

MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011

 118

Implementation of Fast-ICA: A Performance Based Comparison

Between Floating Point and Fixed Point DSP Platform
Dinesh Patil, Niva Das1, Aurobinda Routray2

Indian Institute of Technology, Electrical Engineering, 721302, Kharagpur, India, dinesh.ptl@gmail.com
1I.T.E.R, Electronics and Communication Engineering, SOA University, 751030, Bhubaneswar, India, nivadas@gmail.com

2Indian Institute of Technology, Electrical Engineering, 721302, Kharagpur, India, aroutray@iitkgp.ac.in

The main focus of the paper is to bring out the differences in performance related issues of Fast-ICA algorithm associated with
floating point and fixed point digital signal processing (DSP) platforms. The DSP platforms consisting of TMS320C6713 floating
point processor and TMS320C6416 fixed point processor from Texas Instruments have been chosen for this purpose. To study the
consistency of performance, the algorithm has been subjected to three different test cases comprising of a mixture of synthetic
signals, a mixture of speech signals and a mixture of synthetic signals in presence of noise, respectively. The performance of the
Fast-ICA algorithm on floating point and fixed point platform are compared on the basis of accuracy of separation and execution
time. Experimental results show insignificant differences in the accuracy of separation and execution time obtained from fixed
point processor when compared with those obtained from floating point processor. This clearly strengthens the feasibility issue
concerning hardware realization of Fast-ICA on fixed point platform for specific applications.

Keywords: blind source separation, fast-ICA, floating point implementation, fixed point implementation

1. INTRODUCTION
LIND SOURCE separation (BSS) involves separating a
number of unknown sources from a set of observed
mixture of sources. The problem of BSS arises in

diverse fields like image processing, biomedical signal
processing, speech processing [1-4][18], etc., where
independent component analysis (ICA) [5] methods have
been successfully applied. Some applications involving
speech, acoustic noise, biomedical signals, etc., require real
time processing. Fast-ICA, a commonly used ICA algorithm
based on fixed point iteration is suitable for real time
operation because of its faster convergence speed [6].

The present work investigates the feasibility of integrating
Fast-ICA algorithm into high end consumer devices. For
DSP chips embedded in handheld devices like mobile
phones and pagers, fixed point implementation is preferred
due to its lower cost and lower power consumption ability as
compared to the floating point case. Few papers report
issues related to real time implementation of ICA
algorithms. Charonsek and Sattar [7] propose a design
method for an ICA based BSS algorithm on FPGA platform
to suit the real time environment. Shyu and Li [9] have
demonstrated the implementation of Fast-ICA algorithm on
FPGA using floating point arithmetic. The main focus of
this paper is on the reduced execution time and high
accuracy achievable through the use of hierarchical design
procedure and 32 bit floating point format. The hardware
realization of a source separation algorithm known as DUET
(Degenerate Unmixing estimation Technique) has been
proposed in [8]. DUET employs time-frequency masking
methods to separate an arbitrary number of sources from just
two mixtures and is reported to be computationally
inexpensive. The paper highlights the performance related
issues associated with implementation of DUET on floating
point and fixed point DSP processors.

In this paper the ICA algorithm has been tested on a
32-bit fixed point as well as on a 32-bit floating point DSP

processor. The major manufacturers in the DSP industry are
Texas Instruments (TI), Analog Devices and Motorola. TI
and Analog Devices offer both fixed point and floating point
DSP families while Motorola offers fixed point DSP
families. We selected TI for our experimentation as its
products are most widely used. The performance of the
algorithm on both cases has been evaluated for its accuracy
of separation and execution time. While accuracy of
separation is judged by the coefficient of correlation
between original source and separated source, execution
time is the time taken by the processor to execute the
algorithm.

The organization of the paper is as follows: Section II
brings out the problem under consideration. Section III gives
an overview of the Fast-ICA algorithm. Section IV outlines
approaches and considerations for implementation of Fast-
ICA on a DSP processor. The issues involved while
migrating from the floating point to fixed point platform
have also been discussed in this section. Section V reports
performance of the Fast-ICA algorithm on both floating
point and fixed point processors. Section VI is the
conclusion of the work.

