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In this paper we introduce a new wavelet-based image denoising algorithm using maximum a posteriori (MAP) criterion. For 

this reason we propose Laplace distribution with local variance for clean image and two-sided Rayleigh model for noise in wavelet 
domain. The local Laplace probability density function (pdf) is able to simultaneously model the heavy-tailed nature of marginal 
distribution and intrascale dependency between spatial adjacent coefficients. Using local Laplace prior and two-sided Rayleigh 
noise, we derive a new shrinkage function for image denoising in the wavelet domain. We propose our new spatially adaptive 
wavelet-based image denoising algorithm for several low signal-to-noise ratio (SNR) magnetic resonance (MR) images and 
compare the results with other methods. The simulation results show that this algorithm is able to truly improve the visual quality 
of noisy MR images with very low computational cost. In case the input MR image is blurred, a blind deconvolution (BD) 
algorithm is necessary for visual quality improvement. Since BD techniques are usually sensitive to noise, in this paper we also 
apply a BD algorithm to an appropriate subband in the wavelet domain to eliminate the effect of noise in the BD procedure and to 
further improve visual quality. 
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1.  INTRODUCTION 

AGNETIC RESONANCE IMAGING (MRI) is a powerful 
diagnostic technique. Usually in this imaging device, 
noise contaminates the data during image acquisition 

and may degrade the human interpretation and post 
processing tasks. 

Usually, MRI noise arises from various sources, including 
physiological processes, stochastic variation, eddy currents, 
RF  fields generated from electronic circuitry, variations of 
the magnetic field which arise from susceptibility 
differences between tissues (off-resonance effects), body 
motion, etc [1-2]. 

The impact of noise is increased due to some limitations in 
acquisition time (e.g., patient comfort, system throughput 
and real time application), resulting in images with low 
visual quality and signal-to-noise ratio (SNR). Early 
methods of denoising, such as spatial filtering, blur the 
edges while reducing the noise. 

In the last two decades, there has been a fair amount of 
researchers working on wavelet-based image denoising [3-
9]. The problem of wavelet based image denoising is 
expressed as an estimation problem in a Bayesian 
framework. Using maximum a posteriori (MAP) estimator, 
the solution requires a prior knowledge about the 
distribution of noise and wavelet coefficients. 

Since the electronic noise in the real and imaginary parts 
of the raw MR data is assumed to be independently 
Gaussian, usually the stochastic noise of magnitude of MR 
images is modeled by a Rician distribution [10]. However, 
noise of low and high SNR data can be approximated by 
Rayleigh probability density function (pdf) and Gaussian 
pdf [10], respectively. This paper is focused on low SNR 
MR images, and so we propose a Rayleigh pdf for noise. 

 
 
Note that these models are appropriate for stochastic noise 

and in order to remove the non-stochastic noise components, 
such as %off-resonance artifacts and rigid body motion, 
other techniques, such as deblurring methods, are required. 

The compression property of wavelets states that the 
marginal pdf of wavelets in each subband is heavy-tailed 
[6], [11]. To model this property, various pdfs such as 
Gaussian, Laplace, generalized Gaussian and mixture pdfs 
have been proposed [8-9], [11]. Another property of 
wavelets is clustering. This property states that if a 
particular wavelet coefficient is large/small, then spatial 
adjacent coefficients are very likely large/small too [8]. 
Usually spatially-adaptive algorithms that use local pdfs are 
able to model this property [5], [9]. In order to take into 
account compression and clustering properties, we propose 
Laplacian pdf with local variance for clean wavelet 
coefficients. 

In some cases, the initial MR images are blurred while we 
may need to focus on image details. To solve this problem, 
we need to apply a blind deconvolution (BD) algorithm to 
restore the unblurred image. However, many BD algorithms 
[12-15] are sensitive to noise and fail in the presence of 
(high level) noise. In this paper we use a BD algorithm in 
the low-pass subband of wavelet transform (that 
approximately excludes the noise) and obtain an image with 
highlighted details. 

