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The main focus of the paper is to bring out the differences in performance related issues of Fast-ICA algorithm associated with 
floating point and fixed point digital signal processing (DSP) platforms. The DSP platforms consisting of TMS320C6713 floating 
point processor and TMS320C6416 fixed point processor from Texas Instruments have been chosen for this purpose. To study the 
consistency of performance, the algorithm has been subjected to three different test cases comprising of a mixture of synthetic 
signals, a mixture of speech signals and a mixture of synthetic signals in presence of noise, respectively. The performance of the 
Fast-ICA algorithm on floating point and fixed point platform are compared on the basis of accuracy of separation and execution 
time. Experimental results show insignificant differences in the accuracy of separation and execution time obtained from fixed 
point processor when compared with those obtained from floating point processor. This clearly strengthens the feasibility issue 
concerning hardware realization of Fast-ICA on fixed point platform for specific applications. 
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1.  INTRODUCTION 
LIND SOURCE separation (BSS) involves separating a 
number of unknown sources from a set of observed 
mixture of sources. The problem of BSS arises in 

diverse fields like image processing, biomedical signal 
processing, speech processing [1-4][18], etc., where 
independent component analysis (ICA) [5] methods have 
been successfully applied. Some applications involving 
speech, acoustic noise, biomedical signals, etc., require real 
time processing. Fast-ICA, a commonly used ICA algorithm 
based on fixed point iteration is suitable for real time 
operation because of its faster convergence speed [6]. 

The present work investigates the feasibility of integrating 
Fast-ICA algorithm into high end consumer devices. For 
DSP chips embedded in handheld devices like mobile 
phones and pagers, fixed point implementation is preferred 
due to its lower cost and lower power consumption ability as 
compared to the floating point case. Few papers report 
issues related to real time implementation of ICA 
algorithms. Charonsek and Sattar [7] propose a design 
method for an ICA based BSS algorithm on FPGA platform 
to suit the real time environment. Shyu and Li [9] have 
demonstrated the implementation of Fast-ICA algorithm on 
FPGA using floating point arithmetic. The main focus of 
this paper is on the reduced execution time and high 
accuracy achievable through the use of hierarchical design 
procedure and 32 bit floating point format.  The hardware 
realization of a source separation algorithm known as DUET 
(Degenerate Unmixing estimation Technique) has been 
proposed in [8]. DUET employs time-frequency masking 
methods to separate an arbitrary number of sources from just 
two mixtures and is reported to be computationally 
inexpensive. The paper highlights the performance related 
issues associated with implementation of DUET on floating 
point and fixed point DSP processors. 

In  this  paper  the  ICA  algorithm has  been tested on a 
32-bit fixed point  as  well as on a 32-bit floating  point DSP  

 
 

processor. The major manufacturers in the DSP industry are 
Texas Instruments (TI), Analog Devices and Motorola. TI 
and Analog Devices offer both fixed point and floating point 
DSP families while Motorola offers fixed point DSP 
families. We selected TI for our experimentation as its 
products are most widely used. The performance of the 
algorithm on both cases has been evaluated for its accuracy 
of separation and execution time. While accuracy of 
separation is judged by the coefficient of correlation 
between original source and separated source, execution 
time is the time taken by the processor to execute the 
algorithm.  

The organization of the paper is as follows: Section II 
brings out the problem under consideration. Section III gives 
an overview of the Fast-ICA algorithm. Section IV outlines 
approaches and considerations for implementation of Fast-
ICA on a DSP processor. The issues involved while 
migrating from the floating point to fixed point platform 
have also been discussed in this section. Section V reports 
performance of the Fast-ICA algorithm on both floating 
point and fixed point processors. Section VI is the 
conclusion of the work. 
 

2.  PROBLEM FORMULATION 
The basic BSS model employing linear instantaneous 

mixing and possessing equal number of sources as that of 
sensors (n = m) may be expressed as:  

 
                                      kkk sAx =                                   (1) 
 
where,  kA  is a  nn×  mixing matrix, 

[ ]Tnkkkk sss ,...,, 21=s , represents a vector of source 

signals, [ ]Tnkkkk xxx ,...,, 21=x , represents a vector of 
sensor signals, at a particular time instant k. 