2. PROBLEM FORMULATION
The basic BSS model employing linear instantaneous

mixing and possessing equal number of sources as that of
sensors (n = m) may be expressed as:

 kkk sAx = (1)

where, kA is a nn× mixing matrix,

[]Tnkkkk sss ,...,, 21=s , represents a vector of source

signals, []Tnkkkk xxx ,...,, 21=x , represents a vector of
sensor signals, at a particular time instant k.

B

10.2478/v10048-011-0022-1

MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011

 119

The problem is to estimate the source signals ks from the

observed mixtures kx by using a separating system or

matrix kW with no a priori information on either the
distribution of sources or the mixing structure. The
estimated sources are represented as:

 kkk xWy = (2)

where []1 2
T

k k k nky y y=y L is an estimate of

ks and kW is the separating matrix at time instant k.
Equation (2) may be expanded as:

 kkkkkkkk sGsAWxWy ===

Where, kG is known as a global system matrix having

dimension)(nn× . In the ideal sense kG should be a
generalized permutation matrix, each row and each column
of which contain only one non-zero element.

3. FAST-ICA ALGORITHM
Fast-ICA algorithm is one of the most popular methods

used to solve problems in BSS. It is easy to use and more
reliable as it does not depend upon any user defined
parameters. Experimental results establish the fact that it
outperforms most of the ICA algorithms in convergence
speed. The algorithm uses a fixed point iteration scheme to
find the local maxima of the cost function:

where G is a non-linear function and E stands for expecta-
tion.

The cost function to be maximized can be based on mutual
information, likelihood, and some approximation of non-
Gaussianity or some variations of these properties. A widely
used contrast function is based on kurtosis and may be
expressed as:

 () (){ } ()244 3 wwxww FEJ T +−= (3)

where:

() (){ } (){ }[] (){ } 44224 33 wxwxwxwxw −=−= TTTT EEEkurt

under the constraint ||w|| =1 and F is a penalty factor due to
the constraint. The learning rule has the form:

() () () () () ()() () () ()() ()
3 2 2

1 3Tk k μ k k k k k k f k k⎡ ⎤+ = ± − +⎢ ⎥⎣ ⎦
w w x w x w w w w

 (4)

where x(k) is the observation sequence, μ(k) is the learning
rate sequence and f is the derivative of F/2. The expectations

are removed by instantaneous values. The terms inside the
square bracket are the gradients of kurtosis (first two terms)

and the gradient of ()2F w (third term). The gradient of

()2F w has the form (scalar × w) as long as this is a

function of ()2w only. Positive sign before the bracket

means finding the local maxima and negative sign before the
bracket means finding the local minima. The fixed points w
of the learning rule in (4) are obtained by taking the
expectations and equating the change in weight w to zero,
which may be expressed as:

As the third term in (5) can be written in the form (scalar ×
w), the final form of (5) is

 (){ }()3 23Tscalar E= × −w x w x w w (6)

The scalar term in the above equation is insignificant and

the effect can be eliminated with normalization.
In the basic Fast-ICA method, the observed mixture

signals are preprocessed and then whitened before being
subjected to the separation algorithm. The mathematical
relationships can be described as:

 , so that, TE ⎡ ⎤= = =⎣ ⎦x As v Vx vv I ,

where, x is the observed signal, s is the source signal, V is
the whitening matrix, A is the mixing matrix and v is the
whitened signal.

Here, =v VAs , where =B VA is an orthogonal matrix,
i.e., TE ⎡ ⎤ =⎣ ⎦BB I . The objective is to determine B
responsible for separating the independent signals.

Fixed Point Algorithm for ICA: The steps of Fast-ICA for
separating one independent component are shown.

1. Pre-whiten the observed data x to obtain v.
2. Take a random initial vector ()0w and normalize it to

unity, i.e., () () ()
2

0 0 / 0=w w w , and set 1j = .

3. Set () ()(){ } ()
3

1 3 1Tj E j j -= − −w v w v w . The

expectation operator can be estimated using a large
number of samples.

4. Set () () ()
2

/j j j=w w w , i.e., normalize w(j).