This paper, which is an extension of our previous 
conference paper [16], is organized as follows. In Section 2 
the theoretical base of denoising with MAP estimator based 
on local Laplacian prior and two-sided Rayleigh noise is 
introduced. In Section 3 we use our wavelet-based denoising 
algorithm for enhancement of several low SNR MR images. 
In Section 4 we use a BD technique in the wavelet domain 
for further improvement of blurred data. Finally the 
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concluding remarks are given in Section 5. 
Note that in our previous works [9], [17-18] we employ 

mixture pdf to capture the heavy-tailed nature of wavelet 
coefficients. In this paper we use a simple non-mixture 
model (Laplacian pdf) that decreases the computational 
complexity. Although this model is simpler, using a more 
complex model only will be useful when we have enough 
data for accurate estimation (of model parameters). Since we 
use a local window around each coefficient to capture the 
intrascale dependency (local pdf), which is the main 
important dependency between coefficients, we must choose 
an appropriate distribution for data within the window. For 
instance, for a 3×3 window we must fit an appropriate 
distribution to data using just 9 observations, and if we use a 
model with many parameters, our estimations may not be 
reliable. In this base, our simulations confirm that using a 
simple local Laplacian prior in many cases can compete 
with the mixture model. In addition, the proposed 
distribution for noise in [17] is Gaussian. In this paper, we 
estimate the Rician noise, which is the accurate model for 
noise in MRI, with Rayleigh noise (for high level noise) and 
obtain another closed form for thresholding. In spite of 
previous works, the main purpose of this paper is deblurring, 
not denoising, and the MAP-based denoising algorithm is 
used in high-pass subbands (for noisy cases) before 
deblurring in the wavelet domain [9], [16-18]. 
 

2.  PROPOSED SPATIALLY-ADAPTIVE WAVELET-BASED 
DENOISING METHOD 

The goal of this section is to estimate the clean signal from 
noisy observations using the MAP criterion. Let 
y(k)=w(k)+n(k), w(k) and n(k) represent the low SNR MR 
image, clean image and noise in wavelet domain, 
respectively. 

The MAP estimator )(ˆ kw  is defined by: 
              ))(|)((maxarg)(ˆ )(|)(
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kykwpkw kykw

kw
=             (1) 

 
Using Bayes' rule we would have: 
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From y(k)=w(k)+n(k) we have:  
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and we can obtain the MAP estimate of w(k) by setting the 
derivative to zero with respect to w(k) that gives the 
following equation to solve for w(k): 
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In this paper we use a Laplacian pdf with local variance 
for clean data in the wavelet domain: 
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Therefore, we have: 
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leads to the following equation: 
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It has been shown that the noise of low SNR images is 

modeled by a two-sided Rayleigh pdf [10]: 
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where 2/nσα =  and nσ  indicates the noise variance. 
Substituting (7) to (6) we obtain: 
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By solving the above equation, the MAP estimator comes 

out to be: 
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Fig.1 shows the nonlocal version of the shrinkage function 

(9) for various parameters. It is clear that for a constant σ , 
the data will be more shrunk for larger α . In contrast, for a 
constant α , the data will be more shrunk for smaller σ . 

To implement the obtained shrinkage function (9) we need 
to estimate the parameters α  and )(kσ . The noise variance 

2
nσ  is estimated using a robust median estimator for the 

finest scale of noisy wavelet coefficients [3]. So, 
2/nσα =  is obtained as follows: 
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The clean image variance )(2 kσ  is estimated by averaging 

over a squared window N(k) centered at k [5]: 
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where >< )(kN  is the number of coefficients in N(k). 
The proposed denoising algorithm using the above 

thresholding function is concluded in Table 1. 

 
Fig.1.  Shrinkage function (9) for various parameters. 

 
Table 1.  Proposed denoising algorithm in this paper 

Step 1 Take the wavelet transform of the low SNR observation. 
Step 2 Estimate α  from noisy coefficients using (10). 
Step 3 For each wavelet coefficient, estimate the variance )(2 kσ  using (11). 

Step 4 Substitute the obtained parameters in previous two steps in (9). 
Step 5 Take the inverse wavelet transform of the reconstructed image. 
 

