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The goal of this paper is to present a unified algebraic-analjc framework for (static and dynamic) deterministic
measurement theory, which we find to be fully adequate in engieering and natural science applications. The starting
point of this paradigm is the notion of a quantity algebra of a measured system and that of a measuring instrument,
underlying the causal linkages in classicalsystem + instrument’ interactions. This approach is then further enriched
by providing a superimposeddata lattice of measurement outcomes, intended to handle the informatioflow from the
measured system to its measurand’s designated instrument.

We argue that the language oBanach and von Neumann algebras is ideally suited for the treatment of quantities, en-
countered in theoretical and experimental science. Thesdgebras and convex spaces @kpectation functionalsthereon
together with information (co)channels between them provide a comprehensive information-theorét framework for
measurement theory. Concrete examples and applications tength and position measurements are also discussed and
rigorously framed within the proposed quantity algebra and associated information channel paradigms.

In modeling physical systems, investigators routinely rgl on the assumption that state spaces and time domains form
a continuum (locally homeomorphic to the real line or its Cartesian powes). But in sharp contrast, measurement and
prediction outcomes pertaining to physical systems underansideration tend to be presented in terms of smalfliscrete
sets of rational numbers. We investigate this conceptual gabetween theoretical and finitary data models from the
perspectives of temporal, spatial and algebraicliscretization schemes.

The principal innovation in our approach to classical measwvement theory is the representation of interactive
instrument-based measurement processes in terms of charlr@channel pairs constructed between dynamical quan-
tity algebras of a target system and its measurand’s measurg instrument.

Keywords: quantity algebra, measurement theory, instrumat model, information channel, cochannel, discretiza-
tion

1. INTRODUCTION AND BACKGROUND presented in4] approached measurement as an interaction
between a target (measured) system and a measuring instru-
I N THE NATURAL SCIENCES engineering, and technologi-ment, designed and calibrated to measure some specific quan-
cal applications, the aim of a measurement process iditg instantiated by the target system. With the target sys-
obtain verifiable numerical information about tta¥get sys- tem and the measuring instrument modeled by their respec-
tem’sextantstate Partial information about the system'’s statéve quantity algebragformally Banach algebras the main
at a given site and moment of time is made available by meapects of deterministic measurement were modeled by natu-
suring the system’s designated quantity (i.e., a predegjstral algebraic constructions, such as tensor products af-qua
quantitative attribute to be measured) — calledeasurand tity algebras (representing the compoutadget+ measuring’
at that site and time. The measurement process involggstem), temporal dynamics on tensor products of quaritity a
the determination of the value of a suitalpleinter quantity gebras (representing the dynamical measurement cougling o
which has become maximally correlated to the measuranitiie target system and the measuring instrument), and more.
actual value, thanks to a direct physical interaction betwet was also shown how a fundamental theorem in analysis,
the target system and the measurand’s measuring instrunkewtvn asGelfand representatigrguarantees that the syntac-
— designed for reading the values of its pointer quantity. Itic framework of autonomously specified quantity algebras
formation about the system’s state together with the systeifand various constructions effected from them) comes with
validated theoretical model can be used in predicting sdmeaarealist semantics (interpretation) on which autonomously
the results of future measurements. specified quantity algebras can be identyfied with concrete
The algebraic-analytic framework for measurement theaxgebras of observablesn uniquely determinedopologi-
cal spaceof the kind commonly used by scientists state
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spaceof natural systems in the world.

Because the initial presentation of this algebraic-amalyt
framework was only brought up as a viable alternative to

the representational theory of measuremeseéveral episte-
mologically and methodologically important issues perai

ing to real world measurements remained unexplored. These
issues will be addressed in the present paper, which esriche
and refines the framework of Banach algebras, so as to obtain
conceptually and formally adequate models of the following
aspects of measurement:

(i) Error and uncertainty in measuremenBecause real

(ii)

world measuring instruments do not possess unlimité)
degrees of accuracy, all scientific measurements are sub-
ject to uncertainty in general, and deterministic and ran-
dom errors in particular. The inherent element of ran-
domness and uncertainty, however, is not reflected in
the framework of Banach algebras, where quantities are
presumed to bemoothor continuous and where mea-
surements are treated mfeally perfectdeterminations

of such quantities’ values. To make our algebraic mod-
els of measurement epistemologically and methodologi-
cally more realistic, we will introduce a mathematically
broader notion ofmeasurablgrandom) quantities, and
will use von Neumann algebraas our quantity alge-
bras for modeling measurement interactions whose re-
sults are known only to the extent that they belong to cer-
tain measurable sets of reals with such-and-such prob-
ability. Analogously to the earlier mentioned Gelfand
representation for Banach algebras, we will show that
another theorem in analysis, known Reesz represen-
tation, provides us with a semantic interpretation of au-
tonomously specified von Neumann algebras in terms of
concrete von Neumann algebras of random variables on
suitablemeasure spaces

Relations between infinite/continuum theoretical mod-
els and finite/discrete measurement datéheoretical
science relies extensively on modeling natural phenom-
ena using families of differential equations over real-
or complex-valued functions (based on the ontological
assumption that the underlying domains of time, space
and system states are furnished with the structure of a
topological continuum). On the other hand, real-world
measurements can yield only finite amounts of informa-
tion about a target natural system. As a result, quan-
tities in theoretical models may take on numerical val-
ues which cannot be experimentally determined with any
fixed finite amount of measurement and computational
resources (e.g., in the case of transcendental reals), or
even in the limit of infinite precision allowed by highly
idealized measuring instruments (if the measurand’s val-
ues are non-computable or random reals). A theory of
measurement, we believe, should explore this gap be-
tween theontologicallymotivated continuum-based the-
oretical models and our resource-bounéistemicac-

discrete measurement data. To this end, the present paper
will follow [ 2] by introducing the notion of (spatial and
temporal)discretizationof continuum dynamical mod-
els, and investigate the formal relationships between con-
tinuum theoretical models and their discretized versions
in the context of measurement interactions. Along the
way, we also exploit the fact that Gelfand and Riesz rep-
resentations — which relate dynamical algebras and topo-
logical dynamical models — also holds for discretized
versions of these algebraic and topological dynamical
models.

Information channel perspective on measureméygt:a
matter of scientific practice, a given quantity instantiate
by a target natural system can be measured in differ-
ent ways, with varying degrees of accuracy, using dif-
ferent measuring instruments, different background laws
involved in the design and calibration of measuring in-
struments, and so on. Yet, despite being quite differ-
ent qua physical interactionssuch measurements have
something in common which makes them all measure-
ments ofone and the same quantitZlearly, this com-
mon property shared by physically distinct methods of
measuring a given quantity cannot be captured at the
physicallevel of description, except by trivial disjunc-
tive descriptions of all the different physical processes
underlying such measurements. On the other hand, this
common property can be handled at a ‘higher’ (concep-
tually more general) level, calledfianctionalistperspec-
tive on measurement — the perspective which abstracts
measurement away from its specific underlying physical
processes and allows us to view it agansfer of infor-
mationabout the measurand from its instantiating target
system to the instrument’s pointer module. The motiva-
tion for this functionalist perspective on measurement is
quite analogous to that behind the machine-independent
perspective on computability, which abstracts away from
specific equivalent models of computation (e.g., a Tur-
ing machine, Post production system, Markov algorithm,
etc.) and focuses on the general propertiecam-
putable functions In this paper we will explore several
formal and conceptual advantages of this functionalist
information-theoretic perspective on measurement by in-
troducing and studying the notion ofchannelas a for-

mal model of the causally directed transfer of informa-
tion about the measurand to the measuring instrument.
Of special importance to this investigation will be a the-
orem known asJmegaki representatigrwhich guaran-
tees that every information channglrget system—
measuring instrumergomes with its dual conversely di-
rectedcochannel measuring instrument— target sys-
tem The latter will be used in modeling thestimation
(reconstruction) of the measurand’s objective value from
the measuring instrument’s output.

By way of concluding this introduction, we would like

cess to the modeled natural systems through finite @andemphasize that the rather technical algebraic-anadytic
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proach to measurement presented in this paper is motivgtedtative attributes and behavior of the natural systeomder
(and ultimately gives support to) ophilosophicalcommit- consideration. For reasons of mathematical tractabititg,
ment to therealist conception of quantities the conception quantity algebra can not be exhaustively detailed. Many as-
which opposes the instrumentalist view of quantities ulyderpects of the natural system of interest are deliberatelytedyi

ing the well-knownrepresentational theory of measuremensuppressed or enhanced. The system’s quantity algebr& is no
and on which (i) quantities artheoretical entities of scienceintended to be an exact mathematical copy of reality. lustea
interpreted a®bjective characteristicef natural systems in it is constructed with special regards to formulating stifen

the world, and (ii) measurement is a physical process of (@pncepts and ideas that facilitate the model buildender-
proximate)determinatioror estimationof the value posed by standingof the system’s structure and function. In practice,
a quantity under consideratigras instantiated by the targethe algebra is generated by a remarkably short list of quan-
natural system. tities (e.g., positions and momenta of point particles @spr
sure, volume and thermodynamic temperature of gases in ves-
sels, or currents and potential differences in electricuiis)

that meets the aims of quantitative modeling of measurement
at a given level of idealization and simplification. The dis-

In this section we recall the general mathematical strect@€Pancy between the degrees of freedom present in the targe
of classical physical measurement we shall néestrument- natural syster§ and those captured by the representing quan-

based measurement of a quantifyinterest (e.g., electric cur-tity_ a_lgebranS inevitably leads to variousodeling errors _
rent, volume, temperature, mechanical stress, X-ray 9nef5h's is not a serious problem as long as the selected algebra i
etc.), commonly called measurandis a physical process in_sufficiently close to the actual system in the sense thatithe d
volving atarget systenthat (i) instantiates the measurand iff"€Nces between measurement results and model-generated

a particular amount or degree, (ii) is dynamically coupled predictions (and explanations) that could tell them apeet a
the measurand’s designatewasuring instrumerduring the well within the bounds of antecedently specified admissible
act of measurement, and (jii) contingently upon its state {rrors. Overidealization or overabstraction embodiechin t

System’s quantity algebfs can lead not only to information

via the compositésystem + instrumentbipartite system to reductionin the sense that not all quantities or behaviors of in-
the instrument'pointer module, ready for readout terest are faithfully encoded in its structure, but alsafor-

Although the formal structure of much of classical physicgationdistortion, meaning that the algebra allows behaviors
and systems science is nothing more than a suitable dyn&fﬁ'—Ch are not present in the natural system unde_r consider-
ics (traditionally described by differential or differemequa- ation. This Is the price a modeler has to pay for !ncorrectly
tions) and a statistics of quantities, the mathematicahé&a handlu:]g SySt‘?m comp!exnyl and for failing to delineate the
work for physical measurement processes ordinarily inml\/m)deI s domain of applicability.
the following three major algebraic-analytic and probiabi In practice, all measurands which are believed to be de-
ingredients: (1)quantity algebragogether with their (deter- cisive in the description of the target system’s structurd a
ministic and probabilistictate spacesndependently repre-behavior of interest are automatically included in its agso
senting the target system and the measurand’s measuringiiae quantity algebrdl. To uphold the standard laws of addi-
strument, (2) joint physicalynamicsof the ‘system + instru- tion of quantities of the same physiaiimensiorand those of
ment’ compound system, and (3) a superveninfgrmation distributive multiplication relied upon in secondary gtites
channelfrom the system'’s state space to that of the instr(such as density, pressure, stress, and so on), the aljabra
ment’s pointer module. To see the details, we need to reqattsumed to have the structure of a unital commutative ring.
some basic concepts pertaining to mathematical measutenireparticular, for any pair of quantitiel g in 2l we have their
theory. We start with the characterization of quantity bige associative and reversib&ldition f+ g, and a bilinear, as-
and accompanying state spaces. sociative and commutativeultiplication feg with a unique

(constantunit quantity 1 satisfyingle f = fel = f, allin 2l.
2.1. Quantity algebras of measured and measuring systeﬁ?sti_o nal scale chang_es_ of quantit_ies prompt to include ghe o

eration ofscalar multiplication which assigns to each quan-
Here we follow the algebraic-analytic framework for medity f in 21 and a scalac in the field of realsR the unique
surement theory, outlined id] and further developed irb]. scalar product quantity, denotedf, again in2(. In this way,
It is impracticable to study classical physical measurdmehe quantity algebra is automatically also a linear spaeg ov
without an explicit commitment to appropriate (continuou®. In view of topological and measure-theoretic properties
measurable, smooth, discretized, etupntities such as en- of many quantitative attributes arising in physics and engi
ergy, force, electric charge, pressure, and so forth, ane laeering, quantity algebras tend to come witham, i.e., a
like relations between them. Accordingly, the startingnpoinon-negative real-valued functidr|| : 20 — R satisfying the
of measurement modeling in engineering and the natural sgual norm axioms and the inequaljty«g|| < || f| - |g|| for
ences is the specification of a physically relevalgebral(s all f,g e 2. A topologically complete, nhormed, real, uni-
of quantities that is believed to correctly describe thenquaal, commutative algebra described above is importantsin it

2. ALGEBRAIC-ANALYTIC FRAMEWORK FOR
CLASSICAL MEASUREMENT THEORY

system sends information about the measurand’s extarg v
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own right and therefore has a special name — it is called a repéce, then the spad®(.2") of all continuous real-valued
(unital, commutativeBanach algebra It is good to bear in functions of the formf : 2~ — R is a real (unital, commu-
mind that there is no proof that the algebraic language of Bative) Banach algebra under pointwise-defined algebiaic o
nach algebras is fully universal in the sense that withidl it @rations (inherited fronR) and the supremum norm. In this
mainline physical measurements of quantities can be frameaise it is elementary to verify that the value space Vabf
What we can claim, however, is that Rilownempirically ad- f equals to its numerical randef (x) | x € 2} C R. Quan-
equate theories of classical measurement processesimyoltities of a more complexype (e.g., vector and tensor quan-
continuougjuantities admit a Banach algebra formulation. Gies) come with values belonging f&" (for some natural
special appeal is the fact thabncommutativ8anach alge- numbern) or other more involved sets constructed from the
bras over the immutable complex field provide an establishsakt ground fiel®R of reals.
framework for reasoning about quantum measurement andjle mentioned that most quantity algebras arising in appli-
moreover, certain assignments of appropriate Banachrgelations tend to bénitely generatedRecall that a finite subset
to space-time regions are well suited to the study of retdiev of linearly independent quantities, s4yi, g} of a Banach al-
mechanical and electromagnetic field measurements. Bangebra2l, finitely generateshe entire algebral just in case
algebras are furnished with as much algebraic and geonmgé set of all linear combinations of monomials of the form
ric structure as a measurement theorist could ever wismforfine g" wherem, n are natural numbers, ispologically dense
her theory. We now extend the foregoing primer on Banaghg(. In particular, quantity algebras used in classical me-
algebras with a few facts on probabilistic states thereah aghanics, thermodynamics, optics, and electromagnetisth te
channels between them. to be finitely generated. For example, in the formal treatmen
of measuring instruments, chosen to measure quahtitye
2.1.1. Banach algebra approach to physical measure-shall frequently rely on the pointer module’s Banach algebr
ment m(@f), generated by the instrument’s pointer quangiyf
_ _ _ ___and unitl. Itis elementary to check that((Of) is the small-
We devote this part of Subsection 2.1 to setting down, in pigs; ganach algebra containifigf. To see the measurement-
cise terms, the definitions of states, and information ceENNaoretic significance of finitely generated quantity atgsb

between the state spaces of measured and measuring systgiASiger again the case of measuring quarftithat results
In the second part we shall confine our attention to the progs, ) in the outcome € Val(f). Since for any continuous

erties of von Neumann algebras of measurable quantities tion& : R — R the valueZ (c) can always be calculated

their Riesz representation. _ B (perhaps only approximately and of course likewise for all
In support of dimensional analysis, some quantifi€s.g., finitary combinations of the forr+ f + fef+ fefef ...,

volume and area, needed for defining density and presstregfg ) “there is no need to perform another measurement of

spectively) are presumed to come with a uniquersequan-  measyrand o f. Simply, because measuririgautomatically

tity f_l- Satl_slfy'ng the equalitie$« = = f~"ef =1and (505 care of the measuremenadfquantities in the algebra

(feg)™ = f""eg™, if both f andg are invertible. Itis easy o ) generated by (albeit only indirectly via computation),

to check that the set of invertible quantities (i.e., thesothet |, o regard the measurementfais a physical process of

possess an inverse) in a Banach algebra a group with re- g, 3 cting information from the target system about allrgua
spect to the multiplication operation conveniently denotedisias in the algebra((f). More generally, in the case of a

by Gral. Importantly, each quantity in 2 has a uniquealue joint measurement of quantitifsandg the extracted infor-

(spectral) space mation pertains to the finitely generated algefifd,g), and
so on.