5. If () ()1T j j −w w is not close to 1, then set 1j j= +
and repeat step 3. Otherwise output vector w(j).

6. Using w(j), one of the separated signals is given by
() () () , 1,2,Tk j k k= =s w v K .

(){ } ()3 2 23 0 TE f− + =x w x w w w w

(){ }
1

n
T

i

J E
=

= ∑G G w x

(5)

MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011

 120

To estimate n independent components, the above
algorithm is run for n times.

To ensure that different independent components are
estimated each time, an orthogonalizing projection is added
inside the recursive loop given above. Each

 (1, 2,)i i =w K vector found in the above process is a
column vector of the orthogonal matrix B. Thus independent
components are estimated one by one by projecting the
current solution w(j) on the space orthogonal to the columns
of matrix B previously found. Define B% as a matrix whose
columns are the columns of matrix B. The projection
operation is added to the beginning of step 4 above, which
now becomes:

() () ()

() ()
()

2

, then

Set

Tj j j

j
j

j

= −

=

w w BB w

w
w

w

% %

4. TESTING

The Fast ICA algorithm has been tested for both synthetic
signals and audio signals on two platforms:

• TI 6713 - 32 bit floating point platform
• TI 6416 - 32 bit fixed point platform.

The mixing matrices are generated randomly.
The performance of the algorithm is compared for floating
point and fixed point implementations in terms of execution
speed and accuracy of separation.

4.1. Floating point implementation

The TMS320C6713 was selected as the target processor
[10], [17] for developing the algorithm. The device is a 32
bit processor based on the high performance very long
instruction word (VLIW) architecture. Operating at 225
MHz, the C6713 delivers up to 1350 million floating point
operations per second (MFLOPS), 1800 million instructions
per second (MIPS) and with dual fixed/floating point
multipliers up to 450 multiply-accumulate operations per
second (MMACS). It has a 264 KB system on chip memory
consisting of 4 KB Level 1 program cache, 4 KB Level 1
data cache and 256 KB Level 2 memory cache. Further
details on the DSK and chip are available on the TI website
[10].

The signals are downloaded to the real time floating point
platform. Before being subjected to the separation
algorithm, the signals are mixed using the randomly
generated mixing matrix and then whitened on the DSK
itself.

4.2. Fixed point implementation

The TMS320C6416 was selected as the target processor
for the fixed point implementation. The device is a 32 bit
processor based on the second generation high performance,
very long instruction word (VLIW) architecture. With
performance up to 5760 million instructions per second
(MIPS) at a clock rate of 720 MHz, the C6416 possesses the
operational flexibility of high speed controllers and the

numerical capability of array processors. It can produce four
16-bit multiply-accumulates (MACs) per cycle for a total of
2880 multiply-accumulate operations per second (MMACS)
or eight 8-bit MACs per cycle for a total of 5760 MMACs.
The C6416 also has a 1056 KB system on chip memory
consisting of 16 KB L1 program cache, 16 KB L1 data
cache, and 1024 KB L2 cache. Full details on the DSK and
chip are available on the TI website [11].

A fixed point implementation equivalent to the floating
point system was carried out in C using the built in routines
of the code composer studio v3.1 IDE [12] in the first case.
This is the same as emulating the floating point program on
the fixed point processor (C6416). Although the accuracy of
separation is high, the execution time is large.

To reduce the execution time alongside maintaining an
appreciable level of separation, in the second case, the fixed
point code is derived through manual fixed point
programming. The manual code optimization involves steps
like [13], [15] :
• Replacement of floating point variables by fixed point

ones, encoded as integers.
• Selection of appropriate fixed point format for scaling to

avoid overflows and to reduce loss of precision.
• Implementation of arithmetic operations like addition,

subtraction, multiplication, division, square root,
shifting, truncation and change of exponent, etc., in fixed
point arithmetic using a series of preprocessor macros
[13].

The following subsections highlight the basic concepts of
fixed point arithmetic used in developing the algorithm on
the fixed point platform [15-16].

