⊗C([0,V]), we use

the temporal discretization method of Subsection 3.1. By con-
struction, in this discrete algebraic model the pendulum’san-
gular position and velocity values are available only at dis-
crete moments of time, referred to byτk (integerk time units
of a chosen time-stepτ).

We now turn our attention to position measurement. Since
pendulums are among the most studied physical systems,
there are several known ways of measuring their positions and
velocities. Indiscreteposition measurements the most com-
mon methods are the so-calledstroboscopicapproaches. In a
typical experimental set-up, position measurement is based on
the variation of a suitably positioned light-dependent resistor,
located proximally to the pendulum’s plane of motion, whose
electrical resistance abruptly changes when the pendulum’s
moving bob cuts the path of the light from a laser. In one im-
plementation, equally spaced laser beams are directed perpen-
dicularly to the pendulum’s plane of motion, with electric sen-
sors on its opposite side. Design specifics of this and related

position measurement methods may be found in [9] and the
references therein. Since we may know the response of this
stroboscopic measuring system without knowing the technical
details of its optical and electrical dynamics, we shall assume
that the value space Val(©1 p) of pointer quantity©1 p (cali-
brated in angular or length units) ofp is a subset of discrete
points inC. This means that since the pendulum’s positions
are measured at discrete time instants stroboscopically with
limited accuracy, we need a spatial discretization of the cir-
cle groupC of positions, specified by the discrete setCε =d f

εN∩C = {0,ε,2ε, · · ·} of possible angular pendulum posi-
tions on a circle, whereε > 0 is a fixed discretization param-
eter, chosen in arc or length units, e.g., one arc second or one
millimeter. We can now define the space-time parametrized
discretization mapℜτ ,ε : R+×C −→ τN×Cε as in Subsec-

tion 2.3, by settingℜτ ,ε(t,θ) =d f (
⌈

t
τ + 1

2

⌉
· τ,

⌈
λ
ε + 1

2

⌉
· ε).

Here the basic idea is to assign to each ideal angular position
valueθ at a given ideal time pointt the unique discrete posi-
tion that is closest toθ – measured stroboscopically – at the
discrete time nearest tot.

Moving on to the‘system + instrument’state dynamics

S
(
C(C× [0,V])×Cε)

) m
∗
t−−−→S

(
C(C× [0,V])×Cε)

)
,

note that because the pendulum’s state of motion is not af-
fected by measurement, we may set for deterministic states
mt(θ0⊗ ν0⊗ θ ′τ0) = θt ⊗ νt ⊗ℜτ ,ε(t,θt), where the tensor
component for position measurement changes from its initial
value to the next discrete value, established by stroboscopic
measurement.

By exactly the same reasoning used in the previous sub-
section, we use the fundamental contravariant commutative
square

C(C× [0,V]×Cε) C(C× [0,V]×Cε)

C(Cε) C(C× [0,V])

mt

J Eτk

Mτk

to specify the quantity channel (cochannel)Mτk =d f Eτk ◦
mt ◦ J, intended for modeling a discrete measurement of the
target pendulum’s positions. As before, we setJ(v) = 1⊗1⊗
u for each pendulum quantityu. Since the dynamics of the
‘system + instrument’does not alter the pendulum’s states,
we define the right most cochannelEτk in the square for all
observablesξ in C(C× [0,V]×Cε) by

[
Eτk(ξ )

]
(θt ,νt ,θ ′τk) =

θ ′τk.
The channelM∗τk maps the pendulum’s position-velocity

deterministic state(θt ,νt) at time t to the measured position
valueθ ′τk at discrete timeτk, nearest tot. This discrete value,
in turn, can be used to specify the value of the position esti-
matorp̂. We do not have space to treat discrete position mea-
surement with random error. More general forms of position
measurement require the cochannelEτk to be aconditional
expectation. (Full details on conditional expectations in this
context are given in [10] and references therein.)
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4.2. Information channels from measured systems to mea-
suring instruments

Before turning to the explicit details of application of state
channels and their cochannels to measurement problems, it
is important to point out that in the case of quantity chan-
nels of formM f : A©1 f −−_ AS for measuring quantityf , no
account is taken of themeasurement interactionbetween the
target systemS and the selected measuring instrument forf .
The formal framework in which the instrument-based mea-
surement interaction problem (and many problems like it) can
be framed is given by the so-calledconditional expectation
cochannel, having the form

AS ⊗ A©1 f
E−−−−−_ AS

whose dual state channelE
∗ transfers the system’s extant (sta-

tistical) state to acorrelatedstate of the composite‘system +
instrument’bipartite system, from which the instrument’s fi-
nal state is determined by a subsystem reduction. More par-
ticularly, as we have seen, the state channel of a measurement
process is modeled by the following cascade of information
channels:

S
(
AS

) E
∗
−_S

(
A©1 f ⊗AS

) mt−−_S
(
A©1 f ⊗AS

) R−_S
(
A©1 f

)

The channel diagram above shows how to obtain knowledge
about theunknownpre-measurement state of the system from
aknowncorrelated post-measurement state of the instrument,
after the measurement interaction has reached its equilibrium.