Some (dimensionally homogeneous) quantities admit
thatabstractly(i.e., without any evaluation device) specifieguantitative comparisons. A quantifyc 21 is said to bepos-
the quantity’s set opossiblenumerical values. The valueitive provided that it has the fornf = g> = geg for some
space captures the standard lore about quantities asisgibquantityg in 2 (e.g., the quantityrea = length « length is
possessing values that match their concrete instantiationpositive). If f is positive, then we shall writé > O, andf <g
degrees or amounts. Specifically, if experimenters wereigdinderstood to meag— f > O, whereO denotes theero
measure measurarfd ideally they would obtain exactly onequantity with value spacg€0}. In this mannergl is also fur-
of the values in V4If) as the measurement outcome. Howpished with a natural partial-order structure that is alici
ever, as everybody in the trade knows, the measurement 81g-statistical treatment of quantities. Positive quagiare
come in a normal real-world measurement process is at feticularly important in defining square roots and gergral
only the value of the measuring instrumentsinter quantity h™" roots of quantities of the forn/f. Specifically, the square
Of (chosen for measuring) that is presumed to correctlyroot of a positive quantityf, denoted,/T, is the unique posi-
approximate the actual value of tive quantityg such thageg = f. The set of positive quanti-

A good mathematical source of examples of Banach aldies of2 forms a linear lattice.
bras are the rings of continuous real-valued functions on after a quantity algebr&l has been correctly chosen for
topological space. Concretely, # is a compact Hausdorffthe natural system under consideration, there is a geakral

Val(f) =q; {ceR|c-1—f ¢ GrA}
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gebraicway to describe the system’s possible (putejer- evaluationmap

ministicand (mixed)probabilistic statesn terms of suitable

expectation functionalen (.1 In preparation for the correct Ax.7(A)

conceptual setting for states, recall that the set of cantin

ous linear functionals of the fornf : A — R is a Banach defined very simply by taking the expectati@{f,&) =4+

space (under pointwise-defined addition inherited fidand & (f) of quantity f when the system is in stat€, handles

scalar multiplication), symbolized Bt* and called the alge- the algebraic specification of expectation values of qtiasti

braic dual of Banach algebr&l.> An expectation functional arising in calculations and measurements. A key observatio

& on %l is a unital, positive, continuous linear functional ofve wish to make here is that each natural sysfewf in-

the form above that ascribes a unique expected \élife to terest can be completely characterized by a quantity agebr

the quantityf of interest, contigently upon the system’s extafifs alone and there is a universal way to specify the algebra’s

(deterministic or probabilistic) state, encodeddyWe shall state space” () together with the evaluation map. Note,

write however, that éheoreticalaccount of the value’( f) does not
automatically pop into a measuring instrument or into the ex

S (A) =qt {£ €A | >0 & £(1) =1} perimenter’s mind without a reproducible measurement pro-

cess, based on a suitable physical interaction (i.e., egeha

for the set all expectation functionals @ Here the posi- of energy and information) between the target system and a

tivity constrainté” > 0 means#’(f) > 0 for all f > O and, calibrated measurement apparatusffoReferring to€'(f) is

to reiterate, the numbef'(f) is thought to be thexpected of |ittle value without having direct access to specific noeth

valueof quantity f, when the target system is in a state reprghat actually generate, at the least, its rough estimate.

sented by&”. Each expectation functiondl is accompanied  One may object that even if a measurement is instrument-

with its dispersionfunctional (algebraically emulating stanyased or involves a physically correct measurement cagiplin

dard deviation), defined by Dgpf) =4¢ /&(f2) _g(f)z the outcome is still at best the expectationfoand not the
guantity’s actual value. Here it is necessary to exercise ca

for all quantitiesf .3 q . s A hall h
Expectation functionals are needed for (i) extracting emp"Fm hot to jump to conclusions. As we shall see next, the

ical content from the syntactic formalism of the quantityeal outC(_)fr_ne OI meafs:;r]r N9 q:;an}ﬂfyEietuswelyddgrijends 0.? gre
bra®l, (ii) determining the extant values of quantities durin ecilic nature ot the system s state encoded by a suitanle ex
ectation functional and on the physical nature of the quan-

measurement, and for (iii) handling quantitative inforioat =~ fE imol lo. i i lued :
about the target system in genetallhe so-called algebraictlty ltself. For a simple examp e s two-va ued, meaning
Val(f) = {0,1}, then&'(f) specifies therobability that the

*As will become increasingly evident as we proceedeterministic state actual value of quantity is 1, given that the system is in the
of a target system at a given instant of titrie the system’s ‘fine-scale modestgtes’. Other examples are provided below.

of being’ att as seen from the perspective of the quantity alg€harought ot - . ] :
about by its previous history, involving various preparas and causal in- A distinguished role is played by the so-caledremalex

teractions with other systems. States are essential inndieieg the extant P€Ctation functionals of”(21), i.e., functionals that do not
values of quantities (using calculations or measurementsjretiie reversed admit any proper convex decomposition. Formally, an expec-
direction, the values of quantities at a given moment of timecaliectively  tgtion functional& is said to beextremalprovided that§” =

sufficient for individuating the system’s prepared staténat time. In order . . - -
to capture the supervening uncertainty or randomness inhreepetitive C ¢1+(1-c)-&implies& = &1 = & forall0<c < 1,4,

measurement interactions and complex (e.g., chaotic) besasisystems, andé&z. Equivalently, a functionat” is extremal just in case
it is necessary to consider also a more general notion of ataey partic- it is multiplicative, i.e., the equality’(feg) = &(f) - &(Q)
ular timet (that prompts a substantially wider algebraic-analytiatiment holds for all quantitiesf andg in 2. Extremal functionals

of physical states), called @obabilistic state intended to capture the sys- & iselv di . f . h th diti
tem’s ‘gross mode of being’ &t i.e., its objective higher-levéhdefiniteness are precisely dispersion-iree, 1.€., we have the condition

relative to2(. Complete identification of a deterministic state comes with@SPe(f) = 0 for all f. For future reference, the set of ex-
maximum of information about exactly ‘how the the target systemitself’  fremal expectation functionals is denotedﬂyx(g()ﬁ It turns
at a given time (when nobody looks), considered in relatiog?.td his infor- out that its elements capture the so-called underlyie@r-

mation together with the system’s governing laws is sufficfenspecifying L. . Vi .. | d dh
any state into which the system will evolve in the future. Bytast, in gen- ministic statesinvolving minimal randomness and hence pro-

eral, knowledge of a probabilistic state results only inssithan-maximum
information about the system.

2A Banach spacés a linear space ovék equipped with a norrj-|| that is
also a complete metric space under the metric induced by the riRanach

re the most important linear rising in ialysis. Th o . o . -
2gaccaﬁ|se?|_e tspeacec;Sft;uI'e fhoetgri:n:e :iarsnp;)ellg:ifa Blzlngclh si)“;iﬂeg ysis € quantitiesf andg are said to bgrobabilistically independentelative to&
. b .

3To simplify our language, we shall often refer to an expestafinc- provided tha(fg) = &(f)- £(g). The algebraic analog afariancerel-

tional somewhat loosely as a (deterministic or probabilistitate even ative to& is defined by Vaff) =4 5<(f - &(f)- 1)2) for all quantities

though it is more precisely mathematicatepresentation of a physical state,f. Many other probabilistic and statistical notions (e.gvariance, correla-

relative to a selected quantity algebra, summarizing theetaagstem’s in- tion and conditional expectation) automatically carry deeBanach algebra

stantaneous situation or mode of being. probability spaces on an analogy with the correspondingepts in classical
4The principal benefit of considering probabilistic statether than just probability and statistics.

the customary deterministic states is that we immediately gdlimécess to 5The value space of quantifycan now be given quite simply by \@l) =

a quantity-basedlgebraic probability calculusneeded for the treatment of { &(f) | & € Lex(A) }.

€

R,

errors and uncertainties. We mention in passing that the(paif’) con-

sisting of a Banach algebf and an expectation functionél thereon can
be thought of as Banach algebra probability spadéat significantly gen-
eralizes Kolmogorov's classical notion of a probability spaFor example,
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viding maximal information about the system’s mode of beingodule for readout or storage. The input information is pre-
at a given moment of time. Since there is no dispersion wheumed to be encoded by an appropriate expectation funttiona
measuring a quantity in a deterministic state encoded by itthat the system-to-instrument channel transforms dutieg t
extremal functionalf’, the expectatiorf’(f) determines the measurement process into another closely related exjmerctat
precise value of . The objective of the remainder of this secfunctional at the receiving end, ready for decoding and in-
tion is to clarify how and why mainline measurement prolterpretation. It is important to bear in mind that a channel
lems pertaining to target systems can be framed in the setptures not only the underlying causal mechanisms of the
ting of a suitable algebrdl of quantities (some of which aresender, receiver and transmitter, but also all physicalgliys
to be measured) and its associated compact convex subspargom) disturbances in the system — from source to destina-
(topologically a simplex) (2() C 21" of expectation func- tion —and randomness originating in the measurement goces
tionals (serving as principal means of obtaining measunemaself. In addition, we wish to emphasize that since channel
outcomes), linked by an algebraic real-valued evaluatiap mransmission is inherently a finite process, in an actudiiea
€. We mention in passing that the simple%(2() of states tion each continuous input quantity will appear at the ottpu
comes with the lattic&ace(.(2)) of its faces. Recall thatin some discrete form.
afaceis an convex subse# C .7 () such that the condi- In [13], Umegaki shows that each state chan@¥l :
tonc-&+(1-c¢)- &' e F = &,& €.F holds for Z(A) — /(') defined above determines a unique dual
all 0 < c < 1. Two statess and&” in .#(2l) are said to be channe] called agquantity channebr simply acochannelhav-
orthogonaljust in case the respective faces to which they bieg the mathematical forr@ : 2" — 2( (with the arrow direc-
long are disjoint. As we shall see, the orthogonality relati tion reversed and the superscript star symbol removed, suc
between states and its cousins turn the lattice of facesaintihat the following conditions hold for all expectation fuion-
rich playground for measurement theSryWe now digress als& on €, quantitiesf,gin 2, and reals, b € R:
briefly to recall some crucial facts about mappings between ) .
state spaces and between their underlying quantity algebrd!) Duality: &(C(f)) = [C(&)](f).
nee_dgd for a pa_rticularly attractive information-theiureke- (i) Linearity: C(a- f+b-g) —a-C(f)+b-C(g).
scription of physical measurement.

Let. () and.” (') be state spaces associated with B&#H) Unity: C(1) = 1.
nach algebra8l and2l’, respectively, where in measuremeng e
applications the first algebra represents a target systdran v) Positivity: >0 = C(f)20.
second algebra models a measuring instrument or its pointekng conversely, each dual channel or simply cochannel
module. Then a maf” : .7/(%) — (') between them is (i e 4 linear unital positive mag : 2" — A determines a
called astate channebr simply an informatiorchannelfrom unique (state) chann@* : .#(2) — . (2') such that the
input 2( to output?l’ provided that the following three Condi'duality property listed above holds.
tions are satisfied for all statésand&” on 2, quantitiesf in Following up on Umegaki’s representation theorem, later
2, andreals G<c < 1 we shall be discussing a general algebraic-analytic approa

. , to a large variety of measurement processes, systemuticall

() Affine Property:C*(c- & +(1-¢)-&") =c-C*(&) + framed ?n terms >(l)f the above defineg channel-co?:/hanngl dual

(1-c)-C(&). pair, succinctly symbolized by the nfhp

i) Unity: |[C*(&)[(1) = 1. x
(ii) y [ ( )]() Q{’x,jﬂ(m’) (c,c*) mxy(m)
(i) Positivity: f>0 = [C*(&)](f)>0.

rendering thedjointnesgliagram

We call a state chann€f* : . (2() — . (2l") deterministic
justin case it maps deterministic states to determinisdites, A x y(m) Cxly 2 x y(m)
encoded by extremal expectation functionalst is easy to
check that a cascade composition of two channels is also a 'm’xc*l l’em

channel. Additional properties of channels will be diseass , , o
later on. The measurement-theoretic significance of channe A X y(m ) R

can be summed up as follows. Measurement is a physical . - . .
: . commutative. In this diagramg denotes the identity map-
operation performed on a target system, aimed at extractii

information from the system that is transmitted via an infoflgg fromy(m) to itself and likewisdgy stands for the iden-

. o | . tity mapping of. (') to itself. Finally,€9 and€y are the
mation channel to the coupled measuring mstrumentspombgsic e%%lu%tion r(naz)s defined earl?/er. Q[When ﬁnpacked the

SWe regard the quantities i to be instantiated in the target dynamicapommUtatMty property of the dlagram S|mply states that th
system collectively at all run times, while the statessif(2() occur in the equality & (C(f)) = [C*(&)](f) holds for all statess” and
system only individually, one at a time.

“Strict determinism is usually reserved for bijective chdsiieat preserve 8To indicate that the channel-cochannel pairs involve twosnapnce-
the orthogonality relation between states. forth we shall denote them by triangle-headed arrows.
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guantitiesf. Because in what follows we shall need to resulation, measurement, and testing.
fer to various quantity algebras, we prefer to reformulate t  This leads us to recall an important representation (raaliz
channel-cochannel duality in its above-displayed adjmss tion) of Banach algebras. The so-call€lfand represen-
form.® We take the two-way mafC,C*) (shown above) to tation theorem (seef] and [L1]) states that every abstractly
be a fundamental concept in its own right that captures tiigen real (unital, commutative) Banach algeRissatisfying
information-theoretic essence of instrument-based neasthe so-calledR-property|| f||> < || 2 4 ¢?|| for all quantities
ment. f andg, is isomorphic to (and hence can be identified with)

After these preliminaries we are now ready to define at leéis¢ concrete Banach algel€4.2") of all real-valued contin-
one major species (out of many possibilities) of a channebus functions (with the usual supremum norm) on a com-
theoretic measurement model as follows. 2lgtbe the quan- pact Hausdorff topological spacg”, defined (among other
tity algebra of a natural systefunder consideration and letoptions) by the space ohaximal idealsn 20 and furnished
f € 2s be its measurand. Furthermore, takef € 2y to  with the so-calledselfand topology
be the measurand’s pointer quantity in the measuring instruThe Gelfand duality between quantity algebras and topo-
ment's quantity algebrély. Then a dual paifM,M*), con- logical state spaces, alluded to above, has proved to be sur-
sisting of a linear unital positive map of the fold : 2\, —  prisingly effective in thesemanticalstudy of measurement
s and its associated affine unital mag* : . (As) — processes. As an additional element of concreteness, the so
& (2Awm) is said to represent ambiased measurement of falled Riesz representation theorem (sk® gr Theorem 6.3
with pointer quantity(® f provided thatM(®f) = f. A in[14]) states that the algebraic du@(.2")* (formally a Ba-
closely related measurement modM’, M) with additive nach space that includes all expectation functionals) ef th
error is defined byM’'(®f) = f +u, whereu is an appropri- mathematically concrete Banach algel@a2’) is isomor-
ate ‘noise’ quantity. Because the mathematical ways inwhighic to (and hence can be identified with) the Banach space
channels or cochannels are specified in applications tene taf all regular Borel measures on the Borel measurable space
volve only one of them and the other is automatically derivéd?”, %) associated with?".*> And far more is mathemati-
from their duality property, often we shall refer to a cochamally true. The convex spac@?(C(%)) of expectation func-
nel (quantity channel) as the measurement model of interéisials on the algebr&(.2") is in a bijective correspondence
without explicitly specifying its corresponding (staté)an- with the spac®(.2") of all regular Borel probability measures
nel, or vice versa. on the induced Borel measurable spack, & ). Explicitly,

Up to this point we have been treating quantity algebraach probability measui@ on the Borel state spade?’,.#)
and their state spaceyntactically i.e., in an axiomatic or comes with itsnducedexpectation functionats on C(2"),
presentation-independent way that treats all quantitiethe defined by the integrafp(f) =q¢ [, f(x) P(dx) for all f in
same footing, intended to abstractly characterize andbreag(.2"), and all expectation functionals arise in this way.
about the system’s quantitative attributes of interesth Vit- Conversely, it follows at once from Gelfand and Riesz rep-
tle regard forconcrete numerical values presented in specifigsentation theorems that for any underlying Banach adgebr
units, and methods or means of identifying these valli&s- 2 and a quantityf in it, each stateS’ € .#(2) determines a
wise, states were modeled abstractly by positive nornthliagnique probability measur. ; € P(Val(f)) such that
linear functionals on quantity algebras. The question thus
2cr)|§nes. given the target system’s quantity algebra ancb+ts‘ a _ @@(E(f)) :/ £(x)Ps. (dx)

panying state space, when can we say that they are ‘cor val(f)

rect’ or meet our representational aims? Our basic problem
is simply to find a method of quantity model validation. Fdbr all observables in C(Val(f))_ Indeed, it is easy to
that we need ainterpretational frameworR® which secures see that sinc@((f) is a subalgebra d¥l and isomorphic to
a concrete physical meaning of quantities, their data @iepaC (Val(f)), there is an embeddinty : C(Val(f)) — 2, de-
tions and laws — enabling a validation of propositio.ns_ usifi@led by the continuous functioff (&) =q¢ £(f) = & o f for
measurement outcomes. Another way to express this is t0 ¢ \vheref Gelfand-representt along the lines discussed
that in addition to the foregoing syntactic algebraic qUgnt;p, the next paragraph. This representation result is caemén
and state apparatus, intended for effectiveoreticalanaly- i formulating the notion of perfect measurement. By way of
sis, we need their mathematically concregalizations im- jy,stration, take?ls to be the quantity algebra of target sys-

plementationsr distinguishedepresentationswhich allow a5 and letf ¢ 2As be its measurand. Furthermore, take
us to designate a specific frame or basis, in which all perti-

nent physical variables and coordinates can be fixed for caMHere the term ‘abstract’ refers to those quantity algebraishware pre-
sented in a ‘coordinate-free’ manner — needed by the engaresmientist to

®We shall interpret chann@* ontologically as dorward model of a mea- reason freely about the physical processes themselveguwitivoking the
surement process that represents the causal directioroafiafion flow from unnecessary details of any specific numerical or other measumtetheoretic
the target system to a measuring instrument. And its dual coei€ is best domains. However, the choice of these numerical domains isatrinces-
thought of epistemically as anversemodel, representing the measurand’sablishing a bridge between the world of numbers and the paysystem’s
reconstructioror estimationoperation, acting on its pointer quantity. behavior, embodied in the representing quantity algebrastatds thereon.

