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Uncertainty and bias of RMS measurement of digitally non-coherent sampled signal is dependent on the algorithm used. This 
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estimating RMS values in the time domain are also compared. 
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1.  INTRODUCTION 
ODAY, high resolution analog to digital converters 
(ADC) are often used for precision measurements of 
voltage and current. The measurement uncertainty of the 

RMS value of the analog sinusoidal signal depends on the 
quality of the ADC and on the algorithms used for RMS 
estimation. This paper will focus only on the algorithms for 
RMS estimation of the sinusoidal signal. 

The comparison of classical algorithms and windowing 
based algorithms has been described in [1, 2]. RMS value of 
the sinusoidal signals with more than 5 periods can be 
estimated with several windowing based algorithms with the 
uncertainty better then measurement uncertainty of present 
ADC systems.  

The goal of this paper is to present a new method for 
estimating RMS value of the sinusoidal signal with less than 
5 periods and to compare it with other RMS estimation 
algorithms. Comparison is done by calculating RMS value 
of the simulated signal of an exactly known RMS value, by 
random signal phase to simulate non-coherent sampling and 
with similar sampling rates to common ADCs. 

 
2.  THE ANALYSIS OF THE RMS VALUE MEASUREMENT  

A.  RMS estimation of sinusoidal signals 
By definition, RMS estimation of analog signal x(t) is 

based on the relation [4]:  
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where  TM is time of measurement. Analog sinusoidal signal 
can be expressed as: 
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where Xm is signal amplitude, sigω  is signal angular 
frequency and ϕ  is signal phase relative to start of the 
measurement. RMS value of analog sinusoidal signal (2) can 
be calculated as: 
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Time of measurement can be estimated by the number of 

signal periods: 
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where M is integer number of signal periods and λ  is 
decimal part of noninteger period. RMS value of the 
sinusoidal signal with ( )λ+M  periods can be calculated 
using (5) or (6): 
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B.  RMS estimation of coherently sampled sinusoidal 
signals 
When sinusoidal signal is coherently sampled, an integer 

number of sinusoidal periods M is sampled that can be 
described by equation: 
 

                   

ZMMTT ∈=→= ,0 sigmλ   (7) 
 

The RMS value of sinusoidal signal (2) with integer 
number of periods can be calculated using (8): 
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Equation (8) shows that the RMS value of sinusoidal 

signal with integer number of periods is depended only on 
signal amplitude Xm.  
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C.  RMS estimation of non-coherently sampled sinusoidal 
signal 
In real measurements coherent sampling is often hard to 

carry out. In this case, the measured signal consist of non-
integer number of periods ( )λ+M  where ZM ∈  and 

0≠λ . The expression for RMS value for non-coherently 
sampled signal can be estimated by using (5) or (6). It is not 
dependent only on signal amplitude but also on signal phase 
φ, integer number of sampled signal periods M and decimal 
part of the last sampled period λ. The difference between 
RMS value of non-coherently sampled sinusoidal signal 
X’RMS (5) or (6) and RMS value of coherently sampled 
sinusoidal signal XRMS (8) is the bias of the RMS 
measurement. The relative bias of the RMS value of non-
coherent sinusoidal signal can be estimated using (10) or 
(11): 

 

                           
RMS

RMSRMS
RMS X

XX −′
=δ , (9) 

 

              ( ) ( )
( ) 1

4
2sin24sin1RMS −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−+

−=
λπ

ϕϕπλδ
M

, (10) 

             

              ( ) ( )
( ) 1

2
22cos2sin1RMS −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
−=

λπ
ϕπλπλδ

M
. (11) 

 
3.  THE ANALYSIS OF METHODS FOR RMS VALUE BIAS 

CORRECTION  

A.  Reducing RMS value bias by minimizing the decimal 
part of sinusoidal signal period 
The bias of the RMS value can be reduced by minimizing 

the decimal part of period λ to the range defined by the 
number of samples per period of non-coherently sampled 
signal. Higher sampling rate ensures more samples per 
period and lower λ value.  

When the analog sinusoidal signal is sampled with NSPP 
number of samples per period, desired signal phase can be 
obtained by choosing between two samples. Range of signal 
phase error caused by non-coherent sampling φS1 can be 
estimated as (12): 
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where NSPP is number of samples per period of the sampled 
analog sinusoidal signal. Exact range of the decimal part of 
period λS can be estimated as (13): 
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where NSPP is number of samples per period of the sampled 
analog sinusoidal signal. When the decimal part of period λ 
is in range defined by (13), the maximum expected bias of 

the RMS value can be calculated by finding maximum of 
the relation (11).  
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where φ is desired signal phase relative to start of the 
measurement, φS1 is phase error caused by non-coherent 
sampling, M is integer number of periods and λS is decimal 
part of period. Equation (14) will have its maximum when 
the cosine part is equal to 1: 
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For calculating approximated maximum expected bias of 
the RMS value, approximations for square root (17) and sine 
function (18) is used: 
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After using approximations (17) and (18) on (14), 

maximum bias of the RMS value can be approximately 
calculated as:  
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Maximum bias of the RMS value (21) will be for 

maximum value of λS (20) from the range defined by (13):  
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Maximum expected bias of the RMS value expressed in 

ppm is calculated in Table I using (21) for some common 
parameters M and NSPP.  
 