The quantity channelE : AS ⊗ A©1 f −−−_ AS turns out to
be extremely important in handling the information-theoretic
aspects of measurement processes. It is easy to verify that its
Gelfand representation is given anaveraging operatorof the
form

C(XS×X©1 f )∼= C(XS)×C(X©1 f )
Ê−−−−→ C(XS),

defined by
[
Ê(h)

]
(x =

´

X©1 f
h(x,x′)T(x,dx′), where T :

XS −→ P(X©1 f ) is a given transition probability. Thanks to
its relationship to averaging, the cochannelE satisfies the fol-
lowing properties for all quantitiesu andv on the product state
spaceXS×X©1 f :

(i) E(1⊗1) = 1;

(ii) u≥O =⇒ E(u)≥O;

(iii) E(u+v) = E(u)+E(v);

(iv) E
(
u•E(v)

)
= E(u)•E(v).

What is perhaps even more startling than the properties ofE

listed above is the fact that cochannels are Banach (von Neu-
mann) algebra analogs ofexistential quantifiersin distributive
lattices. Note that the quantity channelM f introduced at the
beginning of this subsection earlier is obtained fromE by re-
striction:M f (h) = E(1⊗h) for all h in A©1 f .

We turn now to describing some important measurement
processes using the cochannel-channel framework. In Section
2.1 we have already noted the fundamental importance of the
cochannel-channel pair

A
′×S

(
A
′) (M,M∗)
−−−−−−−−_ A×S

(
A

)

between Banach (von Neumann) algebras and their respective
state spaces. Let us point out at once that a cascade sequence
(important in representing a sequence of measurement sen-
sors, processors, filters, amplifiers, and convertors)

A
′′×S

(
A
′′) (N,N∗)
−−−−_ A

′×S
(
A
′) (M,M∗)
−−−−−_ A×S

(
A

)

composes in the usual way into the cochannel-channel pair

A
′′×S

(
A
′′) (M◦N,(M◦N)∗)
−−−−−−−−−−−−_ A×S

(
A

)

The verification is easy, based on the definition of ther
cochannel-channel pair. From the foregoing composition op-
eration we obtain a category of cochannel-channel pairs, that
can be used as a formal framework for the study of measure-
ment processes. Along similar lines, it is easy to check that
two cochannel-channel pairs

A
′×S

(
A
′) (M,M∗)
−−−−−−−−_ A×S

(
A

)

and

B
′×S

(
B
′) (N,N∗)
−−−−−−−_B×S

(
B

)

determine their tensor product pair (important in applications
to repeated measurement of a single measurand or to a joint
measurement of several measurands)

(A′⊗B
′)×S

(
A
′⊗B

′) (M⊗N,(M⊗N)∗)
−−−−−−−−−_ (A⊗B)×S

(
A⊗B

)

There are many other important constructions on channels
and cochannels, needed for the description of special mea-
surement processes, including measurement fusion, measure-
ments involving demolition, and continuous measurement
that, due to limitations on space and time, must be omitted.

5. CONCLUSIONS

In this paper we have presented and developed the framework
of Banach and von Neumann algebras for quantities, together
with their associated (convex) spaces of expectation function-
als, as a comprehensive and unified algebraic-analytic frame-
work for measurement theory. It is our hope that the formal
adequacy of this paradigm was made apparent by the remark-
able flexibility with which it accommodated mathematically
natural constructions, representing various aspects of mea-
surement - such astensor productsof algebras (modeling var-
ious couplings of target systems and measuring instruments),
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dynamical algebras(capturing temporal evolutions of quanti-
ties instantiated by natural systems), and spaces ofexpectation
functionalsdefined over algebras (encoding evaluations of
quantities through measurement). A striking element of this
framework is a large variety of information channels between
quantity algebras that model functionally conceived transfers
of information from target systems to measuring instruments,
and also – in the converse direction from instruments to sys-
tems – various estimations and reconstructions of the mea-
surands’ values from the outputs of measuring instruments.
The framework’s mutability also allowed us to model the re-
lations between continuum-based theoretical models and fi-
nite/discrete measurement data in terms of increasingly re-
fined discretizations of continuum theoretical models. Finally,
we believe that theconceptualadequacy of the algebraic-
analytic framework was made apparent by various representa-
tion theorems, which connect quantities to the states of mod-
eled natural systems by providing us with deterministic as
well as probabilistic interpretations of autonomously specified
quantity algebras and information channels between them, in
terms of uniquely determinedstate spacesand observables
thereon.
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