10Also known as auantity algebra semanticise., an endeavor of provid-  12Here the measure-theoretic Borel sigma-figidon .2 is generated by
ing a mathematically specified empirical content for quarstitied states.  the open sets of the topological spagée
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®f € Ap to be the measurand’s pointer quantity in the meform D,, concentrated at a single poirtin .2~ such that
suring instrument’s quantity algeby. Then a cochannel &b, (f) = f(x), wheref : 27 — R (with Val(f) = Val(f)
(linear unital positive map) of the form : Ay — s (to- and | || = || f]|) is the Gelfand representationf quantity f,
gether with its duaM*) is said to represent perfect mea- specified by the chosen isomorphism2 — C(.2"). Be-
surement of measurand f with pointer quantiyf provided cause the set of Dirac probability measures is also in a bi-
that Va@f) = Val(f) andM (& (D f)) = &(f) for all con- jective correspondence with the spageé (i.e., we have the
tinuous mapg : Val(f) — R. Returning to the general caseisomorphism¥e(C(.27)) = Z°), the traditional state space

observe that the above-discussed passage terminology, usually reserved for spack alone, is consis-
. tent with the one introduced earlie¥® Considerations from

7@ €} P(Val(f)) = 5”<C(Val(f))> Gelfand ar_1d Riesz representatioq results lead to t.he fi]dbpw
mathematically concrete topological representationlig@a

. _ tion) of the algebraic evaluation ma@, introduced above:
from the abstractly given convex space of expectation func-

tionals on2l to the concrete space of probability measures on €
the value space of a given measurdndlefined bye; (&) = C(Z)xP(Z) PR),
Pe ¢, leads to an important commutative passage where for ‘observablef : 2~ — R (Gelfand representing
M* quantity f) in C(2") and a probability measuif (encoding
S (As) 7 (Anm) the system’s extant probabilistic state) we€et (f,P) = Q
with Q(B) =41 P(f~%(B)) for all Borel subsets oR. Thus,
€ €0t under a specific realization of the algebraic evaluation @ap
the numbeP(f~1(B)) gives the probability that upon (ideal)
P(Val(f)) . P(Val(@f)) measurem_ent the value of quaptﬁywnl fall |nto.the Borel
M} subseB, given that the system is known to be in a state cap-

) tured by the probability measuf® It is here that the quan-
from a given (measurement) chanfdi to a Markov channel i, gigebra actually makes contact with the natural system
M between the measurand's value space input to its poifigtnterest. However, as we have already intimated, the ex-
quantity's value space output. In this way, a measuremgitegionp(f-1(B)) provides only atheoretical determina-
channel can be thought of concretely as a transfer of iRl of the value of quantityf, since it says nothing about
probability distributions on the measurand's values tele gy actly howthe determination was made. For that we need a
output probability distributions on its pointer quantiglVes. concrete measurement process which is described by a suit-
Such transfers are perfect if the distance between these Jp. tensor product of quantity algebras and its relations t
probability distributions is minimal. the constituent quantity algebras, independently chariaet

Joint measurement of two measuraridandg is captured g the target system and measuring instrument. The spcific
by the commutative diagram will be discussed later on.

P(Val( f )) 13Recall that in classical physics it is customary to attriliute kinds of

states to any physical system under consideration: (i) theaied ground-

€; level, pure, deterministic (maximally informative) states that are endadole
P the points of a representing compact topological spacéor any of its iso-

morphic copies), and (ii) the logically higher-level probstic states, cap-
tured by probability measures (.2"). For example, from the standpoint
. P(Val(f) X VaI(g)) of classical physics, a falling coin used in statisticiaosin-tossing exper-
f.g iments can certainly be viewed deterministically as a classignamical
system with two distinguished terminal states, correspund the famil-
in which for each state” we set€; 4(&') =dt Ps. 1,9, SO that iar headsandtails. However, since the solutions to the coin's equations
for all continuous map§ : Val( f) O R we have of motion (not well known at the moment) are bound to be pathobilyi
sensitive to initial conditions, a deterministic predictiof, say, the coin’s
landing with heads up, is not feasible in view of prohibitiimitations on
E(&(f) = / &(x) Ps 1 g (dx, dy) the experimenter's memory, time, and other cognitive or physésmurces,
Val(f)xVal(g) o encountered in attempts at specifying the coin’s initialdibons with per-
fect accuracy. Nonetheless, this macroscopic determirggitem exhibits
o . in a structurally stable way also a (logically higher-lguahique probabilis-
and similarly for 5(5(9)) with ¢ : Val(g) — R. Al- tic state, seen as an objective indefiniteness in its behasiwoded by a
ternatively, if we rephrase the foregoing representatiombability measure, whose values are approximable by thpiérecies of

of joint measurement in a contravariant cochannel settiﬁ’mﬁg“rrence of heads. So, due to the extreme complexity of tésateter-

. . istic dynamics and states (challenging our resourceisenknowledge
€1:C(Val(f) x Val(g)) — As, we obtain€t (& ©1) = ¢ the coin's precise initial state) and the inaccessiblmitieregarding the

&(f)and€s 4(1®{) = {(9). coin's possible trajectories, it is incomparably more eftecto work with
Coming back to the representation of states, recall titfg coin's probabilistic state than with its deterministzadsandtails. The

the extremal functionals ilﬂex(C(%)) are in one-to-one fact'tha_t i |sc<_)nceptt_1al|yp055|ple to _ellmmate the t.el_emer?t' of uncertainty
. . . lurking in a coin-tossing experiment is of little empiricagsificance, if in
and onto correspondence with the so-calithc prObab”' fact such uncertaintiy is natctually going to be removed. For more details

ity measures o.%",.%), i.e., probability measures of theegarding the stochastic aspects of scientific models, Zead [8].

7 (%)
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It should by now come as no surprise to the reader thatrmed algebra that is an algebraic dual (viewed as a Banach
when we analytically reason about, for example, the motispace) of a unique Banach sp&g called the algebra’sre-
of a simple pendulum in a vertical plane, we may simpbual space, such that = (0,)*. Although the language of
choose the real Banach algelép,v), finitely generated by von Neumann algebras closely parallels that of Banach alge-
the positionp of the pendulum’s bob and iteelocityv (with bras, there are several subtle formal and interpretatidifial
respective value spaces \f) = C and Valv) = R)!* and ferences.
frame all pertinent kinematic problems in it. However, if We have seen that in the world of Banach algebras quanti-
our task is tocalculate or measurethe value of the pendu-ties are the primary entities and (deterministic and praisab
lum’s position at a given time, we need to pass to the qudit) states are treated via algebraic duality. In the useef
tity algebra’s concrete realization, namely the Banacklag von Neumann algebras the quantity-state duality often pro-
C((C X R) of all continuous real-valued functions on the stateeds in the reversed direction, in the sense that this time t
spaceC x R of all position-velocity pairs. Under this rep-quantity algebra is the unique dual of its presumed so-galle
resentation the position is now given by the first continuopsedualBanach space, involving states. Remarkably, there is
projection mapp” C xR — C C R, wherep(a,b) = a for a measure-theoretic analog of the Gelfand representagion r
all position-velocity pairga,b). And, as anticipated, the secsult, known as the so-calleghectral theoren(see [], sections
ond projectionv C x R — R captures the pendulum’s ve9.3 - 9.5 for a proof). It states that any abstractly giver rea
locity quantity. A prime example of a secondary quantity ifunital, commutative) von Neumann algeBfavith a normal
this representation is the all-important pendulum’s tetal state&’ thereonr® is isomorphic to (and hence can be identi-
ergy, i.e., the so-calledlamiltonian specified in terms of ~ fied with) the mathematically concrete von Neumann algebra
andv. Under the foregoing quantity semantics, all probabili€..(Z",.%,P) of boundedmeasurableeal-valued functions
tic predictions of pendulum positions are readily handlgd ¥modulo P-probability measure zero) on a suitable classical
the evaluation map probability space .2",.#,P), where theessential supremum

e norm ||| of £.(2",.%,P) is defined by
R

C(CxR) xP(CxR) —— P(R), If]lo = inf{k > 0| |[f(x)| <k for P-almostallx € 2},
implemented by a suitable measurement process. Proceggh the algebra operations are defined pointwise, inherited
ing a stage further, it is important to realize that sinceséheqom R. Furthermore, under the chosen isomorphism
concrete mathematical model_s live in r_ﬂrﬁ_m_tely resogrced N — £,(2°,.Z,P) the expectation functional is given by
realm (where they can be subjected to infinitely precise maga“) — [, f(x) P(dx) for all measurableguantitiesf in 9
ematical operations), the (probability) valueskngenerally yth | f(|., < . The spectral theorem provides a concrete
demand an infinite resource (e.g., unlimited time and memeR\ihematical semantics for abstractly conceived mealgurab
for storage) to specify them precisely. In contrast, caltohs (1angom) quantities and conversely, it shows how classical
and measurements are performed ifinite-resourceframe- ropapility spaces are algebraically encodable by von Neu-
work, with strictly finite amounts of information. To bridggyann algebras of quantities, equipped with normal states.

the gap between theoretical continuum dynamical models ?IﬂGr technical details, seéJ], Chapter 1, page 45.)
finitary data structures, we need to construct appropriate ¢ |, addition to a concrete representation of mea-

verging families ofdiscretizeddescent or offspring dynamicalg, aple quantities, there is also a concrete repre-
models of their continuum parent models. Details are givendgntation of states. Specifically, the Banach space
Section 3 below. £1(2,F,P) = £,(2,7,P), of all P-integrable func-
tions on(2",.#,P) is the predual oft.(%2",.%#,P), so that
2.1.2. Von Neumann algebra approach to physical mea-we have£;(%2",.%,P)* = £.(Z,.%#,P). Importantly, the
surement subset? (£4(2°,.#,P)) =qt {p€ £1(2,F,P) | p>0 &

p|| = 1} of probabilistic states is actually the convex space
f all density functionsn (2", .%, P).16

Unlike Banach algebras (convenient for smooth and con-
tinuous quantities), von Neumann algebras tend to have many
idempotent(two-valued, projection) quantitie$ satisfying
feof = f (forming, roughly speaking, a Boolean sigma alge-
bra under the partial ordering, defined byf < f’ if and

In addition to real (unital, commutative) Banach algebris
continuous quantities, we shall also make frequent reéeren
to von Neumann algebr&s of measurabldrandom) guanti-
ties, satisfying the customary algebraic closure conglitio

f,geM & ceR = f+4g,feg,c-feN,

interpreted in a standard way. A real (unital, commuta-i5 state¢ on is said to benormal provided that for every increasing
tive) von Neumann algebr#t is a real (unital, commutative)sequencefy, fz,--- of positive random quantities converging foin 9t we
have limy & (fn) = &(f). Normalcy is a technical counterpart of the countable
14We recall for the reader’s convenience tliaienotes the so-callegircle — additivity property of probability measures.
group, defined by the half-open intervéd, 2m) of reals — furnished with a  1%We mention in passing that.(.2",.%, P) can also be obtained from the
cyclic group structure and topologically isomorphic to thetwircle that is Banach algebr&(.2") of continuous real-valued functions a#i’ by com-
obtained by identifying & with 0. The standard algebraic notation for theletion under the so-called weak topology. For a detailezbait of von
cyclic groupC is R 25z Neumann algebras se&].

142



MEASUREMENT SCIENCE REVIEW, Volume 9, No. 6, 2009

only iff fef’ = f for all quantitiesf and f’), and are blessedsystem and a measuring instrument, chosen for the measur-
with excellent convergence properties. For example, in taed. In attempts at modeling the measurand’s measuring in-
Banach algebr&([0,1]) of continuous real-valued functionsstrument we assume that in addition to several constituents
on the closed unit intervgD, 1] there are onlytwo continu- (e.g., sensor, transducer, and processors), the instturasn
ous idempotent (projection) quantities, namely, thastant a pointer (or some other display) module that moves during
quantitiesko, ks : [0,1] — R, defined byko(x) = 0 and the measurement process along a calibrated scale in such a
ki(x) = 1 for all x, respectively. In sharp contrast, the chaway that different pointer positions on the scale correspon
acteristic function 8 : 2" — R of each Borel measurableto different measurement outcomes. More particularlyehe
subsetB C 2" of any compact Hausdorff spacg” is au- are two principal ways of modeling a measuring instrument.
tomatically an idempotent (two-valued) quantity in the vohhe first of these treats the instrument as an ordinary natu-
Neumann algebr&.(2",.%#,P), playing the role of events inral system, so that its characterizing quantities can be mea
the sense of Kolmogorov. In particular, the expected valgered by other measuring instruments. Second, in the dontex
P(f-1(B)) = gp(lf“_l(m) is the probability that the value ofof measurement involving the instrument under considamati
quantity f lies in the real Borel seB, when the system iswe use a representation that focuses primarily on the instru
in a state encoded bgp.1” Since the algebrd.,(2",.%#,P) ment’s pointer module, display of measurement results aand
contains only measurable functions, modulo probabilitamestatistical treatment of measurement errors.

sureP zero, it can be generated by the set of characteristiq=or most practical purposes, then, even though a measur-
functions J of measurable subseBsC 2". (Any measurable ing instrumentM(f) (designed to measure quantitycomes
quantity can be approximated arbitrarily well by a suitablgith its own theoretical quantity algebiys, that com-
linear combination of characteristic functions.) pletely characterizes the instrument’s physical strecamd

Itis time for an example. Along Newtonian lines, considgfehavior (important in explaining how the instrument works
a quantity algebra for the kinematic behavior of a simple-pefar the sake of simplified analysis of a given measurement
dulum, swinging in a vertical plane. Earlier we mentioneait thprocess we shall assume that the instrumemtsking quan-
the correct quantity algebra for this target system is ghven tity algebra?(()f) is specified more modestly by the mea-
the Banach algebr&(C x R) continuous real-valued func-surand'spointer (output) quantity®f, whose values (thanks
tions of the formf : C x R — R. The operations are de-o calibration) provide quantitative information abou thb-
fined pointwise and the norm of a quantity is the supremysttive values of measurantl Abstractly, the instrument’s
of its absolute values. The points©fx R encode the pendu-pointer (e.g., a needle) can be thought of as a particle mov-
lum’s deterministic states (classically, in terms of itstan- ing continuously in one dimension only (e.g., on a half @cl
taneouspositionandvelocityvalues), and each Borel probaand its other degrees of freedom are simply ignored. This is
bility measureP thereon specifies a probabilistic st#fein a theoretical view of classical measuring instruments. How
#(C(C xR)) via the expectation integrab(f) = [, TdP ever, due to the instrument’s limited sensitivity, disdriay
for all quantitiesf. tion, accuracy, finitary resources, and external noiseathe

In a von Neumann algebra setting the pendulum’s algelial position information provided by the pointer quantityf
of measurable quantities is given by the concrete von Neibout its measurand is bound to be only partial and un-
mann algebraC,(C x R,.#,A) of bounded/\-measurable reliable in general. Characteristically, normal measumeim
real-valued functions o€ x R, where the relativizing de- outcomes are small intervals containing the pointer qtgsiti
fault measure is the Lebesgue meastire Here again, the values. For example, suppose the experimenter reads the dia
operations are defined pointwise and the norm is the earligi digital display) of the measuring instrumevit f) and re-
introduced essential supremum norm. The predual Ban@gts that the value ofp) f (in some given units) is 3.450.
space What this means is that the pointer quantity’s actual vaks li

L1(Z, 7 N) = L(CxR,.F,N), in the interval[3.4495 3.4508, providing only arestimateof
, ) ) , the objective value of measurarfd In Section 3 we shall

of absolut_ely integrable funcuon; contains all probapdien- |, discussing several related problems from the standpbint
sity functions onC x R, comprising the convex subspacgiscretizationof quantities and their algebras.

y(ﬁl(‘%’ﬂ’/\)) of probabilistic states. Note that in this Having introduced the quantity algebras for measuring in-
formalism the probabilistic states are conveniently eecod 9 d yaig 9

. . ; struments we will be using later on, we now briefly mention
by probability density functions. And as above, the pendy- o : o o
. . . . . e formal description of their (deterministic and prothabi
lum’s position and velocity quantities are given by the m

eqa- : o
surable projections on the probability spdeex R, .7, A). ﬁlc) states. In the case of continuous quantities, we may set

Now we come to quantity algebras representing measur}hgt model of the instrument’s pointer module (for measurand
instruments. Earlier we noted that in general it is not pog 0 be the Banach aIgebQ(VaI(@f)) of (bounded) con-

. . oo . tinuous real-valued functions on the value space(Wdl
sible to obtain quantitative information about the targes-s _. L . pace( .)’
; . T : viewed as the pointer’s underlying state space. In this way,
tem’s extant state without a physical interaction betwdwen t s .
we have access not only to the measurand’s internal pointer

17As common in probability theory, here as well as in what follptre q_uantitylf :Val(@f) — R (defined by the_ subspace ir_1c|u-
expression 4 denotes the characteristic function (indicator) of theSset  sion 1¢ (x) = x for all x), but also to all continuous functions
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defined on its set VA[D ) of measurement outcomes. As artities and their values in the data lattigk requires several
ticipated, probabilistic states are encoded by expectétioc- logical and algebraic rules that — bearing in mind space- limi
tionals in.# ( C(Val(®f)) 18 tations — we do not list. Although we shall continue to work

In the ambience of measurable quantities, the instrumeﬂ(}j[ils"’1 Banach algebra framework, obviously, the assignment of

pointer module for measurarnfdis conveniently modeled by. ata propositions to quantity algebras works equally wisd a

the von Neumann algebg, (Val(®f),.#,A) of all bounded in the c_onte>.<t of von Ngumann algebras. . .
» At this point we are interested in knowing when is an ele-

measurable real-valued functions on the pointer quastit . :
value space VA f), equipped with the Lebesgue measuré]entary data proposition of the forfn= c true? In classical
easurement such data propositions (serving as units of pre