B 
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The problem is to estimate the source signals ks  from the 

observed mixtures kx by using a separating system or 

matrix kW  with no a priori information on either the 
distribution of sources or the mixing structure. The 
estimated sources are represented as: 
 
                                    kkk xWy =                                    (2) 

where  [ ]1 2
T

k k k nky y y=y L  is an estimate of 

ks and  kW is the separating matrix at time instant k. 
Equation (2) may be expanded as: 
 
                     kkkkkkkk sGsAWxWy ===  

Where, kG  is known as a global system matrix having 

dimension )( nn× . In the ideal sense kG should be a 
generalized permutation matrix, each row and each column 
of which contain only one non-zero element. 
 

3.  FAST-ICA ALGORITHM 
Fast-ICA algorithm is one of the most popular methods 

used to solve problems in BSS. It is easy to use and more 
reliable as it does not depend upon any user defined 
parameters. Experimental results establish the fact that it 
outperforms most of the ICA algorithms in convergence 
speed. The algorithm uses a fixed point iteration scheme to 
find the local maxima of the cost function: 

 
 

 
 
where G is a non-linear function and E stands for expecta-
tion. 

The cost function to be maximized can be based on mutual 
information, likelihood, and some approximation of non-
Gaussianity or some variations of these properties. A widely 
used contrast function is based on kurtosis and may be 
expressed as: 

 

             ( ) ( ){ } ( )244 3 wwxww FEJ T +−=             (3) 

where:  
 

( ) ( ){ } ( ){ }[ ] ( ){ } 44224 33 wxwxwxwxw −=−= TTTT EEEkurt
 
under the constraint ||w|| =1 and F is a penalty factor due to 
the constraint. The learning rule has the form: 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
3 2 2

1 3Tk k μ k k k k k k f k k⎡ ⎤+ = ± − +⎢ ⎥⎣ ⎦
w w x w x w w w w

                                                                                           (4) 
 
where  x(k) is the observation sequence, μ(k) is the learning 
rate sequence and f is the derivative of F/2. The expectations 

are removed by instantaneous values. The terms inside the 
square bracket are the gradients of kurtosis (first two terms) 

and the gradient of ( )2F w  (third term). The gradient of 

( )2F w  has the form (scalar × w) as long as this is a 

function of ( )2w only. Positive sign before the bracket 

means finding the local maxima and negative sign before the 
bracket means finding the local minima. The fixed points w 
of the learning rule in (4) are obtained by taking the 
expectations and equating the change in weight w to zero, 
which may be expressed as: 
 

                                                                                                          
 
 

As the third term in (5) can be written in the form (scalar × 
w), the final form of (5) is 
 

                ( ){ }( )3 23Tscalar E= × −w x w x w w               (6) 

 
The scalar term in the above equation is insignificant and 

the effect can be eliminated with normalization. 
In the basic Fast-ICA method, the observed mixture 

signals are preprocessed and then whitened before being 
subjected to the separation algorithm. The mathematical 
relationships can be described as: 

 
                   ,  so that, TE ⎡ ⎤= = =⎣ ⎦x As v Vx vv I , 
 
where, x is the observed signal, s is the source signal, V is 
the whitening matrix, A is the mixing matrix and v is the 
whitened signal. 

Here, =v VAs , where =B VA  is an orthogonal matrix, 
i.e., TE ⎡ ⎤ =⎣ ⎦BB I . The objective is to determine B 
responsible for separating the independent signals. 
 
Fixed Point Algorithm for ICA: The steps of Fast-ICA for 
separating one independent component are shown. 
 
1. Pre-whiten the observed data x to obtain v. 
2. Take a random initial vector ( )0w and normalize it to 

unity, i.e., ( ) ( ) ( )
2

0 0 / 0=w w w , and set  1j = . 

3. Set ( ) ( )( ){ } ( )
3

1 3 1Tj E j j -= − −w v w v w . The 

expectation operator can be estimated using a large 
number of samples.  

4. Set ( ) ( ) ( )
2

/j j j=w w w , i.e., normalize w(j). 