4.2.1. Fixed point representation

A fixed point number can be thought of an integer
multiplied by a two’s power with negative exponent, i.e.,

()2 NQN Q −= × , where Q is the mantissa and N is the
exponent. An alternative notation for fixed point
representation is:

, where is the number of integer bite and is the
 number of fractional bits
M N M N•

The range of a fixed point number is defined by the integer
part, e.g., ()16 16 signed : range is [-32768,32767]• .
Similarly the precision of a fixed point number is the
smallest difference between two successive numbers, e.g.,

1616 16 : precision is 1/2• .

4.2.2. Fixed point arithmetic rules [16]

The rules for doing some basic arithmetic operations on
fixed point integers are listed below:
• Conversion from real to fixed point numbers

- NMultiply by 2 and round to nearest integer
- () () ()()5.0:5.0?01int −≥+<<∗ RNR
Conversion from fixed point number to real number
- NCast to real and divide by 2
- () ()NF 1/ float <<

MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011

 121

• Conversion from/to integers
- NShift N bits up or down (scaling by 2)
- NFINIF >>=<<= ,

• Addition (+) and Subtraction (-)
-Same as adding and subtracting integers.
-To perform the operation c a b= + , first convert

 and a b to have the same exponent and then add the
mantissa.

• Multiplication ()a b∗

- NMultiply as integers and divide the result by 2
-For multiplication, the intermediate result from
() is in 2 2 (2) formata b M N Q N∗ •
-Store the intermediate result in double sized integer
format, e.g., for 32 bit fixed point numbers; the
intermediate result is stored in a 64 bit integer.
- () () ()() NbINTaINT >>∗ 6464int

• Division ()/a b

- ()NMultiply by 2 and divide by as integersb
-As the intermediate result is expected to produce
overflow, store it in 64 bit integer.
- ()()()bNaINT /64 <<

5. EXPERIMENTAL RESULTS & DISCUSSION

The experimental results have been demonstrated for three
different test cases:
• Synthetically generated signals with no noise added

during mixing.
• Sound signals generated by musical instruments
• Synthetically generated signals with noise added during

mixing.
The following three implementations of the Fast-ICA

algorithm have been tested for the above cases.
• Implementation on floating point processor TI 6713
• Floating point program emulated (migration using inbuilt

method) on TI 6416.
• Implementation of fixed point algorithm (code

optimization through manual fixed point programming)
on TI 6416.

Test Case 1 comprises of three signals, i.e., a sine wave
having frequency of 800Hz, a square wave having frequency
of 700Hz and a saw-tooth wave having frequency of 600Hz
generated synthetically using MATLAB code. The signals
were sampled at 10 KHz and mixed using the mixing matrix
given by:

A= [0.0891 0.3906 -0.3408; -0.8909 -0.6509 0.8519;
0.4454 0.6509 -0.3976]

Fig.1, Fig.2 and Fig.3 show the source signals, mixed
signals and the separated signals as a result of
implementation on floating point DSP (C6713),
respectively. Fig.4 shows the separated signals as a result of
the floating point emulation on fixed point DSP platform
(C6416). Fig.5 shows the separation results when Fast-ICA
was coded using fixed point arithmetic and implemented on
fixed point processor (C6416). Fig.6 presents a comparison
of execution time required for number of samples in the

form of bar-graph for three different implementations. Table
1 reflects the separation results in terms of correlation
coefficients between the original source and the separated
source after implementation on the DSP.

0 10 20 30 40 50 60 70 80 90 100
-1
0
1

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-1
0
1

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

 Time sample

 A
m

pl
itu

de

Fig.1. Source signals

0 10 20 30 40 50 60 70 80 90 100
-1
0
1

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-1
0
1

 Time sample

 A
m

pl
itu

de

Fig.2. Mixed signals

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

Fig.3. Separated signals by Fast-ICA on

Floating-point 6713 DSP

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

Fig.4. Separated signal by Fast-ICA with floating point

emulation on Fixed-point 6416 DSP

MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011

 122

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

Fig.5. Separated signal by Fast-ICA on Fixed-point
6416 DSP with optimization

100 200 300 400 500
0

100

200

300

Number os Samples

C
P

U
 E

xe
cu

tio
n

Ti
m

e
(m

se
c)