As we have already indicated, probabilistic states arellysu%n i Cinf i d their logical
encoded by density functions on V@) f). We break off our ictive or measurement information) and their logical com-

discussion of quantity algebras and their states, sinceawe hb|nat|ons describe certain instantaneous features oatigett

gone far enough to show how they work. We now turn to tﬁé’Stem that are either possessed o_r_not possessed by the sys-
discussion of (prediction and measuremeatdja latticesof tem, depending ohow 'the system ,|§ndependently of a,ny
quantities. measurement or experimenter. In this way, the system'’s (de-

terministic) state becomes essential in specifying whrethe
) ) not the foregoing data proposition is true. Explicitly, #iate
2.2. Data lattices of quantity algebras spaceZs of the quantity algebréls (determined uniquely by

In this subsection we embark on a brief study of quantitiH%e Gelfand representation to vyithin a homeor_nprphism) pro-
in terms of their data lattices. Although this is not aIwaQQdeS an e'ffectlveeallst. semanticsor ‘T’l" proposnlqns about
made fully explicit in the literature on classical measueain quantmes in the assomgtgd _data lattize. It 'S easily estab-
theory, in parallel with the assignment of a minimal qua}nti{'?c’hed"{fh?f e,ach d_etermlnlinc Sl’ta‘t@(‘:%s a55|glns to propo-
algebralls to a target systerS there is also an association :ct'in o c.da untl)que trutb value. _or;cret((ajy,hproposmon
of adata lattice— symbolized by£s, intended for express- | — c IS sal _t_o _etrue a .OUt quantityf (and the con_tent
ing various claims about quantities possessed liy terms of what it signifies is actualized by the targgt system) itesta
of their value$® and designed for reasoning about the targféﬁxacuy wk}enf () = C, where_f - 2 — R s the Gelfand
system’s instantaneous continuous or measufabteresand observable’ representing. Evidently, the truth value of a

estimates thereof. Data lattices come in three basic flafiprs comp;gx dgta rl)roposn[on ISa I?:glcal C”O mer]matmnl of tdr::hv
equational, (i) comparative, and (iii) probabilistic. ues ot its simple constituents. Formally, the topologi¢ales

In the simplest deterministic and most idealized situatio:?'Pace sematl)rrtlcs ot: prtoposmcﬁnﬁ ¢ is given by the (closed
there is a consideration of an elementaguational evalua- or measurable) subse

tion mapping=: As x R — £ that assigns to each quantity-
magnitude pail f,c) a uniqgueelementanyproposition (writ-

i infi ~ 20 i ;
ten in an infix form)f = ¢.“ Its physical meaning under they¢ 1,nse states in which the representing ‘observable’ ahgu

classicafealistinterpretation is as follows: Quantifyhas an i, ¢ takes the value. Thus, we have specified a semantic
objective value and that value is equalttat a given instant | o ,o+qn map

. 21 . . . . ~
of time~* We mention in passing that reasoning about quan []:€s — Sub2s

[[fiC]]de {XE%’ f(x):C}

18Here we would like to emphasize again that in general thesmtbed ) :
theoreticalmodels of quantities and states assume that the underlying QE)O-m the target system's data lattice to the concrete katic

mains are continua (i.e., they are locally homeomorphic to¢hgline). Yet SAU_bsets ofZs. Here the t_eChnical details depend on whether
all measurement outcomes are known to be relatively small discatio- f is assumed to be continuous or measurable. For example,
nal numbers or histograms constructed from simple relaticgiracies. The i the von Neumann algebra framework of measurable guan-

recurring point is that for reasons of effective mathematieadtability, theo- ... . . . .
retical models are bound to be far more idealized than warmldntéhe actual tities, the logic ofCs is Boolean. However, since in the case

resource-sensitive physical situation they purport toasent. of continuous quantities the st = c] = {x € 2" | f(x) =c}
1%Remember that guantities are assumed to be instantiated bgrtjed t is aclosedsubset of the compact Hausdorff topological space
system in distinguishable degrees or amounts, expressjpleutmbers in - 27 the resulting lattice is Brouwerian. In general, data lat-

some units, comprising their value space. . . . . .
20gince propositiorf = ¢ is logically equivalent tdf —c-1 = 0, formally tices mirror the underlying geometric structure of theatst

it is sufficient to consider only equational propositionstioé form f = 0, SPaces. Because in a von Neumann algebra setting the charac-
satisfying the equivalendgf =0V g=0) <= feg=0 forall quantitiesf ~teristic function };..¢j is automatically a two-valued (idem-

andg. . . 4 £ o
21Here we wish to emphasize that in classical physics the temiiition potent) measurable quantity (Wltf[[chﬂ (X) =1if f(x) =G

is that quantities possess thealuesindependently of whether or not they@nd O otherwise), the eXpeCtaU@?(]-[[fﬁc]]) gives the proba-
are measured. Furthermore, quantities possess their erhpigeaingnde-
pendently of the measurement methods which may be availabledor.tin  be anestimateor anapproximationof c. These two diametrically opposing
contrast, somempiricistsinterpret propositions of the forrh=cin a consid- interpretations are particularly significant in the theofyjuantum measure-
erably weaker counterfactual manner thusly: If quantityere measured by ment. In general, the actual value of a quantity at a given tirassumed to

a designated measuring instrum&ftf ), then the measurement result wouldexist from the perspective @s — cannot be known exactly. Quantum effects
bec. For us, iff were measured by a designated instrument, then in genaraly even prevent the existence of such a value. However,usajaproxi-
the measurement result provided by the pointer quafgifyof f would only mationsof this idealized value are presumed to be known or knowable.
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bility Pg(f ic) that quantityf has the value, given that the with a convenient logic to reason about quantity vakfes.

system is in a state encoded &2 An equational data lattice of propositions represents dhe t
One major disadvantage of equational data propositiong&f system’s actual or potential instantaneous measuiegle

that in view of various resource limitations, in generalenip tures. The association of equational propositions witmtjua

menters cannot know the exact values of quantities. Howevi@s is illustrated in Figure 1 below:

in the case otomparativepropositions of the fornf < ¢ —

expressing the fact that quantifye 2s has a value and that

value is strictly smaller thao— things are rather better. In par- f~a

ticular, compound data propositions of the foara f <blead : Lo

to an important interval calculus for the treatment of qitgnt : A

values. Since the state-space semantics proceeds on the sam A :

line of reasoning as in the case of equational propositibns, :

seems unnecessary to go through the details. Measurement : :

outcomes encoded by data propositions of the foorh =~ ¢ f.i °9 A

provide complete information about the value of measurand

f at a given time. However, most measurements extract only

partial information about the measurand, discussed below. Fig. 1 Data lattice of quantity algebras

A considerably more general and less idealized class of ) ] ] )
propositions is based on membershipmapping &: s x Before leaving this subsection, we make a quick remark

Py — £ that assigns to each quantityand a Borel mea- about the relevance of data Iattice.s' in von Neumann alge-
surable subse of the real lineR the propositiorf & B, writ- Pra Settings. Because each proposition of the farmf < b
ten once again in an infix form. Its intended physical meanif@d its Borel subset generalizations involving a measerab
under the realist interpretation is the following: Quantft duantity f) canonically transforms into a two-valued quan-
has an objective value and that value lies in the real BoflY l[a<t<b] that receives value 1 justin case the valuef of
subsetB.2 Reasoning about quantities and their values l{§S strictly between the real=5</ b, and 0 otherwise, we can
the extendedBorel data lattice.Z’} requires additional logj- @S0 think of the indicator 1 £5 — s as an embedding
cal and algebraic rules we do not list. Regarding semantiftg1ction that maps data propositions to two-valued (idempo
a proposition f & B’ is said to betrue about quantityf (and (€Nt Projection) quantities of the von Neumann algelisa

its corresponding state of affairs is realized in the tagyst " Part.'CU|ar-‘53(1[[a<f<b]]).'S equal to the probability that the
tem) in statex € 2 provided thatf(x) € B. In general, the OPiective value of quantity lies in the open intervala, b),
state-space semantics of a data proposifianB is given by 9Ven that the system is in state Seen in this light, the inti-

g=b

the subset mate relationship between quantity algebras and datadatti
goes even deeper. By analogy with channels and cochannels
[f € B] =qs {x € gf| f(x) c B} - f*l(B) between von Neumann (Banach) algebras, there are Boolean

(Brouwer) channels between data lattices, traceable to the
of those states in which the associated observable of quartivo-valued evaluation mag : £s x 25 — {0,1}, defined
f takes values belonging & Thus, we have now specified &y €(f = ¢,x) = 1 if f(x) = cand 0 otherwise.
new semantical valuation mdg] : £5 — Sub 25 from the

target system’s extended data lattice to the concrete Borep.3.  An example of a static length measurement with error
Brouwer algebra of subsets &fs.

Since physical measurements are regularly subjected to Y}f§-now have at our disposal several concepts and methods of
certainties and randomness, results of measurement arefgracterizing simple measurement processes and their out
quently represented in terms pfobabilistic propositions of comes in algebraic settings. In _thls subsectl_on we present a
the form(ga(l[[feB]]) =por Péa(f c B) — p, stating that the elementary example of a class_lcal, comp_ar.lspn—basie_nip
value of quantityf lies in the real Borel subs@with proba- Measurement of length, involving deterministic (systég)at
bility p, given that the system is in stafe As we have seen, 2nd probabilistic (random) measurement error.
the probability measur®s on 2 is obtained by a concrete SUPPOSe we want to measure the length of a flagpole (or

representation of the expectation functiodfain . (2ls), us- that of amedium-size straight rod, and so forth), using éyar
ing Riesz representation result. stick or a tape measure, marked with carefully calibratad un

We now know that each quantity alget?acomes with form subdivisions in inches, centimeters, or in some other

its associated (equational or Borel) data lattibg, endowed  2As usual in logic, themeetoperation in the data lattice corresponds to
conjunction and thégin operation refers to disjunction of propositions. It is

22\We mention in passing that we also have #igebraic semanticef not difficult to see that the false senterice: 0 specifies the bottom element
propositions, given by the subget = c[.q =4t {&€ € .Zex(A)| &(f) =c} of 1 and the true sentende~ 1 determines the top elemefitof the equational
extremal functionals. However, in view of Gelfand repreatiah, the differ- data lattice. It is well known that in classical physics dattices carry the
ence between the algebraic and topological semantics islyargnceptual.  structure of a Boolean algebra or that of a Brouwer algebh&reas in quan-

23n applications, instead of using arbitrary Borel subsets sufficientto tum physics the lattice structure is only weakly modulahocomplemented,
use only open (or closed) intervals with rational end-pint and decisively nondistributive.
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units of the length dimension. Obviously, the target natteading. We cast all this in the framework of an associated
ral system instantiates several geometric, thermodyreimi@ndom pointer quantity ¢, with its finite value space de-
and other quantities, including length, diameter, temipeea fined (for example) by Vél:) = eNN[0,L], where the set
and so on, but we shall focus only on the flagpole’s lengttN = {0,¢€,2¢,---} is comprised of integer multiples of a
quantity £ with its value space defined (for concreteness) fixed unit lengthe, say, one inch, chosen by the measurer. In-
Val(¢) = [0,L].%°> Continuing in the spirit of the previous subtuitively, the yardstick-based measurement process atihd
sections, it may be natural to assume that in view of contirff the flagpole’'s actual length to that integer multiple of
ity being an important regulative principle for reasonibgat the chosen unit which islosestto it. Naturally, yardsticks
length, flagpole length measurements should be modeledtmyrked off in smaller length units will provide appropri-
the Banach algebral((¢) = C(Val(ﬁ)) generated by, and ately more accurate measurement results, but of course they
we may want to proceed similarly in modeling the yardsticlill not be brought into a one-to-one correspondence wigh th
This approach is adequate in the contexstaftic determin- possible lengths if0,L].

istic measurement. However, since any mathematical modeFor future technical needs, |éfA| be theinteger part

of length measurement with random error and uncertaintydfreal numberA, so that we havel —1 < [A] < A and

the measurement outcomes will have to account for the inhkr- [A] is the fractional part oA. We now have at our dis-
ent element ofandomnessn order to be adequate, we fingposal a natural (generally nonlinear) projectiwand-off map

it more appropriate to represent the target system by the yop: (o L] — [0, L], defined by (A) =¢+ P? + ﬂ -, that
_Neumann_ algebra(¢), generated by que;f't'tg' and R'e?z' will play a crucial role in our study of discretization in Sec
isomorphic to a concrete algebfa ((0,L], #,P), wherel is tion 3. The term is aptly chosen, sin€& literally rounds

now regarded as a real-valued random variable with a profy » gien length (specified by a real number) to the integer
ability distribution P.26 It should be noted that in measur- g gth (sp y ) 9

g | he th itv aloebrat(? icall d multiple of € that is numerically closest to it. We also have an
ing length, the quantity algebrél(¢) automatically exten Saccompanyin@mbeddingmapD‘E :[0,L]¢ — [0, L] such that

its measurement results also to squafies (built from flag- 57 ey = 0 (k. &) — k. Al o (A) < A 4+ L
poles), cubege/(+/, and a host of other systems that instarT[ £° 8}( £) e(k-€) &an [ £° E]( JSA+3

tiate quantities definable in terms &f In a deterministic sit- Just as in the case of the flaanole’s lenath auantity. so too it
uation it is standard to assume that the flagpole has a defi 9p ging Y,

nite (albeit unknown) length, say~ A, and therefore its state:t:gE;On?r'::;;?}?gggggt;z;i?:um”enn% m;tcrgsr?setr)] t ?hnedvﬁlslc\)lzu-
(relative to the representing algelifg¢) = £.,([0,L],.#,P)) P P y

. . 4 . ; ... mann algebr&t(¢;), generated by, and Riesz-isomorphic
is captured by the maximally informative Dirac probabilit . .
measure, on [0,L], giving D, (Vﬁ c]]) —1ifc=2A, and ¥o £.([0,L]¢),-Z¢,Pe), whereP is reserved for a probability

; I . . istribution of error-laden measurement outcomes thas-is e
0 otherwise. However, in view of our interest in measure- :

. . : : . ._Timated from a sequence of independently repeated measure-
ment error, we wish to consider epistemically less idedlize ents

situations in which the flagpole’s actual length is desatibe From our brief remarks above it follows that in the most

nondeterministicall r ilistic state that is eliéint .
ondete stically by a probabilistic state that is elie common deterministic case, length measurement with a yard-

from Dirac probablllty dIStI’Ibl’JtlonS. . . stick will display the round-off value (i.e., the nearegeiger
In measuring the flagpole’s length using a yardstick, geﬁ\'ultiple of the chosen measurement unit 0) O (1), given
erally it is impossible to determine the exact length vale f '

 least t ol - th le of th dsti that the flagpole’s actual length As In the language of data
at jeast two simple reasons. ('.) € scaie of ne yardstick | positions this can be summarized by the conditional
known to have a limited resolution and accuracy, specified by

finitely spaced marks and less-than superbly calibrated sub b= = le=0g(A).
division, and (ii) stepping off the yardstick against thegfla _
pole usually involves small length disparities in its imiget /€ have already emphasized that states (encoded by expec-

placements alongside the flagpole, misjudgments of tir(yfréation functionals) are essential in determining the valok

tions of length on the scale, and parallax errors in outcofi@ntities. Accordingly, aleterministic measurement the

flagpole’s length quantity with the yardstick’s pointer quan-
is specified by a projective deterministic state channel

orall A. Finally, note thaflg(2k- €+ 3) = (k+1) - €.

25The upper bound. of the closed real intervgD, L] of possible length tity (e
values can be set to exceed the lengths of all possible reddiflagpoles or M*
it can simply be the Hubble length, specified by the size of teeovable .7 (£e([0,L], #,P)) ——— .7 (L ([0, L]¢, F ¢, Pe)),
universe.