5. If  ( ) ( )1T j j −w w  is not close to 1, then set 1j j= +  
and repeat step 3.  Otherwise output vector w(j). 

6. Using w(j), one of the separated signals is given by 
( ) ( ) ( ) ,  1,2,Tk j k k= =s w v K . 

( ){ } ( )3 2 23 0 TE f− + =x w x w w w w

( ){ }
1

n
T

i

J E
=

= ∑G G w x

(5)
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To estimate n independent components, the above 
algorithm is run for n times. 

To ensure that different independent components are 
estimated each time, an orthogonalizing projection is added 
inside the recursive loop given above. Each 

  ( 1, 2, )i i =w K  vector found in the above process is a 
column vector of the orthogonal matrix B. Thus independent 
components are estimated one by one by projecting the 
current solution w(j) on the space orthogonal to the columns 
of matrix B previously found. Define B% as a matrix whose 
columns are the columns of matrix B. The projection 
operation is added to the beginning of step 4 above, which 
now becomes: 

 

                      
( ) ( ) ( )

( ) ( )
( )

2

,  then

Set   

Tj j j

j
j

j

= −

=

w w BB w

w
w

w

% %

  

 
4.  TESTING 

The Fast ICA algorithm has been tested for both synthetic 
signals and audio signals on two platforms:  

• TI 6713 - 32 bit floating point platform 
• TI 6416 - 32 bit fixed point platform. 

The mixing matrices are generated randomly. 
The performance of the algorithm is compared for floating 
point and fixed point implementations in terms of execution 
speed and accuracy of separation. 
 
4.1.  Floating point implementation  

The TMS320C6713 was selected as the target processor 
[10], [17] for developing the algorithm. The device is a 32 
bit processor based on the high performance very long 
instruction word (VLIW) architecture. Operating at 225  
MHz, the C6713 delivers up to 1350 million floating point 
operations per second (MFLOPS), 1800 million instructions 
per second (MIPS) and with dual fixed/floating point 
multipliers up to 450 multiply-accumulate operations per 
second (MMACS). It has a 264 KB system on chip memory 
consisting of 4 KB Level 1 program cache, 4 KB Level 1 
data cache and 256 KB Level 2 memory cache. Further 
details on the DSK and chip are available on the TI website 
[10]. 

The signals are downloaded to the real time floating point 
platform. Before being subjected to the separation 
algorithm, the signals are mixed using the randomly 
generated mixing matrix and then whitened on the DSK 
itself. 
 
4.2.  Fixed point implementation 

The TMS320C6416 was selected as the target processor 
for the fixed point implementation. The device is a 32 bit 
processor based on the second generation high performance, 
very long instruction word (VLIW) architecture. With 
performance up to 5760 million instructions per second 
(MIPS) at a clock rate of 720 MHz, the C6416 possesses the 
operational flexibility of high speed controllers and the 

numerical capability of array processors. It can produce four 
16-bit multiply-accumulates (MACs) per cycle for a total of 
2880 multiply-accumulate operations per second (MMACS) 
or eight 8-bit MACs per cycle for a total of 5760 MMACs. 
The C6416 also has a 1056 KB system on chip memory 
consisting of 16 KB L1 program cache, 16 KB L1 data 
cache, and 1024 KB L2 cache. Full details on the DSK and 
chip are available on the TI website [11]. 

A fixed point implementation equivalent to the floating 
point system was carried out in C using the built in routines 
of the code composer studio v3.1 IDE [12] in the first case. 
This is the same as emulating the floating point program on 
the fixed point processor (C6416). Although the accuracy of 
separation is high, the execution time is large. 

To reduce the execution time alongside maintaining an 
appreciable level of separation, in the second case, the fixed 
point code is derived through manual fixed point 
programming. The manual code optimization involves steps 
like [13], [15] : 
• Replacement of floating point variables by fixed point 

ones, encoded as integers.  
• Selection of appropriate fixed point format for scaling to 

avoid overflows and to reduce loss of precision.  
• Implementation of arithmetic operations like addition, 

subtraction, multiplication, division, square root, 
shifting, truncation and change of exponent, etc., in fixed 
point arithmetic using a series of preprocessor macros 
[13]. 

The following subsections highlight the basic concepts of 
fixed point arithmetic used in developing the algorithm on 
the fixed point platform [15-16]. 
 