TABLE 1.   Maximum expected rms value bias (ppm) 
 

Number of samples per period NSPP Integer 
number of 
periods M 100 1000 10000 

1 5000 500 50 
2 2500 250 25 
5 1000 100 10 

10 500 50 5 
 

Maximum expected RMS value bias calculated for some 
common parameters M and NSPP using equation (21).  
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B.  Reducing RMS value bias by using the Single subset 
method 
The bias of the RMS value of sinusoidal signal (11) is 

highly dependent on the signal phase that is shown in Fig.1.    
 

 
 
Fig.1.  Relative bias of the RMS value of the sinusoidal signal 
using equation (11) with parameters M = 5, NSPP = 1000 and λ = 
0.0005 as a function of signal phase 0° < φ < 360° 
 

The bias of the RMS value can be reduced by extracting 
single subset from main sampled signal with certain signal 
phases φ where the influence of the RMS value bias is 
minimal. These phases can be calculated by equaling 
relation (11) with zero: 
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The main disadvantage of this method is that minimal 
variation of signal phase from values defined in (23) is 
causing significant increase of the RMS value bias because 
the first deviation of function ( )ϕδRMS  defined by equation 
(11) has its extremes for these phases.  

Maximum expected bias of the RMS value estimated by 
the Single subset method can be calculated as (25): 
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After using approximations for square root (17) and sine 

function (18), approximated value of maximum expected 
bias of the RMS value can be calculated as (26): 
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Maximum expected bias of RMS value (25) and (26) is for 

parameters (27) and (28): 
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Approximated value of the maximum expected bias of the 

RMS value for the Single subset method is: 
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Maximum expected bias of the RMS value (29) estimated 
by the Single subset method for some common parameters 
M and NSPP is calculated in Table 2. Values show significant 
reduction of RMS value bias calculated by the Single subset 
method in comparison to values in Table 1. 
 

Table 2.  Maximum expected RMS value bias (ppm) for  
Single subset method 

 
Number of samples per period NSPP Integer 

number of 
periods M 100 1000 10000 

1 3.2E+02 3.1E+00 3.1E-02 
2 1.6E+02 1.6E+00 1.6E-02 
5 6.3E+01 6.3E-01 6.3E-03 

10 3.1E+01 3.1E-01 3.1E-03 
 

Maximum expected RMS value bias for Single subset method 
calculated for few common parameters M and NSPP using 
equation (29).  
 

C.  Reducing RMS value bias by using the Averaging two 
subsets method 
The idea of the Averaging two subsets method is to extract 

two signal subsets of the same length from the main 
sampled signal with certain signal phases to get maximal 
and minimal bias of RMS value of each subset. By 
averaging RMS values of these two subsets, RMS value bias 
can be significantly minimized.  

Minimum and maximum of function ( )ϕδRMS  defined by 
(11) can be calculated as: 
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To extract two signal subsets of one whole signal period 
from the main signal with 90° phase difference between the 
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subsets, the sampled signal must contain at least one and 
half signal period. The example of sampled signal and two 
signal subsets are shown in Fig.2. 
 

 
 

Fig.2.  Signals “Subset 1” and “Subset 2” extracted from the main 
sampled signal. 

 
Subset 1 should have its cosine part equal to one and 

Subset 2 equal to minus one: 
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RMS values of Subset 1 and Subset 2 can be calculated as 

(36) and (37): 
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where range of the decimal part of period λS is defined in 
(13) and range of the phase offsets φS1 and φS2 is defined by 
the number of samples per period NSPP in equation (38): 
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After using (34) and (35) on (36) and (37) it can be 

calculated: 
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Different sign of sine and cosine part under square root in 

(39) and (40) is caused by 90° phase offset of the second 
signal subset relative to the first signal subset. Arithmetic 
mean of RMS values of the first and second signal subset 
can be estimated as: 
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After using (39) and (40) on (41), RMS value estimated by 
the Averaging two subset method can be calculated as (42) 
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By using approximations for square root (17), RMS value 

can be approximately calculated as: 
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Both phase offsets φS1 and φS2 are rather small and have 

similar values so the difference between them is also a 
rather small number: 

 
                                     SSS ϕϕϕ ≈≈ 21  (44) 

 
After using assumption (44) on equation (43), RMS value 

estimated by the Averaging two subset method is 
approximately equal to RMS value of sinusoidal signal with 
integer number of periods with zero bias: 
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Relative bias of RMS values calculated by the Averaging 

two subsets method can be calculated by equations (46) and 
(47):  
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Maximum expected bias can be calculated by using 

equation (48) with ranges of λS, defined by (13) and ranges 
of φS1 and φS2 defined by (38).  
 