 
 

Fig.2.  Images from top to bottom: low SNR cardiac images, de-
noised images with Wiener filter, images denoised with our 
method. 

 
3.  LOW SNR MR IMAGE ENHANCEMENT 

In this section, we use our spatially adaptive algorithm to 
improve the visual quality of low SNR MR images. 

We implement our algorithm in the discrete complex 
wavelet domain (DCWT) [19]. Notwithstanding, ordinary 
wavelet transform is an efficient computational algorithm 

and sparse representation that has excellent performance in 
many signal processing applications, yet it suffers from 
several fundamental shortcomings including the lack of shift 
invariance and poor directional selectivity [19]. In fact, 
although ordinary wavelet transform is optimal for a large 
class of 1-D signals, it only represents point-singularities 
efficiently and in 2-D domain it is less efficient for line-and 
curve-singularities (edges). Therefore, ordinary wavelet 
transform does not possess these optimality properties for 2-
D signals such as natural images, and the development of 2-
D multiscale transforms that isolate edges with different 
orientations in different subbands and represent edges more 
efficiently than the separable DWT, such as DCWT, has 
been considered. In this paper the 6-tap filter proposed in 
[20] is used for each dimension of DCWT. 

Fig.2 shows a cardiac MR image denoised with our 
method and Wiener filtering in the DCWT domain with 3 
levels. The Wiener filter can be obtained by using Gaussian 
prior distribution and modeling noise with AWGN  
( datanoisy 

datanoisy  of variance
data free noise of variancedata denoised ×= ).

We understand from this figure that our method is able to 
reduce the noise while preserving the edges and main 
features of MR images. Another advantage of our algorithm 
is its complexity. In practice, our spatially adaptive 
algorithm is very fast. For example, on an Intel Core Duo 
1.83 GHz personal computer with 2 GB RAM, the average 
CPU time in MATLAB environment for processing 
512×512 images using our spatially adaptive denoising 
algorithm is about 2 s. 

The effect of the window size is illustrated in Fig.3. We 
can see that large window sizes produce blurred images. 

 

  
 

Fig.3.  Left: denoised image with our method for window size 3×3. 
Right: denoised image with our method for window size 15×15. 

 
4.  BD IN WAVELET DOMAIN 

In this section we complete the introduced denoising 
algorithm to improve the visual quality of blurred MR 
images by applying a BD algorithm in the wavelet domain. 
Although up to now a large number of BD algorithms have 
been introduced [12-16], [22-27], many of them are 
sensitive to noise and fail in a noisy environment [12-13] 
and many of the recently published methods that try to 
dominate this problem are time consuming [22-24]. In this 
paper, we use an iterative process similar to the Lucy-
Richardson algorithm based on the maximum likelihood 
criterion [12-13] for BD in low-pass subband in the wavelet 
domain. Even though the Lucy-Richardson algorithm is well 
known, it has many variations which are stated to be fast 
and not affected by noise [14]. We use an available version 
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of this algorithm in MATLAB that is a more accurate and 
fast version of the Lucy-Richardson algorithm. The main 
reason of applying BD on low-pass subband is that the noise 
mainly contaminates the high-pass subbands [8]. For 
example, we add an additive white Gaussian noise (with 
variance 20) to a 144×144 grayscale image and the signal-
to-noise ratio for corresponding subbands in 3 scales are 
0.9145, -3.5094, and -4.9150, respectively. Note that in our 
method we obtain at first (approximately) noise-free data 
using the proposed MAP-based denoising in Section 2, and 

then apply BD algorithm to this data (Fig.4). The results of a 
sample MR image restoration with our algorithm are 
illustrated in Fig.5. In this figure, we also compare the 
results of our  algorithm with the method proposed in [12-
14] (applying BD algorithm in the image domain). Note that 
since some details may be better visualized by the latter 
method, in some cases a combination of the results obtained 
by both algorithms may be beneficial. An additional 
application of our algorithm to a simulated blurry image can 
be seen in Fig.6. 