4.2.1.   Fixed point representation  

A fixed point number can be thought of an integer 
multiplied by a two’s power with negative exponent, i.e., 

( )2 NQN Q −= × , where Q is the mantissa and N is the 
exponent. An alternative notation for fixed point 
representation is:  

, where  is the number of integer bite and  is the
 number of fractional bits
M N M N•

 

The range of a fixed point number is defined by the integer 
part, e.g., ( )16 16 signed :  range is [-32768,32767]• .  
Similarly the precision of a fixed point number is the 
smallest difference between two successive numbers, e.g., 

1616 16 :  precision is 1/2• . 
 
4.2.2.   Fixed point arithmetic rules [16] 

The rules for doing some basic arithmetic operations on 
fixed point integers are listed below: 
• Conversion from real to fixed point numbers  

- NMultiply by 2  and round to nearest integer  
- ( ) ( ) ( )( )5.0:5.0?01int −≥+<<∗ RNR  
Conversion from fixed point number to real number 
- NCast to real and divide by 2  
- ( ) ( )NF   1/ float <<  
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• Conversion from/to integers 
- NShift N bits up or down (scaling by 2 )  
- NFINIF >>=<<=   ,  

• Addition (+) and Subtraction (-) 
-Same as adding and subtracting integers. 
-To perform the operation c a b= + , first convert 

 and a b to have the same exponent and then add the 
mantissa. 

• Multiplication ( )a b∗  

- NMultiply as integers and divide the result by 2  
-For multiplication, the intermediate result from 
( )  is in 2 2  ( 2 ) formata b M N Q N∗ •  
-Store the intermediate result in double sized integer 
format, e.g., for 32 bit fixed point numbers; the 
intermediate result is stored in a 64 bit integer. 
- ( ) ( ) ( )( ) NbINTaINT >>∗ 6464int  

• Division ( )/a b  

- ( )NMultiply by 2  and divide by  as integersb  
-As the intermediate result is expected to produce 
overflow, store it in 64 bit integer. 
- ( )( )( )bNaINT /64 <<  

 
5.  EXPERIMENTAL RESULTS & DISCUSSION 

The experimental results have been demonstrated for three 
different test cases: 
• Synthetically generated signals with no noise added 

during mixing. 
• Sound signals generated by musical instruments 
• Synthetically generated signals with noise added during 

mixing. 
The following three implementations of the Fast-ICA 

algorithm have been tested for the above cases.  
• Implementation on floating point processor TI 6713 
• Floating point program emulated (migration using inbuilt 

method) on TI 6416. 
• Implementation of fixed point algorithm (code 

optimization through manual fixed point programming) 
on TI 6416. 

Test Case 1 comprises of three signals, i.e., a sine wave 
having frequency of 800Hz, a square wave having frequency 
of 700Hz and a saw-tooth wave having frequency of 600Hz 
generated synthetically using MATLAB code. The signals 
were sampled at 10 KHz and mixed using the mixing matrix 
given by:  

A= [0.0891 0.3906 -0.3408; -0.8909 -0.6509 0.8519;    
0.4454 0.6509 -0.3976]      

Fig.1, Fig.2 and Fig.3 show the source signals, mixed 
signals and the separated signals as a result of 
implementation on floating point DSP (C6713), 
respectively. Fig.4 shows the separated signals as a result of 
the floating point emulation on fixed point DSP platform 
(C6416). Fig.5 shows the separation results when Fast-ICA 
was coded using fixed point arithmetic and implemented on 
fixed point processor (C6416). Fig.6 presents a comparison 
of execution time required for number of samples in the 

form of bar-graph for three different implementations. Table 
1 reflects the separation results in terms of correlation 
coefficients between the original source and the separated 
source after implementation on the DSP. 
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Fig.1.  Source signals 
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Fig.2.  Mixed signals 
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Fig.3.  Separated signals by Fast-ICA on  

Floating-point 6713 DSP 
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Fig.4.  Separated signal by Fast-ICA with floating point  

emulation on Fixed-point 6416 DSP 
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Fig.5.  Separated signal by Fast-ICA on Fixed-point  
6416 DSP with optimization 
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Floating point implementation on C6713
Floating point emulation on C6416 
Fixed point implementation on 6416 with adjustments for fixed point errors

 
 