Floating point implementation on C6713
Floating point emulation on C6416
Fixed point implementation on 6416 with adjustments for fixed point errors

Fig.6. Number of samples vs. Execution Time

Table 1. Correlation coefficient comparison

Correlation Coefficient Implementation Platform
Sine Square Saw-

tooth
Floating-point

Implementation on 6713
-

1.0000
1.0000 -

0.9997
Floating-point emulation on

6416
-

1.0000
1.0000 -

0.9997
Fixed-point Implementation
on 6416 with optimization

1.0000 1.0000 0.9997

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-0.5

0

0.5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-0.5

0

0.5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-0.5

0

0.5

 Time sample

 A
m

pl
itu

de

Fig.7. Sound Source signals

Test Case 2 comprises of sound signals generated from

three musical instruments, i.e., violin, drums and piano
recorded at a sampling frequency of 8 KHz to serve as

source signals. 19200 numbers of samples have been
considered for experimentation. The samples of the signals
were mixed in the same way for all implementations using
the mixing matrix A as specified for test case 1.

Fig.7, Fig.8 and Fig.9 show the original sound signals,
mixed sound signals and the separated sound signals after
implementation on the floating point DSP (6713),
respectively. Fig.10 shows the separated signals as a result
of floating point program emulated (without any
optimization) on the fixed point DSP (6416). Fig.11 presents
the results of optimized Fast-ICA implemented on a fixed
point DSP (6416).

0 5000 10000 15000
-0.5

0

0.5

 Time sample

 A
m

pl
itu

de

0 5000 10000 15000
-0.5

0

0.5

 Time sample
 A

m
pl

itu
de

0 5000 10000 15000
-0.5

0

0.5

 Time sample

 A
m

pl
itu

de

Fig.8. Mixed sound signals

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

Fig.9. Separated signal by Fast-ICA on Floating point 6713 DSP

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

Fig.10. Separated signal by Fast-ICA on Fixed-point
6416 DSP without optimization

MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011

 123

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-5

0

5

 Time sample

 A
m

pl
itu

de

Fig.11. Separated signal by Fast-ICA on Fixed-point
6416 DSP with optimization

Table 2 and Table 3 display the correlation coefficients for

the separated sound signals and the execution time required
for 19200 numbers of samples for three different
implementations, respectively.

Test case 3 comprises of three synthetically generated
signals as specified in test case 1, exposed to additive
Gaussian noise of 27dB during the mixing stage. The same
mixing matrix A was used for the mixing purpose. Three
different implementations have been done as was done for
the first two test cases.

Table 2. Correlation coefficient comparison

Correlation Coefficient Implementation Platform

Signal
1

Signal
2

Signal
3

Floating-point
Implementation on 6713

-
0.9987

-
0.9984

-
0.9999

Floating point emulation on
6416

-
0.9987

-
0.9984

-
0.9999

Fixed-point Implementation
on 6416 with optimization

-
0.9976

0.9984 -
0.9997

Table 3. Comparison of CPU Execution Time for sound signal

Implementation Platform Execution

Time (sec)
Floating-point Implementation on 6713 1.8490

Floating-point emulation on 6416 13.7221

Fixed-point Implementation on 6416
with optimization

1.6297

Fig.12 presents the results of implementation on the

floating point DSP (6713). Fig.13 displays the separation
results of the optimized fixed point Fast-ICA implemented
on a fixed point DSP (6416). Table 4 shows the performance
indices [14] obtained as a result of implementation of Fast-
ICA on floating point DSP (6713) and implementation of
Fast-ICA in optimized fixed point form on fixed point DSP
(6416). The execution times for 100 numbers of samples for

both implementations are almost the same as those of
Table 1.

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

Fig.12. Separated signal by Fast-ICA on Floating-point 6713 DSP

under 27dB Gaussian noise

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

 Time sample

 A
m

pl
itu

de

Fig.13. Separated signal by Fast-ICA on Fixed point 6416 DSP

with optimization under 27dB Gaussian noise

Table 4. Performance index (under SNR 27 dB)

Implementation Platform Performance

Index
Floating-point Implementation on

6713
0.1134

Fixed-point Implementation on
6416 with optimization

0.1409

6. CONCLUSION

This paper presented a comparative study of a fixed point
algorithm implemented on a fixed point platform with
respect to another floating point processor. The accuracy
and speed were found to be acceptable. In addition, the fixed
point processor needs less space and consumes less power.
More work needs to be done in this direction to embed these
codes in portable consumer devices, without further
deterioration of energy efficiency.