 
 

 
 

 
Fig.4. The block diagram of image enhancement in wavelet domain. Note that in some cases in addition to applying BD to low-pass 

subband, we also apply BD algorithm to other subbands (after denoising). 
 
 

 

 
 

Fig.5.  From left to right: initial image, restored image produced from applying BD algorithm in image domain,  
and image restored with our algorithm. 

 
 
 

Table 2.  Comparison between PSNRs, and MIs of themethod proposed in this paper (and other versions of this algorithm for other choices 
of distributions of signal and noise) with the method proposed in [12-14] for a 128×128 MR Image 

 
Level 

of 
Noise 

 
PSNR 

 
MI 

 
 

 
PSNR 

 
MI 

 
 

 
PSNR 

 
MI 

 
 

 
PSNR 

 
MI 

 
 

 Proposed 
Method in 

[12-14] 

Our Method with 
Laplacian Prior, 
Gaussian Noise 

Our Method 
with Gaussian Prior, 

Gaussian Noise 

 
Our Method 

ζ=5 31.95 1.69 30.04 1.64 29.82 1.62 31.65 1.75 
ζ=10 26.59 1.39 26.52 1.50 26.32 1.48 27.10 1.60 
ζ=15 23.19 1.16 23.81 1.42 23.63 1.38 24.06 1.48 
ζ=25 18.74 0.79 19.69 1.26 19.65 1.24 19.85 1.32 
ζ=40 14.71 0.54 15.80 1.09 15.79 1.07 15.90 1.12 
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Fig.6.  Left image: initial data. Right image: restored image with 
our algorithm. 

 
A proper way of carrying out the performance test is to 

start out with a clean ground truth image, then add noise to it 
based on a realistic distribution from MRI, use the different 
algorithms to improve image quality and then compute the 
mean square error (or an equivalent metric, e.g., mutual 
information) between the ground truth image and the noisy 
and deblurred images. For this reason we use a 128×128 
image and contaminate it with Rician noise with different 
levels and apply a Gaussian point spread function (PSF) on 
it to simulate a blurry and noisy MR image (usually PSF is 
modeled as a low-pass filter [28], however we also tested 
our algorithm for box-type, 45o rotated box-type and 
inverse-quadratic blur functions and similar results were 
obtained). Then we use our algorithm for visual quality 
improvement and compare the results with the method 
proposed in [12-14] in terms of peak signal-to-noise (PSNR) 
ratio and mutual information (MI). The results are 
concluded in Table 2. Note that in this table we also show 
the effect of the choice of the statistical distributions for 
signal and noise on the performance of our algorithm. From 
the results it is clear that our algorithm mostly outperforms 
the others. In addition, we can derive that wavelet-based 
methods have better results than image-based methods 
especially for the presence of high level of noise. Note that 
for low level of noise, the method proposed in [12-14] has 
higher PSNR (but lower MI). The main reason is that the 
initial assumption in our method is using Rayleigh 
distribution for noise that is true only for high level of noise.  

As we explained in Figure 4, in some cases it is better to 
use BD also in the high-pass subband. Figure 7 shows the 
effect of using the deconvolution in high-pass subband. 
Medical images are also characterized by another parameter 
- contrast to noise ratio (CNR) defined as 

 
                         

σ
μμ ||CNR ROI2ROI1 −=                          (12) 

 
where µROI is the mean signal value computed for a small 
region of interest (ROI). The noise standard deviation σ is 
computed from a large region outside the object, which 
represents the background noise. In Fig.7, we also compare 
the SNRs and CNRs of original and enhanced images. For 
original image, SNR for ROI1 is 34.68 and for ROI2 is 
36.88 and CNR is 2.2 while for the enhanced image, SNR 

for ROI1 is 140.99 and for ROI2 is 131.80 and CNR is 9.19. 
This results show the gain in SNR without losing CNR. In 
this paper the BD is performed in the wavelet domain to 
avoid noise in the image domain. To show advantages of 
this approach we compare it with using the deconvolution 
algorithm in the image domain after performing the 
denoising. The obtained CNR for the proposed image in 
Fig.7 after performing soft thresholding in the discrete 
complex wavelet domain and then applying the Lucy-
Richardson algorithm is 8.63 that confirm the effectiveness 
of our algorithm. 
 