       

( ) ( )
( )

( ) ( )
( ) 1

2
2cos2sin1

2
1

2
2cos2sin1

2
1

S

S2S

S

S1S
MAXATS

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

λπ
ϕπλ

λπ
ϕπλδ

M

M
 (48) 

 
To calculate approximated maximum expected bias (52), 

the following three approximations based on Taylor series 
are used: 
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Maximum expected bias of RMS value (48) and (52) is for 

parameters (53) and (54): 
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Table 3.  Maximum expected RMS value bias (ppm)  
for Averaging two subsets method 

 
Number of samples per period NSPP Integer 

number of 
periods M 100 1000 10000 

1 1.3E+01 1.3E-01 1.3E-03 
2 3.1E+00 3.1E-02 3.1E-04 
5 5.0E-01 5.0E-03 5.0E-05 

10 1.2E-01 1.3E-03 1.3E-05 
 

Maximum expected RMS value bias for the Averaging two 
subsets method (32) calculated for few common parameters M and 
NSPP.  

 
Maximum expected bias of RMS value estimated by the 

Averaging two subsets method for some common 

parameters M and NSPP is calculated using (52) with 
parameters (53) and (54) and presented in Table 3. Values 
exhibit significant reduction of RMS value bias calculated 
by the Averaging two subsets method in comparison to 
values calculated by the Single subset method in Table 2 
and values calculated by minimizing decimal part of period 
in Table 1. 

 
4.  THE SIMULATION OF RMS ESTIMATION ALGORITHMS 

A.  Realization of methods in NI LabVIEW 
The Single subset method and the Averaging two subsets 

method are developed and tested in NI LabVIEW 
development system [5]. For measurement of sampled 
signal phase and frequency both methods use built in 
functions like Extract single tone information that analyzes 
whole sampled signal to achieve the best result. Signal 
phase and frequency can be also measured with other 
algorithms [6, 7]. This step is very important because 
accuracy of both methods depends on the accuracy of the 
signal phase and frequency measurement. After that step, 
beginning and length of signal subsets can be calculated and 
signal subset extracted to calculate RMS value.  

 
Fig.3.  Block diagram of the Averaged two subset method 
algorithm.  
 

After Subset 1 and Subset 2 extraction, RMS values of 
both Subset 1 and Subset 2 are calculated using the classical 
method with Rectangular window. Finally, RMS is 
calculated by averaging RMS values of Subset 1 and 
Subset 2.  

 

 B.  Testing methodology 
Testing is realized by simulating non-coherent sinusoidal 

signal of known RMS value that can be compared to the 
results of tested methods for RMS measurement. The results 
are presented in graphs depending on the number of signal 
periods (Fig.4. - graph x-axis).  

Methods were tested on sinusoidal signals with number of 
samples per period NSPP = 1000 and number of periods 
1.5 < M < 8 (in steps of 0.02 periods). For each step 500 
measurements have been performed on different signals 
with random signal phase 0° ≤ φ < 360° and random signal 
frequency from f = 50±0.5 Hz. In Fig.4 the value of 
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maximum relative bias of these 500 RMS measurements is 
shown. The arithmetic mean of these 500 measurements 
could show about 10 times better results of the bias of RMS 
value but in this paper only the maximum bias of RMS 
value (the worst case) is presented. 

 
C.  Simulation results 
The results of the simulation of RMS value measurement 

with the Single subset method and the Averaging two 
subsets method is shown in Fig.4. The bias of the RMS 
values estimated with both methods is lower than maximum 
expected RMS value bias of these methods calculated by 
equations (29) and (48).  

 

 
 
Fig.4.  Comparison of simulated RMS value measurement with the 
Single subset method and the Averaging two subsets method with 
maximum expected RMS value bias estimated by equations (29) 
and (48) based on simulated sinusoidal signal NSPP = 1000, 
f = 50±0.5 Hz, 0° ≤ φ < 360°. 
 

 
 
Fig.5.  Comparison of RMS value measurement based on the 
Single subset method and the Averaging two subsets method with 
windowing algorithms: Rectangular (no window), Hanning, 4 
Term B-Harris, 7 Term B-Harris based on simulated sinusoidal 
signal NSPP = 1000, f = 50±0.5 Hz, 0° ≤ φ < 360°. 
 

The results of RMS value measurement with the Single 
subset method and the Averaging two subsets method are 
compared with Rectangular, Hanning, 4 Term B-Harris and 

7 Term B-Harris windowing algorithms in Fig.5. Averaging 
two subsets method reduces RMS value bias of non-
coherently sampled sinusoidal signals better than any known 
windowing algorithms for signals from M = 1.5 to M = 5 
periods. 

 
5.  CONCLUSION 

The simulation results of the Single subset method and the 
Averaging two subsets method showed that RMS value bias 
is considerably reduced. These two methods are superior to 
all known windowing algorithms for signals with low period 
number. 

The new proposed Averaging two subsets method can be 
used in applications where both high precision and speed of 
RMS value measurement is important [8, 9]. In future work, 
the method will be tested for signals with higher harmonics, 
presence of noise, and the influence of analog to digital 
converters with different conversion resolution. 
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