REFERENCES

[1] Cichocki, A., Kasprzak, W., Amari, S. (1996). Neural
network approach to blind separation and enhancement
of images. In Signal Processing VIII: Theories and
Applications, Vol. 1, 579-582.

MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011

 124

[2] Makeig, S., Bell, A., Jung, T.-P., Sejnowski, T.J.
(1996). Independent component analysis in electro-
encephalographic data. In Mozer, M. et al. (eds.)
Advances in Neural Information Processing Systems 8.
Cambridge, MA: MIT Press, 145-151.

[3] Weinstein, E., Feder, M., Oppenheim, A.V. (1993).
Multichannel separation by decorrelation. IEEE Trans.
Speech and Audio Processing, 1, 405-413.

[4] Karhunen, J., Hyvarinen, A., Vigario, R., Hurri, J.,
Oja, E. (1997). Application of neural blind separation
to signal and image processing. In Proceedings of the
IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP’97). Munich, Germany, 131-134.

[5] Common, P. (1994). Independent component analysis,
A new concept? Signal Processing, 36, 287-314.

[6] Hyvarinen, A., Oja, E. (1997). A fast fixed point
algorithm for independent component analysis. Neural
Computation, 9 (7), 1483-1492.

[7] Charoensak, C., Sattar, F. (2005). A single-chip FPGA
design for real-time ICA-based blind source
separation algorithm. In Proceedings of the IEEE
International Symposium on Circuits and Systems,
Vol. 6, 5822-5825.

[8] Harte, N., Hurley, N., Fearon, C., Rickard, S. (2005).
Towards a hardware realization of time frequency
source separation of speech. In Proceedings of the
IEEE European Conf. on Circuit Theory and Design,
Vol. 1, 71-74.

[9] Shyu, K., Li, M. (2006). FPGA Implementation of
FastICA based on Floating point arithmetic design
for real-time blind source separation. In Proceedings
of the IEEE Int. Joint Conf. on Neural Networks,
2785-2792.

[10] Texas Instruments Inc. (2001, revised 2005). Floating-
Point Digital Signal Processors (manual, sprs1861).
Houston, Texas.

[11] Texas Instruments Inc. (2005). Fixed-Point Digital
Signal Processor (manual, sprs146n). Houston, Texas.

[12] Texas Instruments Inc. (2000). Code Composer Studio
User’s Guide (manual, spru328b). Houston, Texas.

[13] Ivancescu, G. (2007). Fixed point arithmetic and
tricks. Retrieved August 12, 2011, from
http://x86asm.net/articles/fixed-point-arithmetic-and-
tricks/

[14] Amari, S., Cichocki, A., Yang, H. (1995). Recurrent
neural networks for blind separation of sources. In
Proceedings of the Int. Symp. Nonlinear Theory
Applications. Las Vegas, NV, 37-42.

[15] Yates, R. (2009). Fixed point arithmetic: An
Introduction. Retrieved August 12, 2011, from
http://www.digitalsignallabs.com

[16] Lauha, J. (2006). The neglected art of Fixed point
arithmetic. Retrieved August 12, 2011, from
http://jet.ro/files/The_neglected_art_of_Fixed_point_
arithmetic_20060913.pdf

[17] Ingole, P.V., Sapkal, A.K., Sarate, G.G., Hirekhan,
S.R. (2011). Implementation of signal generator (DSP)
using TMS 320C6713 DSK. International Journal of
Computer Science & Emerging Technologies, 1 (2),
95-98.

[18] Krishnaveni, V., Jayaraman, S., Arvind, S.,
Hariharasudhan, V., Ramdoss, K. (2006). Automatic
identification and removal of ocular artifacts from
EEG using wavelet transform. Measurement Science

 Review, 6, 45-57.

 Received May 16, 2011.
Accepted September 9, 2011.