26This algebraic model seems reasonable, since at any givenhtinitag- - satisfyingM*(ép, ) = éaDDs(/\) for all A in [0,L], where (fol-
pole’s actual length is subtly 'determmed also by flgctuampe_ratu're, Iowing Riesz representatioml*(gD ) is the extremal linear
pressure and other changes in the flagpole’s material corposind its . o . A .
environment — not to mention randomness stemming from the measmrerﬁ@ncnonfil specified by the Dirac p_rObab'“ty measrge For
procedure itself. We mention in passing that our treatmererafth measure- all practical purposes the foregoing state channel alibtrac
ment carries over, with only notational changes, also to massunementon captures a trivial fact, namely, that in measuring the lengt

a chemical balance with a calibrated pointer system, volumeunemagnt of ; ; ;
liquids using a graduated measuring cup, and so forth. Andofse, the of a flagpole using a yardSthk’ we shall genera”y obtain an

measurement model is meant to apply to any and therefore all fegpo OUtCOME that_is onlylpproximatelyqual to the flag_pole’s ac-
rods. tual length, with an error less tharunits. This implies, again
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trivially, that in view of the yardstick’s limited accuracstatic It should be aparent by now that the example we discussed
deterministic measurement will classify different flaggghs above was meant to illustrate static measurement of a deter-
equally long and hencepistemically equivalengiven that ministic variety that we believe helps the reader to become
their round-off values are detected as equal. Thiderdeter- aware of a large variety of modeling options. There is a gen-
minationof the flagpole’s real length is encoded by the stageal scheme for length measurement that includes the mea-
channel’s projective (onto) property. surement model we have chosen above. We will pause only
Now, if we change our point of view somewhat and switdio present a variant of such a scheme and will not explore
to the dual quantity channel (cochannel) representatjmt-s the details further, since they properly belong to Section 4

ified by the deterministic measurement model First, heuristically speaking, Dirac probability measuoan
alternatively be viewed from the perspective of a measearabl
Lo([0,L]g, Fe,Ps) —2— £,([0,L],F,P), mapping of the formD : [0,L] — P.,([0,L]¢) C P([0,L])

that assigns to each length valdea unique Dirac proba-
whereM is now a von Neumann algebra embedding, obtaingfity measureD, on [0,L];. Secondly, it is then natural to
from [ and specified by the step functidi(;) = ¢ with consider more general measurable mappings of the form
((A)=k-¢&,if §-(2k—1) <A <§-(2k+1)forallk>1,and [0,L] — P([0,L]¢), calledtransition probabilitiesor Markov
#(A)=0forA < %, we obtain a recipe for theconstruction kernels that map each length valueto a unique probabil-
of £ in terms off from measurement data. The graphg afd ity m.easurleTA on [0,L]e. For example, we may Specifl
7 are given in Figure 2 below. by stipulating thafl, (¢ = O¢(A)) = p with 1 > p > 0.75,
T (le=0cA)—€) =Ty (le =0e(A) +€) = %, and zero
‘) EA()\) otherwise. The basic idea behind the transition probabilit
’ T, is that, intuitively speaking, the probability of gettiniget
measurement outconié. (A) is quite high (above 75%) but
not certain, since the result could be different fraix(A ) on
both sides in the amount dfe with the remaining probabil-
ities % and%, respectively, and zero otherwise. Last but
not least, in modeling length measurement with error we as-
sume that the target system is in an unknown state encoded
by a probability measurP € P([0,L]) that is mapped to the
probabilistic staté1*(P) € P([0,L]¢), defined by

[M*(P)}(E):/ TA(E)P(dA)

[O.L]

0 : T T T

I
0 1 2 3 4 )¢
for all eventsE in .% ¢, whereT, denotes the discrete proba-
Fig. 2 Step function approximation of the actual length bility distribution on possible measurement outcomeseigiv
guantity that the flagpole’s actual length is. In general, the transi-
tion probability T, models the ‘noise’ or uncertainty in the
We see that is the besestimatorfor the flagpole’s length readings of measurement. In the dual algebraic setting, the
quantity/, based on the measuring instrument’s pointer quasschannel counterpart
tity E.g. In addition, note thgﬁ is.discontinuous at points with M £0((0,L]e, Ze, ) £.(0,L],.7,P),
maximal error. However, in view of the measurement error
(maximal bias) specified byM(¢;) — ¢|| = %s, the measure- defined byM(¢;) = 7 with Z()\) = Yicpoue Le(1) - Ty ({1}) for
ment model under consideration is not able to reconstfucill A, models the measurand’s reconstruction with a statistical
from its pointer quantity’s with perfect accuracy. Referringerror, using the pointer quantity. SinceT, ({1}) denotes the
again to Figure 2, what this means is that the pointer qugsiobability that the flagpole’s objective lengthis measured
tity /¢ by itself provides only an inexact knowledge of thgy the yardstick ire unitsaslengthl, in general the measure-
flagpole’s actual length. And this brings up another poirthent error (bias) can be arbitrarily large. However, if ttzant
Even though the cochann®i does not specify an unbiasedition probabilityT is such thall, ({I}) = 1for0¢(A) =1 and
measurement model df in view of M(¢g) = (+ ¢ with 0 otherwise, then we obtain the earlier discussed detestitini
0<e< % it is close enough to being unbiased, so thatcase.
can still be used as a reliableconstructionof measurand. Another concept that plays an important role in our study
In this way the cochannd¥ — in its role of a measurementof length measurement is that ofcamparison of measure-
model — offers an optimal reconstruction of the measuramdent methodsSuppose we have two yardsticks or more gen-
relative to the chosen pointer quantity. erally two different ways of measuring the flagpole’s length
At this stage the reader may feel that our treatment Diie first of these i€oarser using a measurement uritin,
length measurement has tended to be simple and its techait, centimeters, and the second methdihey, with a mea-
cal part ended up being somewhat of an algebraic overksiirement unig’ in millimeters, so that we havel < €. The
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commutative diagram below shows the projective (onto) Hanit of a nested sequence of estimators as their measutemen

lationships between thearentvalue spacg0,L| and its two errors go to zero.

descentiscretized value spaces. Next, we focus our attention on tensor products of quantity
algebras, crucial in the treatment of measurement coupling
between target systems and measuring instruments.

[0,L]
Oy O¢
2.4. Tensor products of quantity algebras and compound
[O’ LL‘I' 0 [Oa L]E

systems

e

Since dynamical measurement of a quanfity realized in a

We can readily see that, ¢ (0g(A)) = Og(A) holds for all natural systens we wish to study — is based on a physical in-
A. ltis of interest to consider the cochannel representafidn teraction between the quantity-bearing system and a measur
andM’ of measurements of measurahdith the respective ing instrumenM(f) designed to measuffe understanding of
pointer quantities, and/, of unequal accuracy, shown in thdhe physics of the measurement process under consideration

commutative diagram below: requires a correct mathematical representation of the oemp
R ite system, henceforth denoted $y- M(f). In this subsec-
M(le) MN(ler) tion we briefly review the pertinent tensor product machjner
Suppose we have a natural systeand a measuring instru-
N M mentM(f), chosen to measure quantityinstantiated bys.
Let2s and®?ly1) be the respective Banach algebras describ-
MN(L) ing the target system and instrument fior It is well known

(see, for examplel]) that thecompoundsystemS + M(f),

In the diagram above, the connecting nfajhandles the re- including S and M(f) as its well-defined subsystems which
finement relationship between two different methods of mezhysically interact with each other for a certain periodoig,
surement. Obviously, the discrete steps of the estim@orobeys the fundamentabmpositiorlaw
specified by mea§uremdnf , are smaller and therefore closer
to £, than those of, determined by the cochanré. s m(r) = As @ A,

Having developed a general algebraic approach to static . ] ]
length measurement, we can now ask: What happens to ler@@hing that the quantity algebra associated with'system
measurement in the limit, when increasingly more refinddinstrument’compound systers + M(f) is isomorphic to
yardsticks are used with smaller and smaller measuremigift (Projective) tensor prodi€tof the respective algebras
units €, ad infinitun® For example, suppose we sgt= % of constituent systems. In th.Pf alge_bra |somorph|sm above, a
with n > 1 to specify a sequence of pointer quantifigs,, ... duantityu of systenS is identified W|t_h thg quantity 1of
with respective round-off accuraciek, 1%, ..., given (say) the compound systefi+M(f), and likewise a quantity of
in decimal fractions of a centimeter. In this way we of¥(f) is identified with1@v. For example, since a measurand
tain a corresponding sequenié;, Ms, ... of deterministic | @nd its pointer quantityf tend to belong to different al-
measurement models for measurihgith increasingly finer gebras, theheoretical errorquantity is conveniently defined

pointer quantitiegy, as displayed in the direct limit diagranty their differencef ® 1—1® @f that employs the tensor
below?” product?®

28Here there are only two things that we need to know about tgmsal-
ucts of quantity algebras. The first is ttensor calculuof quantities. Sim-
m(fl) ‘ﬁ(ﬁz) ply, if (fi) and(gj) are bases of algebr& and B, respectively, then the
family (fi ® gj) of simple tensor products is a basis of the tensor prod-
My uct algebra @ B, where® : A x B — AR B is a bilinear map that
sends each paiff,g) in the Cartesian product quantity algebra to the sim-
ple tensor quantitf ® g. Distributivity laws(f +g) @ h= (f @ h) + (g® h)
N(e) andh® (f +g) = (h® f)+ (h® g) together with the associativity prop-
. . ertyc-(f®g)=(c-f)®@g= f®(c-g) automatically hold for all quanti-
Since von Neumann algebras of random quantities poSsessi@Xin the tensor product algebra. In addition, we hdve g)+(f' © ¢') =
cellent convergence properties, the measurement modetreff « ') ® (geg') for all quantitiesf, f' € 20 andg,g’ € B. The second fact
senting the measurement 6fvith the limit pointer quantity to know about tensor products is theimiversalproperty. Concretely, tensor
. . . . . roducts are specifically designed to tunitinear mapsthat do not belong
beo = |Imn_£n IS pgrfect. Suffice !t to S?‘y’ _m Sum_mar_y' th the category of Banach algebras into legitimate Banaatbaéghomomor-
a foundationally Important classical criterion for judgithe phisms. The empirical justification of tensor products of diaalgebras in
worth of an estimato¥ for measurand is to consider the algebraic-analytic measurement theory is based on theiralaine-to-one
correspondence with the Cartesian product of their reptegpstate spaces.
271t must be noted that the analysis presented here is based ddetl- 29Recall again that symbdl denotes theunit of the constituent algebras,
izations of classical physics. The so-called Planck lemth.616- 10733  encoding the uninformative quantity, having a constantevalgual to 1. In
centimeters renders the quantum mechanical interpretatiie alirect limit  this manner, the algebras of constituent systems can als@heasendepen-
of the foregoing sequence of discrete quantity algebras imglass. dent subalgebras of their tensor product algebra. As may fieceed, subal-

Mio Mo, Mo

M2
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From the point of view of physics, instrument-based disystem + instrumentbipartite system determines a unique
namical measurement of a target system’s measurand iwolstategtpl@f of the measuring instrumeM( ), specified by
(i) ameasurement couplingpresented by the tensor produdhe following simplerestriction operation: [éat |2[@f] (V) =gt
of the target system’s quantity algebra and the algebraeof #i(1® v) for all instrument quantities. And the ‘reduced’
measurand’s designated measuring instrument, (ii) jogat dnstrument state in turn determines the (expected) valtieeof
namics thereon, and (iii) interconnection laws betweemthepointer quantity®f, interpreted as the final outcome of mea-
It is important to bear in mind that by necessity or by choicsuring quantityf. We shall return to this matter in Section 4,
in general not all quantities iRls are suitable for instanta-where it will be more adequately discussed in the language of
neous measurement, and those that are selected for meagufmation channels.
ment, are seldom measurable directly. In view of a limited We round off the present subsection with a brief remark
set of feasible measurands and their indirect measuremesit®ut tensor products of data lattices. Suppose we have a nat
real-world measurement procedures are bound to provige amal systent with measurand and a measuring instrument
partial information about their target systems. What is @f pdVi(f) chosen for its measurement, characterized by the re-
ticular measurement-theoretic interest here isnéarmation- spective quantity algebraés and®,s). We already know
ally completesubset of measurands. Such subsets completilgt the description of theompoundsystemS + M(f) is
characterize the measurands’ target system at any givenaiceomplished by the tensor product quantity algel¢a®
stant of time. m(t). Here the basic result is the associated data lattice iso-

Besides tensoring quantity algebras, we must also tens@rphism law
their (deterministic and probabilistic) state spaces. f8sp
we are given expectation functionafsand &7 (representing Lsim(r) = Ls @ L),
states) on algebra; and?ly 1), respectively. Thenthereisa .o o+ the data lattice associated with the com oysid s
unique tensor expectation functionik: & on the tensor al- temSiM(f) is lattice isomorphic to the tensor rodfl)ct of the
gebralls ® Ay 1), defined by ® &t](UR V) = &E(U) - (V) P P

for all uin 2As andv in ;. The probabilstic state repre_system s data lattice and the measuring instrument’s dta |

. 30 . . .
sented by the expectation function@l & is appropriately tice>" As in the case of the underlying quantity algebras, the

called the (affine}ensor producbf states represented &tggsiﬁ;tzzgﬁw Ff)g %guﬁ:”;a;';’ifg;2?:22?};2:3 g;gg;ggsor
and&;. The (affine) tensor product of states which we haf ~ ¢ (about the syster§) and @ f & B (about the instru-

just described can be formulated in the abstract settineof t . . .
following commutative diagram: mentM(f)) is mapped to the simple tensor product proposi-

tion (f =c) ® (Of & B) (thought of as a joint proposition)

S (As) x . (Apyr)) of the bipartite system. We can now analyze the determinis-
tic relationship between a measurahtiaving the value at
® r a given time and its pointer quantify) f responding with a
determined value in a Borel sB¢ in terms of implications of
the form
S (As) @ 7 (Am(r) —— L (As @ An(r))

.
Closely paralleling tensor products of algebras, for evwry

affine mapping- (possesses the affine property in both argir the tensor data lattic€s @ Ly (), where T denotes the
ments) of states there exists a unique affine mappinguch unit element in constituent data lattices. In a law-like man
thatr = F'o®. ner, thisforward relationship links an unknown precise equa-
We said that to dynamically measure the value of a givéignal item of information about the system’s measurénd
quantity f, itis necessary to allow the target system to interaglgenerally less precise item of information about the instr
with a designated measuring instrumentfdbr a certain pe- ment’s pointer quantity)f, expressing some form of approx-
riod of time. In view of a law-based measurement couplingnation. To obtain information about the measurand’s dctua
the instrumentM(f) behaves in such a way that if the tarvalue from the value of its pointer quantity, experimenters
get system is initially in the unknown sta#g and the instru- must resort to certaiimversemethods of estimation. This
ment is in the familiar ‘null position’ or ‘reference’ sta&f, is not a problem in Bayesian approaches, because in&tate
then after the interaction is turned on, the composite systthe conditional probabilitfs (Df € B | f = c) is intimately
S+ M(f) evolves (ideally after an infinite duration of time)inked to its ‘causal conversePg(f =c|Of & Bc) by the
from the initial tensor product sta&@éaof into an entangled Bayes theorem.
final tensor product state; be'ong'”g 0.7 (QLS ® QJ'M(f))’ 30The notion of a tensor product of two lattices parellels tfaBanach
determined by the dynamics of the interaction, terminatedgepras. It is based on a lattice bihomomorphism €g x () —

time t. Now, this final joint post-measurement state of th& ® £y, that assigns to pairé®, W) of propositions in the Cartesian
product lattice their tensor produdt® W proposition in such a way that the
gebras of a quantity algebra can also be used in charaogsabsystems of usual distributive law$d VW) @0 = (PR 0)V (Y ® 0) ando® (PVWY) =
the target system. Tensor product represents an interactimginction’ of (©@® @)V (©® W) hold for the join operationv, and likewise for the meet
quantities. operation A.

(f=c)9T = T (Of €B)
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Since in von Neumann algebra settings of quantity algeis suggestively denoted by > 2. This concept will be

bras the characteristic functions of the forp.L; or Liges) ysed extensively throughout this paper in representingrait

are two-valued quantities (and so is their tensor prodyfhe-dependent systems. As an aside, we mention that sev-

Lpt=c) © LgeB] = 1pf=c]x[gen]), data lattices of propositionsera| additional dynamical algebra structures becomeatail

can be identified with the quantity algebra’s lattice of tWQgpon passing from time domains to spatial, spacetime or othe

valued quantities. The details are omitted since we will NBhrameterizing domains, arising, for example, in the odnte

need them. of systems described by partial differential equations.
Transition maps on quantities are often determined by the

2.5. Temporal evolution of quantities in dynamical systentgrget system’s underlying laws of motion. Classicallyg th

) ) target system’s time evolution is given by an ordinary diffe
In the absence of a time structure, quantity algebras are il equation of the fornﬁ% — F(x) (satisfying the Lips-

propriate forstatic measurements, such as mea_suring the ghit; existence condition), in which the unknown quantsty i
ameter of a shaft with a micrometer. HOWGY?“ In t_he CaS€@hresented by a state-valued function (describing a Bigna
quantity algebras aemporally varying quantitieand intheir , . - g ;ch that its value(t) encodes the system’s de-
continuous measuremer(is which information is continu- o minjsic state at time. We know that the general solution
ally extracted .from the systgr_’n about the measurand), tbergfl the equation above involves an arbitrary constantde-

a need for an important additional structure, namely, t9e-al i mineq by the equation’s initial condition. Since saaf
bra’s temporal dynamicshat tells us how quantities Chang?jepend both on the time paramettand an initial valueg, we

from an earlier time to a later time and how measurement, renresent all of them by a single jointly continuous-tran
information varies. Mathematically, we are provided with &tion mapd : T x 2 — 2, satisfying the followingcon-

one-parameter family of maps : 2 — 2 from the rep- yin,0,s monoid-actioproperties for all time instantst’ € T
resenting Banach algebf to itself, called the target SYS-and for all states in .2

tem’s time-indexed dynamic#lansition mapgwhere the in-
dexing variable takes its values in &me monoid(T,0,+), (i) Identity property:5(0,x) = x, and

which is usually either the additive monoid of non-negative

reals(R.,0,+) or the monoid of natural numbesl,0,+)), (i) Group property:3(t, &(t',x)) = 5(t +t',x).
satisfying the following so-callechonoid-actionaws for all

i . As in th f dynamical Banach algebr monoi
t,t’ € T and for all quantities andgin : S in the case of dynamical Banach algebras, a monoid

time-domainT acting on a topological state spageg, spec-
ified by a jointly continuous transition map satisfying the

i) Banach algebra endomorphism requirements: . X L X _
® 9 P q monoid-action properties listed above, defines a (detésmin

(@) (1) =1, tic) topological dynamical modetenotedIl rgv Z . Ourin-
(b) o¢(f +g) = () +0¢(g), and terest in topological dynamical models is motivated byrthei
2 Gelfand-style relationship to dynamical Banach algebras.
(€) Dt(Teg) =0t(f)+21(g). Specifically, the foregoing jointly continuous transitiorap
(i) dentity: 9o = lg. 0 on the state spacg” induces a unique family of dynamical
transition maps of the forra; : C(2") — C(£") on the Ba-
(iii) Monoid action:d; 0¥y = 0y y'- nach algebraC(2") of continuous real-valued functions on