Fig.6.  Number of samples vs. Execution Time 
 
 

Table 1.   Correlation coefficient comparison 
 

Correlation Coefficient Implementation Platform 
Sine Square Saw-

tooth 
Floating-point 

Implementation on 6713 
-

1.0000 
1.0000 -

0.9997 
Floating-point emulation on 

6416  
-

1.0000 
1.0000 -

0.9997 
Fixed-point Implementation 
on 6416 with optimization 

1.0000 1.0000 0.9997 
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Fig.7.  Sound Source signals 

 
Test Case 2 comprises of sound signals generated from 

three musical instruments, i.e., violin, drums and piano 
recorded at a sampling frequency of 8 KHz to serve as 

source signals. 19200 numbers of samples have been 
considered for experimentation. The samples of the signals 
were mixed in the same way for all implementations using 
the mixing matrix A as specified for test case 1. 

Fig.7, Fig.8 and Fig.9 show the original sound signals, 
mixed sound signals and the separated sound signals after 
implementation on the floating point DSP (6713), 
respectively. Fig.10 shows the separated signals as a result 
of floating point program emulated (without any 
optimization) on the fixed point DSP (6416). Fig.11 presents 
the results of optimized Fast-ICA implemented on a fixed 
point DSP (6416).  
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Fig.8.  Mixed sound signals 
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Fig.9.  Separated signal by Fast-ICA on Floating point 6713 DSP 
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Fig.10.  Separated signal by Fast-ICA on Fixed-point  
6416 DSP without optimization 
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Fig.11.  Separated signal by Fast-ICA on Fixed-point  
6416 DSP with optimization 

 
Table 2 and Table 3 display the correlation coefficients for 

the separated sound signals and the execution time required 
for 19200 numbers of samples for three different 
implementations, respectively.  

Test case 3 comprises of three synthetically generated 
signals as specified in test case 1, exposed to additive 
Gaussian noise of 27dB during the mixing stage. The same 
mixing matrix A was used for the mixing purpose. Three 
different implementations have been done as was done for 
the first two test cases.  

 
Table 2.  Correlation coefficient comparison 

 
Correlation Coefficient Implementation Platform 

Signal 
1 

Signal 
2 

Signal 
3 

Floating-point 
Implementation on 6713 

-
0.9987 

-
0.9984 

-
0.9999 

Floating point emulation  on 
6416  

-
0.9987 

-
0.9984 

-
0.9999 

Fixed-point Implementation 
on 6416 with optimization 

-
0.9976 

0.9984 -
0.9997 

 
Table 3.  Comparison of CPU Execution Time for sound signal 

 
Implementation Platform Execution 

Time (sec) 
Floating-point Implementation on 6713 1.8490 

Floating-point emulation on 6416  13.7221 

Fixed-point Implementation on 6416 
with optimization 

1.6297 

 
Fig.12 presents the results of implementation on the 

floating point DSP (6713). Fig.13 displays the separation 
results of the optimized fixed point Fast-ICA implemented 
on a fixed point DSP (6416). Table 4 shows the performance 
indices [14] obtained as a result of implementation of Fast-
ICA on floating point DSP (6713) and implementation of 
Fast-ICA in optimized fixed point form on fixed point DSP 
(6416). The execution times for 100 numbers of samples for 

both  implementations  are almost the same as those of 
Table 1. 

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de
 

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de
 

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de
 

 
Fig.12.  Separated signal by Fast-ICA on Floating-point 6713 DSP 

under 27dB Gaussian noise 
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Fig.13.  Separated signal by Fast-ICA on Fixed point 6416 DSP 

with optimization under 27dB Gaussian noise 

 
Table 4.  Performance index (under SNR 27 dB) 

 
Implementation Platform Performance 

Index 
Floating-point Implementation on 

6713 
0.1134 

Fixed-point Implementation on 
6416 with optimization 

0.1409 

 
6.  CONCLUSION 

This paper presented a comparative study of a fixed point 
algorithm implemented on a fixed point platform with 
respect to another floating point processor. The accuracy 
and speed were found to be acceptable. In addition, the fixed 
point processor needs less space and consumes less power. 
More work needs to be done in this direction to embed these 
codes in portable consumer devices, without further 
deterioration of energy efficiency. 
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