5.  CONCLUSION 
This paper presents a new fast denoising method in the 

discrete complex wavelet domain. We use maximum a 
posteriori estimator based on a local Laplace prior and 
Rayleigh noise and obtain a new spatially adaptive wavelet 
based denoising algorithm. We implement our algorithm for 
visual quality improvement of low SNR MR images and 
obtain denoised images while preserving the main features 
of clean images such as edges. For those cases in which the 
input image is also blurred, we complete our algorithm by 
applying a blind deconvolution algorithm to appropriate 
wavelet subbands (after denoising) and obtain the final 
restored data. 

We can use more complicated prior distributions for clean 
data in the wavelet domain (e.g., see [19] for an extension to 
mixture prior) and better blind deconvolution algorithms to 
obtain better results. We can also extend this work for other 
applications such as super resolution reconstruction in MRI. 

 
 

 
 
Fig.7.  The effect of using BD in high-pass subband (in Figure 4) 
for a noisy MR image. Left image shows the initial image, the 
middle image shows the produced image using only BD in low-
pass subband and the right image illustrates the results of using BD 
in all wavelet subbands. For left image SNR for ROI1 is 34.68 and 
for ROI2 is 36.88 and CNR is 2.2 while for the last image SNR for 
ROI1 is 140.99 and for ROI2 is 131.80 and CNR is 9.19. 

 
REFERENCES 

[1] Vojtíšek, L., Frollo, I., Valkovič, L., Gogola, D., Juráš, 
V. (2011). Phased array receiving coils for low field 
lungs MRI: Design and optimization. Measurement 
Science Review, 9, 61-67. 

[2] Song Huettel, A.W., McCarthy, G. (2009). Functional 
Magnetic Resonance Imaging, 2nd ed. Sunderland, 
MA: Sinauer Associates, Inc. 

Noise 
ROI 

ROI1 
ROI2



 
MEASUREMENT SCIENCE REVIEW, Volume 11, No. 4, 2011 

 130

[3] Donoho, D.L., Johnstone, I.M. (1994). Ideal spatial 
adaptation  by  wavelet shrinkage. Biometrika, 81, 
291-294. 

[4] Donoho, D.L. (1995). Denoising by soft-thresholding. 
IEEE Trans. on Information Theory, 41, 613-627. 

[5] Mihcak, M.K., Kozintsev, I., Ramchandran, K., 
Moulin, P. (1999). Low complexity image denoising 
based on statistical modeling of wavelet coefficients. 
IEEE Signal Proc. Letters, 6, 300-303. 

[6] Crouse, M.S., Nowak, R.D., Baraniuk, R.G. (1999). 
Analysis of multiresolution image denoising schemes 
using a generalized Gaussian and complexity priors. 
IEEE Trans. on Information Theory, 45, 909-919. 

[7] Malfait, M., Roose, D. (1997). Wavelet-based image 
denoising using a markov random field a priori model. 
IEEE Trans. on Image Processing, 6, 549-565. 

[8] Crouse, M.S., Nowak, R.D., Baraniuk, R.G. (1998). 
Wavelet-based statistical signal processing using 
hidden Markov models. IEEE Trans. on Signal 
Processing, 46, 886-902. 

[9] Rabbani, H., Vafadust, M., Gazor, S. (2006). Image 
denoising based on a mixture of Laplace distributions 
with local parameters in complex wavelet domain. In 
IEEE Int. Conference on Image Processing, October 
8-11, 2006. Atlanta, GA, 2597-2600. 

[10] Nowak, R.D. (1999). Wavelet-based rician noise 
removal for magnetic resonance imaging. IEEE Trans. 
Image Processing, 8, 1408-1419. 

[11] Chang, S.G., Yu, B., Vetterli, M. (2000). Adaptive 
wavelet thresholding for image denoising and 
compression.  IEEE Trans. Image Processing,  9, 
1532-1546. 