2, defined byd(go) =4t g, whereg;(x) = go((t,x)) for

The one-parameter famil§,'at)t€1T of dynamical transition all x.
maps defined above represents the target system’s irfeleersi There is also an induced (dual) dynamics on states,
(dissipative)deterministic temporal dynamicsin more de- having the form of affine (convex) endomorphisms
tail, the transition map; specifies the temporal evolution of; : ./(C(2")) — .(C(2")) on probabilistic states
quantities by sending a given quantity considered at time (preserving their convex combinations), defined by the com-
t = 0 to the quantityft =q¢ dt(fo) considered at time that positiond; (&) = & o d; for all statess’. Under this dynamics,
evolved fromfo in a dimensionally homogeneous mannes. state&; at timet evolves into the state;,y = 0;(¢)
A Banach algebr&l equipped with a one-parameter familyor all t' > 0. Importantly, this dynamics induces in turn
<Dt>te’ﬂ‘ of dynamical transition maps, which encodes the i& dynamics on the space’.(2l) of extremal expectation
reversible action of a time monoil on the algebr&, is functionals (representing deterministic states), so lilyathe
called aT-dynamical Banach algebrar simply adynami- Riesz representation theorem we are permitted to return to
cal Banach algebrgwhen the time domain is clear from thehe topological dynamic8(t,-) : 2~ — 2~ we have started
context), and in view of the time monoid-action on quarsitiefrom. This implies that we may work, as convenient, in a geo-

o - o ) . . metric setting with topological dynamical models of thenfor

As is _ob\_/lous from the linearity requirement, the d_ynammadleuon T ~ 2 or in an algebraic framework with corresponding

of a quantity in essence means a temporal change of its valug$orAhe

temporal evolution of product quantities, they vary in ademrce with the dynamical Banach algebras of the folm C(%) The fact
temporal changes in their factors. Of course, the unit gtyanéver changes ? '

its value. that a modeler deals with the dynamics on the probabilistic
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state space” (C(ﬁ&” )) rather than on the deterministic stat&arge variety of measurement processes under a common con-
spaceZ’ is directly related to his or her ignorance about theeptual umbrella, we now consider an automorphisih:
target system’s precise initial state. S (N @ N(le)) — 7 (N(L) @ N(Le)) that models the

Of central importance is the construction of tensor proslugtassage from a pre-measurement sfajex Dy (when the
of dynamicalBanach algebras. As we shall see, the tendtagpole and yardstick were not yet engaged in any act of mea-
product surement) to a post-measurement sijtev D, (1) (when the

measurement is complete and ready for readout). Obviously,
(T o As) ® (T o As) =T iy s @ Agr we setm* (D) ® Do) =df D) ® Dy, (») for all length valuesh
’ in [0,L].32

of dynamical Banach algebras~ 2Is and T i, s is the A fundamental algebraic feature of interactive instrument
cornerstone of the algebraic model of measurement couplifgged measurements is captured by the commutative diagram
between a time-varying target systé&vand a measuring in-

%

strumentS’ . As expected, the transition mapd’ on the S (NO@N(le)) ——— (N @N(L))

tensor producfls ® 2ls algebra is given by the tensor prod- " T l -

uct 0 ® 0’ of constituent transitions. Later on, we shall be

discussing several applications of tensor product quaalit Z(N(0)) M 7 (N(Le))

gebras. At this stage, however, we briefly mention just one,

touched upon earlier. in which the flagpole’s initial (pre-measurement, determin

Algebraic approaches tmeasurement errousually rely istic) stateD, € 7 (9(¢)) encodes its unknown objective
on a comparison of the measurand'actual values with the IengthA, mapped byJ to the tensor stat®, ® Do that in-
measured values of its associapeinter quantity®f. How- cludes the yardstick’s ‘null’ or ‘reference’ stafgy. As we
ever, sincef is an element of the target system’s quantifjave already remarked, in mirroring the length measurement
algebra2s and its pointer quantityp) f belongs to the in- Procedure, the endomorphism™ maps the unknown initial
strument's algebralyr, designed to measurk no straight- State to the final joint stat®) © Dy, (5 that retains the flag-
forward comparison makes mathematical sense. NevertheR@e’s length unchanged. However, it appropriately moslifie

upon passing to the measurement dynamics the yardstick's readout state. An important final step is the
extraction of the measuring instrument’s known state frioen t
As @ At _m As @ At joint state. As explained above, this is accomplished bydhe

striction mapR* (emulating the assignment of marginal prob-

on the tensor product algeb?ss © Ay (1), the much neededability measures), defined UV(DA ® DD;M)) =D, (). It
comparison is readily expressed by the tensoniegasurement s elementary to check that the measurement model (formally
error quantity a quantity channelM*, introduced in Subsection 2.3, is now

1o Of—fo®1 specified by the compositioM* = R* o m* o J*, obtained
in s © Ay(1), given by the difference between the tempéfom the dlggram above._ As we shall 'See, upon appropri-
rally evolved pointer quantitg)f; under dynamicsn; at time  tely changing the dynamics, the foregoing diagram automat
instantt > 0 immediately following the termination of mealCally carries over to other vastly more involved interaeti
surement and the measurafidat the pre-measurement timénstrument-based measureme_znt processes. But first, lvedore
instantt = 0, immediately preceding the act of measuremefinbark on a channel-theoretic approach to measurement, we

Unfortunately, because the actual value of the measuf@md)Ut””e a few concepts from discretization theory, which ar
cannot be known exactly, it is usually replaced withopera- needed for the presentation of various measurement models.

tionalizedvalue, that can (at least in principle) be obtained by

the most accurate measurement method. 3. CONTINUUM AND DISCRETE MODELS OF MEASURING
Several important classical measurement processes can SYSTEMS

now be put into the above dynamical Banach or von Neumann

algebra framework. As a simple application of tensor prolit pursuits of powerful technical results under well-chose

ucts, we now take up the example of length measurement, digctability and complexity constraints, most advancethma

cussed in some detail in Subsection 2.3. Recall that in moddnatical models of natural dynamical systems rely on the as-

ing the measurement a flagpole’s length, using a yardsticksggption that their underlying domains of time, space and

our designated measuring tool, we relied on von Neumanngftes are furnished with the structure of a topologozai-

gebragit(¢) andN (¢, ), finitely generated by the length quantinuum locally homeomorphic t&" for somen > 1 or to

tity ¢ and its associated pointer quantiy, respectively. To 32Since this is a trivial temporal evolution, from aff moment of mea-

obtain a workable model of the pertinent measurement prog@ement to the completazh moment, the time monoi is given by the

dure, it became necessary to pass to the corresponding $tatelement{0,1} = Z, cyclic group, so tham] = m" andmg = identity.

Under this representation, static measurement can be viene@d@generate
space frameworks” (‘ﬁ(é)) and&”(‘ﬁ(fg)). case of interactive dynamical measurement. Because praitebdliates are

TO understand t_he flagp()le‘ya_rdSt'Ck measur_ement INt&JAvex superpositions of deterministic states represényt@irac probability
action better and in order to bring our reasoning aboutmaasures, extension to more general states is essentiailyerou
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its compactified variants under the natural topology. In thien of state spaces turns out to be dual to the discretizafio
literature on mathematical modeling it is rarely noticedtthBanach algebras of quantities. Since von Neumann algebras
this ontologicallydriven structural assumption about mathebstract away all continuity and smoothness propertiey, th
matical models of dynamical systems is at odds with a ciserve the objectives of discretization particularly well.

cial epistemic finiteness conditipoapturing thefiniteness of  Returning to the general situation, given a target system’s
all physical resourceémanifested in available time, memorymeasurand with a continuum value space Vdl), theread-
laboratory size, measurement, etc.), necessary foathai- ing scaleof anidealinstrument for pointer quantity)f is also
sition, transmission and storage of informatipartaining to a continuum, captured by \,(éDf) However, the epistemic
the target system’s quantities. It becomes immediately-obfiniteness condition tells us thatreormal measuring instru-
ous that any geometric point chosen at random from any of thent’s pointer module can only have a finite number of de-
continuum domains of mathematical models will have, witectable states and that the measurement outcome asdociate
Lebesgue probability measure equal to one, at least one (ngith a pointer module state is bound to be a rational number.
algebraic) transcendental coordinate thahnomalmeasure- Thus, in an attempt to read and record the valuéXdf, the
ment process can ever identify with absolute accuracy. Makperimenter has no choice but divide its value space inyo ti
els framed in this way raise challenging questions about th&ervals and then decide which interval actually contalives
empirical relevance of ideal geometric points. Clearly,eam measured value. In this way, the reading scale of a normal
suring instrument designed to measure a quarttityith a instrument determines only a discrete, coarse-grainesorer
continuum value space ) will need a continuum stateof (Of, denoted by, f and called aiscretizatiorof pointer
space for a perfect measurement of each valué. oHow- quantity ®f with discretization parameter (level of resolu-
ever, since such an instrument can only display a finite méian) €. Simply, the mathematical continuum of an ideal mea-
surement outcome in finite time, the result will at best besaring instrument dial is observationally accessible amiys
small rational number. A major conceptual issue in the thaiscretized form.

ory of mathematical modeling of natural dynamical systemsThus, we can conclude that researchers must distinguish
is bridging the gap between ontologically motivated contibetween ontologically driven mathematical represematiaf
uum models and epistemically necessitated discrete modaiget systems in the form parent continuum modets one
encountered in computation and measurement. side, and prediction- and measurement-based tools inihe fo
of descent discrete modets the other side. These distinc-

In this section we introduce the notion dfscretization o : L
Qns are intimately related to the notion of model validati

of continuum dynamical models and study the relationships. ™ ¢ ; ; S Y
between a given so-calleparent continuum model and its his brl_ngs us to a brief review of basic dlscr¢t|zat|on meth
descent{offspring) discrete models, constructed by suitabfé!S Of ime domains, state spaces and quantity algebras. We
discretization methods in the ambience of measurement gtg9in Py describing the passage from continuum-time dynam-
cesses and prediction. We start by considering a continulf Models to discrete-time dynamical models.

model representing a natural dynamical system. This set-

ting is general enough to accommodate the characterizathoh Temporal discretization of continuum dynamical mod-
of measured and measuring systems. Next, we show how to €IS

d|s§;et|ze t.he rr]nodel’s Lg\fderlylrignehdomgm stg_te Space Erom the standpoint of physical measurement, most (if not

Z.n ynarglgstdfifreon. course, td(_afsfe Ingredients can ﬁ) time instants are inherently beyond precise obseymati
|scr'et|ze in di erent ways, using di ereqt time Stepﬂ 8| ikewise, from the standpoint of computer analysis, thalde

spatial mesh sizes. The resulting descent discrete modlels W, 1 onts of classical spaces (based on a continuum) are ac-

n ggneral be %u'lt? dcliﬁfef} rent and WIIITahpproxmqt_e ths PrelLssible only partially in terms of finitary approximations
continuum model in different ways. The opposition betwe erefore, for purposes of measurement and numerical anal-

continuum and discrete models is not a challenging probl s, the continuum-time domaifT,0,+), henceforth as-

as long as they agree asymptotically or in the limit in thesse umed to be homeomorphic to the mondd, , 0, +) of non-

that a given sequence O.f descent discrete mo_dels _rapl_dly ff‘é’@ative reals, has to be replaced by a family of information
proaches its parent continuum model as the discretizaten

fheoretically tractable discrete-time monoidsV, 0, +) with
rameter goes to zero, so that the former can be used as a Q&iiape time-step (sampling) paramater 0, whererN —
or less crude approximation of the latter. Unfortunatedywa ’

hall h Kinds of limi id q 0,7,21,---} is a submonoid oRR,, comprised of discrete
shall see, there are many kinds of limits to consider and m e-steps (i.e., integer multiples tdu, measured in mil-

qf them fail to br.lng th.el epistemic and ontol'oglcal PErsPefzeconds, minutes, days, etc.), determined by experihent
tives together. Discretizing smooth and continuum modgls, 'ampling regimes

considerably more subtle than what one may initially think. Clearly, to extract a workablnitary information from a
As we have already indicated, continuum dynamical mode) rent continuum-time dynamical mode| ~.2" of a target
3

provide a perfect ambience in which the concept of Gelfa ¢ bout its ph rait ¢ t time d .
duality between topological dynamical models and dynarniégS em about 1ts phase portrarl, some form ot time domain

L . Iscretization is necessaty.
Banach algebras operates successfully, and this is aksantru &
the framework of their discretization. For example, diizee  33Recall that even in classical systems science, solutionofipear) dif-
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Quite simply, the t-time discretization of a parentNevertheless, their empirical interpretations usuallgrtap
continuum-time dynamical mod&, ~ 2" is defined by the or are closely related.
o Since time discretization does not seem to be a serious tech-
nical problem, in what follows, we shall tacitly assume tihat
=4 IN 2, has already been completed and we shall focus exclusively
o on discrete-time (smooth, topological, etc.) determiaigdy-
namical models.

time domainrestriction

(R+ fé‘v 2) |TN
of R, to TN, where d;(1k,x) =q¢ O(7k,x) for all natural
numbersk and statex in 2". Clearly, when a continuous
time function is sampled in discrete time-step&t,31,---, 3.2, Spatial discretization of continuum dynamical models
in general, there will be a loss of information that depemals o

the size of the time-step. In applications, it is important ¥When a system of differential equations is nonlinear, it will
identify sufficiently good discrete-time approximatiorfste in general be impossible to solve its equations analyticall
parent continuum-time model’s trajectories and other dy.naCOmputer solutions inevitably bring in the effects of finite
ical objects. As a matter of further interest, it is easilyive ness, round-off, and other truncation operations that can
fied that there is a transformation on models that transforffgnetimes be very drastic, making the comparisons of com-

each parent continuum-time dynamical moRel ~ 2" into puted and ‘true’ solutions questionable. In a top-down an-
S alytic setting, typical in engineering modeling, model €on

struction in the form of equations proceeds in two interéehv
parameter. Importantly, note that the overall intended intephases. First, a system of (differential, difference )etqua-
pretation now spreads over two distinct universes of modelens is derived or determined in some analytic form. Then,
namely, the world of parent continuum-time dynamical modecond, its parameter (coefficient) values esgématedrom
els and that of descent discrete-time dynamical models. available measurement data. If the equations are incorrect

For example, in the familiar continuum dynamical model @befficient values can make the solutions’ predictions tatc
a simple pendulum, the temporal (and spatial) discretiratithe target system’s measurement data. Simply, the equa-
of smooth trajectories, having the geometric form of e#fps tions will have to be revised (e.g., by passing from linear to
results indiscreteellipses, as shown in Figure 3 below, wherguadratic equations). In general, these activities argaot
the discreteness is controlled by the size of the time-step formed in the world of continuum models. However, upon
passing to the solution spaces of differential (differgmcpia-
tions, we obtain a rigorous universal basis for state spaze d
cretization.

Given a temporally discretized variarny grx Z of atopo-

its discrete-time variantN grx Z with a positive time-step

logical dynamical modeR ? Z ', where 2" is a compact

subset ofR" (for somen > 1), in the simplest situation the
associated (descent) discrete state spégés defined by an
n-dimensional countable lattice (grid}; = (¢Z)"N 2" of
homogeneously spaced vectors with a positive spacesstep
all n directions, serving as centers of mgimensional mesh
of cells (squares, cubes, hypercubesharubes in general)
Fig. 3 Temporally discretized elliptical trajectoriesnitwo  of yniform sizee.3* In this way, finitary information about
different time steps in a 2-dimensional Cartesian stateespane continuum model’s topological state spate(and asso-

A possible close fit between a parent continuum-time dynafigt€d phase portrait) is extracted by identifying thepertt

ical model and its associated sequence of (descent) tengdl-s in which the ideal elements of" are presumed to lie.
rally discretized dynamical models is established by an is nce the cell size and the nu_mber_of cells have a direct bear-
morphism between the parent model and the inverse limit/8@ On computational costs, investigators prefer to c/hca)se
the chosen sequence of descent discrete-time dynamical nhglftively small continuum dynamicalibmodeR, 2" of

els, as the positive time-stapparameter approaches zero. e continuum parent modé!., -~ Z on a (compact) sub-

is important to bear in mind that a parent continuum-time dypace 2 of 2° — dictated by importance and interest — and
namical modeR . 2" cannot be directly linked to any of itSproceed to study its localized phase portrait. In this chee t
descent discrete-time dynamical models of the merg\v%, submodel’s descent discrete space is finite. To identify the

because these models belong to entirely different categjorbverall dynamics and soundness of the parent model, several

- - o . ) special submodels &, ~.2" are investigated.
ferential equations often prompt approximations by disetiete difference o
equations. Furthermore, the solutions of analytically gidiferential equa- 1 h€re are many ways to construct a cell structure over the
tions are usually meant to refer to the underlying ‘realitf/target system
behaviors, and the associated discretized variants aalimted to capture  3*Here and below we adopt the usual notatiosZ =
that ‘reality’ in an (approximategpistemically accessiblaanner. {...,—2¢,—¢,0,¢,2¢,...}.
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underlying state space of a continuum dynamical médelsize &’ < €) on the right. The empty circles illustrate mea-
For example, suppose the parent continuum dynamical maglglement results from validation experiments, important i
represents the behavior of a simple pendulum and the invegaluating the discrepancy betwegredictedand measured
tigator's main interest is in the verification of one of its elquantity values, specifying states.

liptical trajectories (forming a period-one cycle), spied Next, we need arg-discretizationmap ¢ : 27 — 2%

by some initial state and a parameter value. For this pthiat sends each statén the continuum state spack to its
pose, it suffices to confine the parent continuum modefisarest discrete staffi&: (x) in the associated discretized state
state space to a smaller two-dimensional rectangular (caspaceZ:. In general, the structural ingredients of a descent
pact) subspac€” c R? of position-velocity points, say?” = spatially discretized model of the parent continuum dyrami
[-L,L] x [-L',L’]. The subspace” together with its homo- cal modeltN g\w%” of interest are defined as follows:
geneous grid of size = 0.25 inches is illustrated in Figure 4

below. (i) Discretized state spacefor a given (usually small)
In approximating the elliptical trajectory by a discretina space-steffgrid size, mesh or lattice spacing)> 0 we
algorithm, the investigator is confronted with the problem define thee-grid or e-discretization(n-dimensionale-

deciding on a mesh, assessing the quality of approximation lattice) of the parent state spac& C R" as the set
with that mesh, and then adjusting or refining it as needed. P Zn
Each chosen positive space-stegetermines a unique-cell £ —df N (eZ)".

As signalled above, the descent spatially discretized stat
}’ spaceZ, comes with itsprojective discretizatiormap
O¢: & — Z, defined byl (x) =4 (ep, ev) withx €
[e,(py) for all xin 2°. We have already indicated that
the discretization (round-off) map sends each state
the parent continuum model’s state spateto a unique
point in its -integer lattice subspac@’ that is closest
to it. Naturally enough (in accordance with a computer

£ £ g € £

He =df {(XLXZ) ’ —5Su<; & 5Sx<;
which is geometrically a half-open square of size €, cen-
tered in the origin of the subspac® c R?. This cell can be
moved anywhere in the state spagéby translation. For in-
stance, the cell defined hy, ) =dr (€p,€V) + @, Which
is easily seen to be equal to the square

discretization procedure), each point is ‘rounded off’ by
{(Xl’XZ) (P— 5)5 <x1 < (p+ 5)5 its approximant in the integer lattice. This is how the in-
1 1 vestigator obtains information about the parent model’'s
& (v— §)£ <xp < (V+ 2)8}, states or more generally about the phase portrait's tra-
jectories and other dynamical objects. In the reverse di-
is centered in the lattice poinfep,&v) of €Z x €Z. For rection we have the d_ueixhjective dediscretizatiomap
concreteness, le?; be the set of lattice points of the form e 1 £ — 2 satisfyingUe o [ = 1 9.
H !/ !/
(ep,ev) in (eZ x €2) N ([~L,L] x [-L',L]). (i) Discretized dynamics3iven a continuum-space dynam-
dx ics0: TN x 2 — %, its discretized transition map
dt O : TN x 2y — X is defined by the base diagram

o 2 g

,|”."I*”" =
et r | DET lDE

5 (1,
o 3"./ 3{;: e E%

L\[;\ o_;j and then extended to all discrete time steps by iterations

L 3 (n+1,x) = & (n, &(1,x)) for all n andx.

It is easy to verify that in the case of the pendulum ex-
ample discussed above we have

_ _ _ . % (1,(ep,ev)) = Dg<5(1, (ep, ev))),
In Figure 4, cells are displayed using two different mesh
sizes: larger (mesh siz) on the left and more refined (mesh  specifying a map(1,-) : 2: — 2: that is quickly
extended to all discrete time instants by iteration.

Fig. 4 Refinement of state space discretizations

35In the case of abstract topological state spagéshe starting point is a
coarse grainingn the form of a (measurable, open, etgartition (covering, . . . . .
tessellation) that induces an equivalence relatio?ariThen the representa- Given a descent spatially and temporally discretized dynam
tive points (nerves) of the corresponding abstractionselasletermine a dis- cal modeITN(sr\v Z¢ of a continuum dynamical modeN fé\v

T.E

crete set of points, giving a locally ‘averaged’ informataiout the points in £, ,
2. In this general setting, a major problem is that these typegaivalence 2 » Stroboscopic measurement results of the pendulum’s po-

relations fail to be dynamical congruence relations. sitions and velocities at discretized times can be enteried i
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the cell diagram, as shown in Figure 4, and make comparistims descent discretized dynamical model will generate a va-
with discretized trajectories, given by the parent contimu riety of discretization-dependent spurious and ‘phantdyn’
dynamical model. namical regimes (periodic orbits, fixed points, etc.) ariteot

As in the case of temporal discretization, the success of spdifacts that do not correspond to any behavior presetdn t
tial discretization depends on the behavior of (inversa)ti parent model. The investigators need to recognize that de-
of converging sequences of descent spatially discretiged dcent discrete dynamical models are radically differentlimo
namical models, as goes to zero. Comparing spatial disels that may approximate their parent model in some circum-
cretization with temporal discretization, we see that aomajstances, but nevertheless they tend to possess propettes (
technical problem in spatio-temporal discretization es¢br- degrees of freedom) and structure that are patently insonsi
rect choice of a double limit, as the time step and mesh sieat with those instantiated by the parent model. The difficu
approach zero. Here the essential idea is to let the sequénd®s to do with the fact that discretization algorithms usual
spatial discretizations to be at least logarithmicallydhead break the parent continuum dynamical model’s infinitesimal
of the sequence of temporal discretizations, so as to alew symmetries, invariant under smooth or continuous dynamica
dynamics of the latter to correctly converge to the contmuusomorphisms. This problem would not matter too much, if
parent model’s dynamics. (Seg for a more detailed discus-one had a well-defined way of taking the limit of a descent se-
sion of why the succession of temporal vs. spatial disaetizjuence of discretized dynamical models —in which stateespac
tions can not be interchanged.) and time discretizations go to zero — that would ensure not

Because the parent continuum dynamical model’s states@mty a gradual disappearance of inconsistencies (maedfest
not observable directly, they must be identified indireatly by spurious regimes) but also a totatonstructiorof the par-
terms of (smooth, continuous, measurable, etc.) quastitient continuum model, modulo dynamical isomorphism. Un-
whose values are obtained via measurement. Thus, we &stunately, presently there are no known general necgssar
need to look at approximating rational-valued functionthef and sufficient conditions for the existence of a limit of a de-
form fe : Zz — Q that are extendable by extrapolation tecent sequence of discretized dynamical models that dilighf
functionsf, : 2" — R on the entire state spack’. The de- reproduces the parent dynamical model.
tails are investigated further in the next subsection, ez
consider Genfand representation in the context of distreti
tion theory.

Every elliptical trajectory in the pendulum dynamicathroughout this work we have emphasized the fact that exper-
model is reconstructed from a discrete trajectory of a descgnenters do not have direct access to the states of thegttarg
discrete model via subsequent refinement, as illustrateddifhamical systems. To obtain a workable model, it is neces-
Figure 5. sary to characterize the states indirectly, in terms ofagert
dx observable quantities, so that instead of observing a state
coded by a poink € 2 of a representing dynamical model
™N /(-S\V Z, experimenters measure thaluesof smooth, con-

3.3. Algebraic discretization

tinuous, or measurable observables of the férmZ™ — R
in statex, sufficient to generate informative data propositions
aboutx.

As a prelude to algebraic discretization, recall that in a
topological setting each (discrete-time) continuum dyicam
modeltN m Z comes with its associated dynamical Banach

algebra moderN o C(Z"), whereC(2") denotes the Ba-

nach algebra of aII continuous real-valued functions on the
Fig. 5 Discretizing a smooth pendulum trajectory underlying state spacg” of TN - Z (interpreted as the

get system’s algebra of continuous quantities), andnthe

uced linear (dynamical) transition map: TN x C(ﬁ&”) —
C(Z") is defined byd*(tk, f) =gt g with g(x) = f (5(tk,x))
ent dynamical modet o~ 2. As alluded to earlier, dy- for gl x. The topology in the algebi@(.2") is obtained from
namicists are interested in the asymptotic behavior of the dhe uniform norm|| f || =4 sup.c »-| f (x)|.
cretized dynamical modelN ~ 2%, as the mesh sizegoes  The same algebraicizing idea works also in the universe dy-
to zero. It is well known that discretized models even with@mical von Neumann algebras. Specifically, to each mea-
tiny mesh sizes are not very helpful deterministically, sincesurable dynamical modeN -~ (2, 7,P) (whereP is usu-
the correlation between the behavior of the discretizeda‘lsoda”y the Lebesgue probability measure otf) there cor-
TN~ Z¢ (with varying €) and that of the parent continuumesponds a unique dynamical von Neumann algebra model
dynamlcal modefN ~ 2" is usually very weak. Concretely, TN o (£0(2,#,P),&p) such that

In this manner, we obtain a descent spatially discretiz
dynamical modefrN 0 Ze (with space-ste) of the par-
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() £.(Z,#,P)isthe von Neumann algebra of essentiallyon/dediscretization relations

bounded real-valued measurable functions on state space .
&

Z", modulo probability measui zero, with its induced C(2) ——C(Z:)
stateép in .77 (£.(2,.#,P)), and Oe
Ue
(i) the transiton map &* : 1IN x £,(%,%,P) — £o(2, 7 ,P) C0(2e, Fe,Ps)
Lo(Z,F,P) is defined as before, bp*(1k, f)](x) = Oe

f(d(tk,x)) for all x, wheref € £,(2",.#,P). Impor-
tantly, 6* preserves the probabilistic state, i.e., we
havedp o 8*(1k,-) = &p for all discrete timegk in TN.

satisfies the definitions of a channel and cochannel, respec-
tively, so that, in particular, the map

g

y(ﬂm(%,f?,P)) y(}:w(%,ﬁg,%))

Thanks to Gelfand and Riesz representation theorems, there
is also areverse construction that transforms algebraiarty _is a channel. Since the treatment of discretization worlss be

ical models back into topological or measurable dynamiggl,,,, Neumann algebra settings, we shall devote the rest of

models._ There are several other |mportant relations b‘?tw’ﬁ"ﬁs subsection to the study of discretization of measerabl
topological(or measurable) dynamical models aldebraic quantities
n

dynamical models, but in this subsection we shall focus o YIn the case of von Neumann dynamical models, the

on the problem of algebraic discretization. discretization magly : £u(2,.7,P) — Lol 2, Fe,Ps)

In particular, we recall the ever-present pair of projetisends each quantit to its averageon the associated cell of
discretizationand injectivedediscretizatiormaps between agach |attice state it By way of illustration, we retum to

given continuum parent dynamical model and its descent spgs pendulum example discussed in the previous subsection

tially e-discretized dynamical model and for each measurable quantftyve set
O _ ]
(TN?%)i(TN?%)’ Oe(f) =ar fe: Ze — R,
Ue 3

to be a discrete function specified bfe(ep,ev) =g+

discussed in the previous subsection. Note that becauselfoy,,, f(X)P(dX). Asindicated earlier, at each discrete point
compact spaces?” the set.Z; is a finite discrete (lattice, (¢pev), the value of functiorf; is obtained by the average of
grid) state space with spacirgg> 0, the associated Banachf on the cell determined by the point. It is easy to check that
algebraC(Z%) is finite-dimensional, comprised of vector§l, is a linear positive unital map. Now, since the discretized
or diagonal matrices of dimensioiZ;|, and likewise for quantity f¢ of f remains real-valued, its measurements dis-
Lo(Ze, -7 ¢,Pe) (WhereP is specified by the Lebesgue proberetize its values by a suitabl@lue round-off operation on
ability of e-cells). Regarding the empirical interpretation o¥al(f).

‘observables’ inC( %), we may assume that they are evalu- The dediscretization maple : £e( 2z, Fe,P) —
ated onZ in terms of dial readings on appropriate measurings. (2",.% ¢, P) is defined by a cellwise interpolation of each
instruments, interacting with the target system. The \&ludiscrete quantity. That is to say, each measurable guantity
of discretized quantities in a descent von Neumann algebrg f) = f is obtained by setting(x) =g+ fz(@¢,(p,v)), Where
model £.(Z¢,-7¢,P:) can given by the averages of correm), () is a cell in 2 containingx. Of course, there are sev-
sponding parent dynamical model quantities o&s-cells. eral other choices. The goal of algebraic discretizatioto is
Having reached this stage, we can now consider ways of lfftd a convenient discretization-dediscretization gaig, O )

ing the discretizatioril, and dediscretizatiofl; maps from such that

topological models to their Gelfand-given algebraic ceunt lim ||0g 0 Og(u) — Uljleo = O

partsl : C(2°) — C(2%) andl; : C(2Z:) — C(2), re- €0

spectively. It should be clear that this ‘lifting procedumeay holds for all quantities in £,(.2",.%¢,P) and the diagram

be rephrased also in terms of von Neumann algebras.

As we have already remarked in Subsection 3.2, the main £o( X, Fe,P) Ok Lol X, Fe,P)

obstruction to providing workable algebraic discretiaati

schemes lies in finding convenient discretization and dedis DSJ TDs
cretization maps that support an asymptotic or limit corre- o

spondence between the continuum algebraic mmﬁélg} Lo X, Fe,Pr) X Lo(2e, T e P

C(#) and its sequence of descent discretiZ(_ad algebraic mf?quing descent discretized dynamics with its parent aonti
els TN g; C(Ze), TN g? C(Ze),..., as their ordered S€uum dynamics commutes in the limit, meaning that the iden-
8/

quencee > ¢ > ... of spacing parameters goes to zero. fity ) .
turns out that the much-studied péit,, ;) in the discretiza- l'LnOH Og 070 0(f) —0n(f)llo =0
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holds for all quantities and discrete time instantk. Intu- value read from the measuring instrument’s pointer module
itively, the foregoing requirement states that as a destisat will be found to be strongly correlated with the measurand’s
cretized dynamical modalN ~ £.(%:,F¢,P:) becomes objective value, as it existed immediately prior to the &ct o

, i 0%k _ measurement. In a successful measurement process, a com-
finer and finer under gradually smaller choices of paramefg e initial‘'system + instrumenttate (consisting of the sys-

€, it will approximate the dynamical behavior of its PArRh s unknown pre-measurement state and the instrument'’s

continuum dynamical mOdEND?; £(Z',7,P) better and known initial ‘null position’ state) evolves into a uniquere
better, and in the limit, as goes to 0, the approximation willrelated (entangled) composite post-measurement stdee; de

be perfect, modulo probability measure zero. mined by the jointsystem + instrumentphysical dynamics.

In [3], Fabio Benatti and Valerio Cappellini have noted thét Subsystem restriction of this joint state to the instruten
the foregoing limit of spatial discretization cruciallygends completely determines the pointer quantity’s outcomemfro
on the presence of a logarithmic time scale of temporal dy¢hich the measurand’s real value can then be reconstructed o
cretization. Concretely, in the ambience of a concrete aynaéstimated. Specifically, suppose the physical respondeeof t
ical von Neumann algebra of measurable quantities on a tigeasuring instrument is given by tioérect modelequation
dimensional continuum torus state space they have shown the=£(f....), wheref denotes the measurand antistands

the following double-limit theorem for the ‘response signaf® Now, the final outcome of mea-
surement, specified by the values of the instrument’s pointe
liino rlkiToo 08 00e(U) —Og 00k (U)o =0 quantity @ f — providing support for the measurand’s esti-
tk<log mation or reconstruction — is obtained from the values of the

response quantity f, using a variant of thealibration equa-
holds for all quantitiess in the dynamical von Neumann altjon () f = £(4f,...). Needless to add, the pointer quantity
gebra modelZ i~ (£(C2,N),&0), whereC? is the two- ()f serves also as an interface between the instrument and a

dimensional donut-shape x C torus space,A is the human observer.

Lebesgue probability measure on it and the dynamical tranin the spirit of the so-called Heisenberg picture (understo

sition mapd* is specified by some simple equations. to be a description of natural dynamical systems in terms of
Although the significance of the double limit result abov@anach or von Neuman algebrascpfantitiesrather than in

is smaller than a discretization specialist might have Hojte terms ofprobabilistic state spacgsuppose the target physi-

nevertheless indicates an important relationship betwpan cal systens is described by a Banach (von Neumann) algebra

tial and temporal discretizations. Informally, this rekele 2s and let? ¢ be the Banach (von Neumann) algebra of the

result says that if the time evolution of the descent digedt instrument’s pointer module (designed to provide measure-

dynamical model is constrained by the exponential inegualment outcomes for measurarid instantiated by the system

of the forme™ < 1, stating that as long as the investigatdy) With output quantityDf.

does not go too far into the future in making predictions — soln modeling the temporal dynamics of the measurement

that the necessary spatial discretization refinement bgsshd?rocess, the modeler must come up with a dynamical descrip-

ing a sufficiently smalk can be guaranteed — a suitable forton of not only the (uncoupled) measurdand measuring

of commutativity between discretization and dynamics actM ¢ system, but also a complete description of their physi-

ally holds. One would hope for similar results to be valid fdi@!l interaction during the measurement process that iegolv

general dynamical von Neumann algebras. The problem li@8, exchange of energy and directed information flow. Let

as hinted at earlier, in the correct choice of the paig, ;). Us assume that the respective dynamical Banach (von Neu-
mann) algebras of the independently prepared target system

n inter modul ~ ndT ~ 37 Finally, |
4. INFORMATION CHANNEL PERSPECTIVE ON and pointer module are ) %s and o At ally, let

MEASUREMENT the joint dynamics of thésystem + instrumentbipartite sys-
tem (coupled together at tinte= 0) be captured by the family
In this section we take up the discussion of the channef-time-indexed transition maps of the form
theoretic approach to measurement, begun in Subsection 2.3

As we observed there, measurement can conveniently be char- As @ At — M A ® Aot,
acterized in terms of channel-cochannel pairs, relatistesy
and instrument quantity algebras. involving the systems’ energy quantities and energy flow.