[12] Richardson, W.H. (1972). Bayesian-based iterative 
method of image restoration. JOSA, 62 (1), 55-59. 

[13] Lucy, L.B. (1974). An iterative technique for the 
rectification of observed distributions. Astronomical 
Journal, 79 (6), 745-754. 

[14] Fish, D.A., Brinicombe, A.M., Pike, E.R. (1995). 
Blind deconvolution by means of the Richardson–
Lucy algorithm. J. of the Optical Society of America A, 
12 (1), 58-65. 

[15] Stockham, T.G., Cannon, T.M., Ingebretsen, R.B. 
(1975). Blind deconvolution through digital signal 
processing. In Proc. IEEE, 63 (4), 678-692. 

[16] Cannon, M. (1976). Blind deconvolution of spatially 
invariant image blurs with phase. IEEE Trans. on 
Acoustic, Speech,  and  Signal  Processing,  24  (1), 
58-63. 

[17] Rabbani, H. (2008). Statistical modeling of low SNR 
magnetic resonance images in wavelet domain using 
Laplacian prior and two-sided Rayleigh noise for 
visual quality improvement. In International 
Conference on Information Technology and 
Applications in Biomedicine (ITAB 2008), May 30-31, 
2008. IEEE, 116-119. 

[18] Rabbani, H., Vafadust, M. (2008). Image/video 
denoising based on a mixture of Laplace distributions 
with local parameters in multidimensional complex 
wavelet domain. Signal Processing, 88 (1), 158-173. 

[19] Rabbani, H., Nezafat, R., Gazor, S. (2009). Wavelet-
domain medical image denoising using bivariate 
Laplacian mixture model. IEEE Trans. on Biomedical 
Engineering, 56 (12), 2826-2837. 

[20] Selesnick, I.W., Kingsbury, N., Baraniuk, R.G. (2005). 
The dual-tree complex wavelet transforms - a coherent 
framework for multiscale signal and image processing. 
IEEE Signal Proc. Magazine, 9, 123-151.  

[21] Kingsbury, N.G. (2000). A dual-tree complex wavelet 
transform with improved orthogonality and symmetry 
properties. In 2000 Int. Conference on Image 
Processing, Vol. 2, September 10-13, 2000. IEEE, 
375-378. 

[22] Geman, S., Geman, D. (1984). Stochastic relaxation, 
Gibbs distributions, and the Bayesian restoration of 
images. IEEE Trans. on Pattern Analysis and Machine 
Intelligence, 6 (6), 721-741. 

[23] Derin, H., Elliott, H. (1987). Modeling and 
segmentation of noisy and textured images using 
Gibbs random fields. IEEE Trans. on Pattern Analysis 
and Machine Intelligence, 9, 39-55. 

[24] Molina, R., Katsaggelos, A.K., Abad, J., Mateos, J. 
(1997). A Bayesian approach to blind deconvolution 
based on dirichlet distributions. In IEEE Int. 
Conference on Acoustics, Speech and Signal 
Processing (ICASSP-97), Vol. 4, April 21-24, 1997. 
IEEE, 2809-2812. 

[25] Sroubek, F., Flusser, J. (2005). Multichannel blind 
deconvolution of spatially misaligned images. IEEE 
Trans. Image Processing, 14 (7), 874-883. 

[26] Babacan, S., Molina, R., Katsaggelos, A. (2008). 
Parameter estimation in TV image restoration using 
variational distribution approximation. IEEE Trans. 
Image Processing, 17 (23), 326-339. 

[27] Levin, A., Weiss, Y., Durand, F., Freeman, W.T. 
(2009). Understanding and evaluating blind 
deconvolution algorithms. In IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR 
2009), June 20-25, 2009. IEEE, 1964-1971. 

[28] Greenspan, H., Oz, G., Kiryati, N., Peled, S. (2002).   
MRI inter-slice reconstruction using super resolution. 
Magnetic Resonance Imaging, 20 (5), 437-446. 

 
 
 
 
 
 
 

 
 
 

Received June 14, 2011.    
Accepted September 9, 2011. 