Recall again that a classical measurement process invoi/B€n, as indicated above, the compound system’s statistica

(i) a measurand of a phy3|_<_:al system of mte.reSt with a def"_m36Note that here we deliberately use the lightning sympblto denote
but unknown value, and (ii) a correctly calibrated measyrighe instrument's internal response quantity as a remindeirthmactice me-
instrument (appropriately chosen for the measurand) — piiating quantities tend to be electrical or optical in nefuand the ellipsis
sumed to be dynamically coupled with the physical SyStéMhe Iawlserves asa place-holder for unspecified au>_(ilimeyntitie_s: For
for a certain period of time, until an (approximate) equilif*@mP!e: in many instruments the transducer comes with an aafaliinput
. . ' . _quantity, capturing environmental interaction, bias, cardr modulation.
rium state is reached. Now, if the coupling and the resulting7as pefore, the transition map's indexing domdinis a time monoid,

physical interaction are of the proper kind, then the nuoaéri usually isomorphic to the additive monof# , ,0,+) of non-negative reals.
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state considered at tinie= 0, encoded by5y, evolves in ac- now well known, in practice the measurand (e.g., mass, tem-
cordance with the earlier defined dual (state) transitiop maperature, energy, and so forth) of a target system can be mea-
sured in many distinct and competing ways, and with varying
y(gls ®91@f) _m Y(le ®Q[®f)7 degrees of accuracy, employing different physical methods
and principles, and yet, by and large, the resulting quantit
into a unique state at time> 0, denoted by the expectatiorof information obtained about the target system in the cor-
functional 4 = m{‘(éao). responding measurement outcomes is, modulo some errors,
In more detail, during the interaction process, an unknowasentially the same. Thus, if what matters is only the trans
pre-measurement system statethe experimenter wants tofer of information about the measurand from its instarmigti
learn about together with the instrument’s known ‘initiallh  target system to the instrument’s pointer module, wherg it i
state&? at timet = 0, specifying the inpuproduct stateby received in the form of the instrument’s pointer quantitiuea
the affinelifting (extension) channel* (&) =qt Go© &P.38 In 10 be read off later, and not the specific physical mechanism
accordance with the dynamics ‘sf/stem + instrumentcom- underlying the measurement process, then it is more efecti
posite (determined by the physical laws of interactiong tf Work with a considerably simplehannel-theoretienodel
input product state evolves into a correlated compoune stt measurement, based on quantity and state channels. In
& = m{ (& ® &P) considered at time instant> 0. The last |nfqrmat|on-theoret|c _frameworks itis completely irreget
step — as it should be apparent by now — is provided by tf{Bich type of measuring instrument is used to perform a mea-
so-calledrestriction channelR*, defined by the state restric-Surement and which physical laws are involved. This higher-
tion [R(4](v) = &(1®v) for any instrument quantity in 1evel (Supervening) approach to measurement processes is e
Apt (OF). Fremely convenient, bgcause it is relatlvely.easy to_tmmf
At the root of interactive (instrument-based) measuremdpformation between different types of physical carriensoh
processes is the following fundamental commutative squagelectric currents in wires, light pulses in optical fipersd

(and its obvious dual): so on). Furthermore, errors, perturbations and possibke®
of information occurring during transmission are also lgasi
Y(le ® Ql@f) my y(% 2 Ql@f) tractable. The wewpqmt we qdopt next is to regard measure-
ment as a transfer of information from the target systemdo th
I T l R* measurand’s pointer modufe.
M As we have already seen, from the standpoint of algebraic-
S@s)  —— S (Agr) i i i
S @ analytic measurement theory, the basic strategy is tosepte

Upon examining the diagram, we see that the Syswm_@%ﬁﬂaﬁﬁg Inai{:I mwﬁiléftmhznctorc)rhc};r?ns; riyaasss:tagfntcitri]:: r(;el_
instrument measurement chanM is specified by the com-~""" pair, P d
an input (source) systeid (usually a measurement appara-

iteM{ =41 R* om; o J* for all moments of time. : ;
positeM; =g R" om; o J” for all moments of time tus), described by (say) a Banach algelifg to suitablees-
One reason why instrument-based measurement theory ap- ” . .
F\torquantmes of an output (receiver) syst&min general

pears to be so complex is because it deals with structureg a .
two distinct levels, one of which complementssupervenes represented by a different Banach algeliza
on the other. Structures at the most fundamental level — enOUr @im here is to model the measurement process channel-
joying a great deal of attention by physicists in view of geirfheoretically (without invoking any details regarding the
essential to the physical understanding all classical areas Physics of measurement coupling), usually by a cochannel
ment processes — are given by the underlyhgsical inter- M Which maps the pointer module’s measurement quantities
actionsbetween the measured and measuring systems. Inith8m to those quantities in the system’s algeBtawhich
pursuit of this ground level structure, measurement tisepriServe as optimatstimatorsfor the system’s quantitiegjven
regularly take concepts from physics and systems theody, Hpe instrument’s information abotembodied in the pointer
apply them to various measuring instruments and measuf&dule of2ly. Each cochanné¥l captures a particular way
ment processes. For us, this level requires least comméhtvhich a measuring system encodes information about the
since it has been covered already, basedshn | measured system. Conditionally upon the results of continu
The second level of structure is best seen in the formal ePts measurement, a cochannel minimally revises and updates
bodiment of afunctionalistview of measurement. As is by2 Prior quantitative information about the system’s quasi

38A lifting channel of the formJ* : As — As @A ¢ is said to beronde-
molitionistfor the system stat& (or & is invariant with respect td*) pro- 39%Here we assume that information is not a concrete thing or anbsthat
vided that[J*(£)] (u® 1) = £(u) holds for all system quantitias Nonde- is transported like furniture from one place to anothess itdt part of the ma-
molitionist channels characterize measurement interacti@mtsdo not alter terial contents of the world, located somewhere in spacéheRatformation
the system’s initial state. We know that various measurememegses tend is a fundamental theoretical entity (in the sense of Hansteeicach'sab-
to change the measured system. For example, active sensoma@aig and stractg, representing that which is brought into existence by &orimation
sonars)add energy to thésystem + instrumenténvironment as part of the source and required to be reproducible at the receiver eadaimunication
measurement process, and electrical instruments usti@ly energy from channel, if the transmission is to be regarded as a succeseuttdabout de-
the measured system, causinigading error. Most chemical measurementsscription‘that which is brought into existence formally analyzed in terms
damage or destroy at least part of the analyzed substancepdarth. of (continuous, measurable, etc.) sequences of probabdisttes.
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4.1. Discrete measurement of angular positions of a physpsition measurement methods may be found®jrahd the
cal pendulum references therein. Since we may know the response of this

, , i stroboscopic measuring system without knowing the teethnic
There are at least three major categories of classical MASHils of its optical and electrical dynamics, we shalliass

ment. Historically, the earliest types of measurement WEIRt the value space of pointer quantit cali-
those based on the principle of direct comparison. We h%’r% P V@) of p q YOp (

read fth in Sub ion 2.3 and called ted in angular or length units) pfis a subset of discrete
already met some of these in Subsection 2.3 and called t ts inC. This means that since the pendulum’s positions
staticmeasurements. Indirect or interactive instrument-ba

ts dominat d ¢ i measured at discrete time instants stroboscopically wi
measurements dominate modern measurement prac ,'Cesllirﬁﬁed accuracy, we need a spatial discretization of the ci
well known, these measurements come in two major f

. . ! ) . &e groupC of positions, specified by the discrete §gt=q¢
vors: discrete-timeand continuous-timelynamical measure- . ~ ¢ — (0,¢,2¢,---} of possible angular pendulum posi-

ments. We shall have space to consider only one exampleﬁ s on a circle, where > 0 is a fixed discretization param-

a discrete-time dynamical measurement. eter, chosen in arc or length units, e.g., one arc secondeor on

Suppose we wish to measure the angular positions of 2 S{fijimeter. We can now define the space-time parametrized
ple pendulum’s bob at various instants of time. We have ﬁ\'scretization mafil; ¢ : R. x C — TN x C; as in Subsec-
ready seen in Subsection 2.1.1 that in the case of instrument ’

based measurement of pendulum positions the starting pdfft 2-3: by settingJz &(t,6) =ar ([F+3] 1|2 +3] @)

is the Banach algebr@(p,v), generated by positiop and Here the basic idea is to assign to each ideal angular positio
velocity v quantities, and Gelfand-isomophic to the coryalue® at a given ideal time poirttthe unique discrete posi-
crete Banach algebra of observab@éval(p) x Val(v)) tion that is closest t® — measured stroboscopically — at the
C(Val(p)) ®C(Val(v)). Since the value space Va) is equal discrete time nearest to . _

to the circle groupC = R/ZHZ of reals and VE(N) = [07V] for Moving on to the'system + instrumentstate dynamics

some upper limil/ of angular velocity that does not exceed mi

the speed of light, we quickly obtain our start-up dynamical-” (C(C x [0,V]) x C¢)) —— . (C(C x [0,V]) x C¢)),
Banach algebr&.. ~~ C(C) @ C([0,V]) (together with the e that because the pendulum’s state of motion is not af-
algebra isomorphisrl(p,v) = C(C) ® C([0,V])), intended fected by measurement, we may set for deterministic states
for modeling the pendulum’s dynamical behavior. As shown(6p ® Vo ® 6;) = 6 ® v @ O¢.(t, 6), where the tensor

in [5] and reviewed in Subsection 2.5, the transition map cdmponent for position measurement changes from itslinitia
this dynamical Banach algebra is derived from the solutivalue to the next discrete value, established by strobascop
space of classical pendulum equations. Here, as before,ntt@asurement.

dynamical Banach algebra represents the temporal evolutioBy exactly the same reasoning used in the previous sub-
of all quantities that have been found to be decisive in a cogection, we use the fundamental contravariant commutative
plete description of the pendulum’s motion under considesmjuare

tion, without any regard for measurement interaction. C(C x [0,V] x Cg) " C(C x [0,V] x Cg)
In order to meet the requirements of discrete measurement, : € ' £
we need a discrete variant of the above-discussed parent dy- .
J Tk

namical Banach algebra. To obtain the descent discrete-tim
dynamical Banach algebraN o C(C) ® C([0,V]), we use

the temporal discretization metrhod of Subsection 3.1. By co C(Ce) « C(Cx[oV])
struction, in this discrete algebraic model the pendulian’s to specify the quantity channel (cochann®), =gt E¢k o
gular position and velocity values are available only at dig; o J, intended for modeling a discrete measurement of the
crete moments of time, referred to bl (integerk time units target pendulum’s positions. As before, we g = 1® 1®
of a chosen time-step). u for each pendulum quantity. Since the dynamics of the
We now turn our attention to position measurement. Sinsgstem + instrumentdoes not alter the pendulum’s states,
pendulums are among the most studied physical systems,define the right most cochanrijy in the square for all
there are several known ways of measuring their positiods abservableg in C(C x [0,V] x C¢) by [Ew(&)] (&, i, 6}) =
velocities. Indiscreteposition measurements the most con®,.
mon methods are the so-callstioboscopi@approaches. Ina The channeMj, maps the pendulum’s position-velocity
typical experimental set-up, position measurement iscbase deterministic statg, v;) at timet to the measured position
the variation of a suitably positioned light-dependenistes, value6,, at discrete timak, nearest td. This discrete value,
located proximally to the pendulum’s plane of motion, whose turn, can be used to specify the value of the position esti-
electrical resistance abruptly changes when the pendslumatorp. We do not have space to treat discrete position mea-
moving bob cuts the path of the light from a laser. In one irsurement with random error. More general forms of position
plementation, equally spaced laser beams are directedpermeasurement require the cochanBegl to be aconditional
dicularly to the pendulum’s plane of motion, with electrams expectation (Full details on conditional expectations in this
sors on its opposite side. Design specifics of this and klatentext are given in]0] and references therein.)
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4.2. Information channels from measured systems to meawe turn now to describing some important measurement
suring instruments processes using the cochannel-channel framework. Inddecti

Before turning to th licit details of licati f et 2.1 we have already noted the fundamental importance of the
efore turning to the explicit details of application o acocthannel-channel pair

channels and their cochannels to measurement problems, |
is important to point out that in the case of quantity chan- , , (M,M¥)
nels of formMy : 2 ¢ — 2s for measuring quantity, no A x y(m)

account is taken of thmeasurement interactidmetween the . .
between Banach (von Neumann) algebras and their respective

target systen$ and the selected measuring instrumentffor at Let int out at that d
The formal framework in which the instrument-based mea-a € Spaces. Let us point out at once that a cascade sequence

surement interaction problem (and many problems like i) ¢ mportant in reprﬁ,entlng aligquencz of me?surement sen-
be framed is given by the so-callednditional expectation sors, processors, filters, amplifiers, and convertors)

cochannel, having the form (NN
Ql// x y(m”)

A x .7 ()

O o e @) M o (1)

E
s © At s composes in the usual way into the cochannel-channel pair
whose dual state chanril transfers the system'’s extant (sta-
tistical) state to aorrelatedstate of the compositgystem + A x .7 (A")
instrument’bipartite system, from which the instrument’s fi-
nal state is determined by a subsystem reduction. More pHfe Verification is easy, based on the definition of ther
ticularly, as we have seen, the state channel of a measurerfigghannel-channel pair. From the foregoing composition op

process is modeled by the following cascade of informati€fation we obtain a category of cochannel-channel paies, th
channels: can be used as a formal framework for the study of measure-

. ment processes. Along similar lines, it is easy to check that
7 (As) Ly(g[@ @ 2As) ﬂby(g@f ®As) iy(gl®f) two cochannel-channel pairs

(MoN,(MoN)*)

> A x .7 (A)

The channel diagram above shows how to obtain knowledge A x 7 (A) (MM7) Ax .7 ()
about theunknownpre-measurement state of the system from
aknowncorrelated post-measurement state of the instrument, and
after the measurement interaction has reached its equitibr
The quantity channet : s ® At — s turns out to (NN
be extremely important in handling the information-theiare B’ x .7 (B) ’ B x .7 (B)

aspects of measurement processes. It is easy to verifytsh
Gelfand representation is given ameraging operatoof the
form

ati . : - . .
gietermlne their tensor product pair (important in appiaat
to repeated measurement of a single measurand or to a joint
measurement of several measurands)
C(25 x 1) = C(25) x C(Zip1) —— C(25), MEN (MaN)*
@ ® W o) x .7 (W) LN o0 m) x .7 (A0 B)
defined by [E(h)](x = h(x,X)T(x,dx'), where T : : :
y [E( ).] (x . fﬂ@f (X_’_X) (x )“ There are many other important constructions on channels
Zs — P(Zp1) is a given transition probability. Thanks toand cochannels, needed for the description of special mea-
its relationship to averaging, the cochanBelatisfies the fol- s;rement processes, including measurement fusion, neeasur
lowing properties for all quantitiesandv on the product state ments involving demolition, and continuous measurement
spaceZs x Xpf: that, due to limitations on space and time, must be omitted.

() El®l) =1,

5. CONCLUSIONS

(i) u>0 = E(u)>0;

In this paper we have presented and developed the framework
(iii) E(u+v) = E(u) +E(v); of Banach and von Neumann algebras for quantities, together
(iv) E(u- E(v)) — E(u)+E(v). with their associated (convex) spaces of expectation fomct

als, as a comprehensive and unified algebraic-analyticsfram
What is perhaps even more startling than the properti€s ofvork for measurement theory. It is our hope that the formal
listed above is the fact that cochannels are Banach (von Nadequacy of this paradigm was made apparent by the remark-
mann) algebra analogs existential quantifierg distributive able flexibility with which it accommodated mathematically
lattices. Note that the quantity chanidk; introduced at the natural constructions, representing various aspects @ me
beginning of this subsection earlier is obtained frBray re- surement - such asnsor productsf algebras (modeling var-
striction: M¢ (h) = E(1®h) for all hin . ious couplings of target systems and measuring instrurpents
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dynamical algebragcapturing temporal evolutions of quanti- [4] Domotor, Z., Batitsky, V. (2008). The analytic versus
ties instantiated by natural systems), and spacesp#ctation representational theory of measurement: A philosophy
functionals defined over algebras (encoding evaluations of of science perspectivdVieasurement Science Revj&v
quantities through measurement). A striking element of thi  (6), 129-146.

framework is a large variety of information channels betwee[5] Domotor, Z., Batitsky, V. (2009). An algebraic-anatyti
guantity algebras that model functionally conceived tfarss framework for measurement theory. Under review for
of information from target systems to measuring instrument  publication inMeasurement

and also — in the converse direction from instruments to sy$6] Gelfand, I. M. (1939). On normed ringBoklady Akad.
tems — various estimations and reconstructions of the mea- Nauk U.S.S.R23, 430-432.

surands’ values from the outputs of measuring instrumentl/] Kadison, R. V., Ringrose, J. R. (1983Fundamentals
The framework’s mutability also allowed us to model the re-  Of the Theory of Operator Algebrasol. Il. Academic
lations between continuum-based theoretical models and fi- Press, San Diego.

nite/discrete measurement data in terms of increasingly ré] Lasota, A., Mackey, M. C. (1994).Chaos, Fractals,
fined discretizations of continuum theoretical models afjn and Noise. Stochastic Aspects of Dynamirel edition.
we believe that theonceptualadequacy of the algebraic- Springer-Verlag, New York.

analytic framework was made apparent by various represen

] Lima, F. M. S., Arun, P. (2006). An accurate formula for

tion theorems, which connect quantities to the states ofmod the Period of a simple pendulum oscillating beyond the
eled natural systems by providing us with deterministic as SMall angle regime American Journal of Physics4,

well as probabilistic interpretations of autonomouslycfied
quantity algebras and information channels between themL]iO]
terms of uniquely determinestate spacesind observables
thereon.
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