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This paper proposes current envelope analysis (CEA) to analyze bearing fault signals in brushless direct current (BLDC) 

motors, and back propagation neural networks (BPNN) to automatically identify bearing faults. We made sample motors which 
contained different types of fault, recorded the current signals, and extracted the current features using CEA and Hilbert Huang 
transform (HHT) for BPNN fault identification. The results indicate that this approach can efficiently identify bearing faults in 
BLDC motors. 
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1.  INTRODUCTION 

 DC MOTOR APPLIED extensively and versatilely is 
reliable and indispensable industrial equipment. 
Nevertheless, it can fail, the failure caused by, e.g., 

improper operation, manufacturing defects and mechanical 
wear. Different internal motor faults (short circuit of motor 
leads, interterm short circuits, ground faults, worn 
out/broken bearings [1-4], broken rotor bars) along with 
external motor faults are common types of damage that 
shorten the life span of motors. Many literatures have 
discussed motor operation. For a quality motor, proper 
maintenances and applications are important. 

A signal analysis technique is important to recognize fault 
signals [5]-[6]. For example, fast Fourier transform (FFT) 
[7-8] and wavelet transform (WT) are usually employed for 
signal analysis [9-12], but their restrictions of selecting a 
particular mother wavelet will lead to incorrect analysis of 
signals. Thus, the Hilbert-Huang transform (HHT) proposed 
by Norden E. Huang, which is composed of empirical mode 
decomposition (EMD) and Hilbert transform (HT) [13-16], 
refines traditional methods. HHT can not only be applied to 
analyze nonlinear and non-stationary signals, but also to 
improve the problems of traditional analysis methods. As 
the advantage of the HHT method, the noise problem which 
may cause inaccurate analysis is discussed in this paper. 

Recently, neural network has been extensively applied in, 
e.g., damage detection, control, and signal processing. The 
artificial neural network (ANN) has been developed into 
numerous neural networks for various applications, such as 
feed-forward network [17-19], probabilistic neural network 
(PNN) [20-21], and back propagation neural network 
(BPNN) [22]. All of these neural networks have unique 
structure, performance, and training methods. Therefore, 
selecting an appropriate ANN is crucial. BPNN is a 
supervised neural network which trains with signals of a 
motor in advance to obtain its weight for the following 
classification. BPNN only takes extra training time to obtain 
the weight for promptly completing signal classification of a 
motor, and BPNN has better accuracy than unsupervised 
neural networks. 

 

Therefore, this paper measures bearing fault current 
signals in BLDC motors, extracts features of these signals, 
and identifies the fault types using BPNN. This approach 
can prevent unexpected faults, and accelerate fault 
identification.  
 

2.  CURRENT ENVELOPES AND FEATURE EXTRACTION 
A.  Current Envelopes 

Early studies measured motor vibration signals typically 
with accelerometers, but noises from the environment 
significantly distort the vibration signals. Our study 
measures current signals, and effectively identifies early-
stage bearing faults using CEA. 

CEA is an easy and fast method to identify motor bearing 
faults. This method determines signal’s local maximum 
values and local minimum values. This approach connects 
all local maximum values to form upper envelopes, and all 
local minimum values to form lower envelopes. The 
flowchart of the study is shown in Fig.1. Fig.2 illustrates 
upper and lower envelopes of a signal. 

 

 
 

Fig.1.  The flowchart of the proposed CEA. 
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Fig.2.  The upper and lower envelopes of a signal. 

 

B.  Envelope Feature Extraction 
Neural networks require time to complete their data 

training. The fewer amount of data means the fewer time the 
training takes. Hence, feature extraction can significantly 
reduce the training time and obtain precise results. We 
analyzed fault signal upper and lower envelopes, calculated 
their maximum values, minimum values, mean values, root 
mean square, and 10 energy feature values F1-F10, and 
applied the 10 feature values to BPNN. The process of the 
calculation is shown in Fig.3. 

 

 
 

Fig.3.  The envelope feature extraction. 
 

Hilber huang TRANSFORMER 
The signal analysis, Hilbert Huang transform, was 

proposed by Dr. Huang E., and is composed of the Hilbert 
transform and Empirical Mode Decomposition. The method 
is helpful to the non-stationary and nonlinear signals. First, 
Empirical Mode Decomposition disintegrates the signal to 
obtain the intrinsic mode functions and the central tendency 
that eliminating the noise is effective. Second, intrinsic 
mode functions obtain instantaneous frequency and 
instantaneous amplitude of the signal through Hilbert 
transform, and then get the signal corresponding time, 
frequency and energy. 

 
C.  Empirical Mode Decomposition (EMD) 

EMD method has been developed from the simple 
assumption that any signal consists of different simple 
intrinsic modes of oscillations. Each linear or non-linear 
mode will be applicable. IMFs must satisfy the following 
definition: 
1. In the whole data set, the number of zero-crossings must 

either be equal to or differ at most by one. 

2. At any point, the mean value of the envelope defined by 
the local maxima and the envelope defined by the local 
minima is zero. 

 
An IMF represents a simple oscillatory mode compared 

with the simple harmonic function. The method is based on 
removing noise to make the DC motor fault detection easier. 
The sifting process is as follows: 
Step1: Identify all the local maxima and minima of x(t). 
Step2:  Connect all the maxima by a cubic spline line as the 

upper envelope. 
Step3:  The input signal x(t) subtracts the mean envelope 

mik to obtain a new signal hik. 
Step4: Determine whether hik isthe IMF, for example with 

the establishment of its deposit in the ci(t), 
otherwise repeat step one to step four. 

Step5: Separate ci from x(t), we get ri(t)= x(t)- ci(t). ri is 
treated as the original data. 

Step6: The decomposition process can be stopped when ri 
becomes a monotonic function. 

 
The flowchart of EMD decomposition is shown in Fig.4. 

The decomposition process is stopped when rn(t) becomes a 
monotonic function from which no more IMFs can be 
extracted. Combine the IMFs and the central tendency of 
signal as shown in (1). 
 

( ) ( ) ( )
1

n

i n
i

x t c t r t
=

= +∑  ,                        (1) 

 

 
 

Fig.4.  The flowchart of EMD decomposition. 
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This paper analyzes BLDC motor fault signals using 
EMD. Fig.5 demonstrates the IMFs and the tendency 
function. The c1 to c9 show IMFs from high frequency to 
low frequency, respectively, and the c10 shows the tendency 
function.  

 
 

 
 

Fig.5.  The IMFs of BLDC motor fault signal. 
 
 

A.  Hilbert transform 
Hilbert transform, solving the previous nonlinear and non-

stationary signal analysis problems, is a good way to 
identify motor failure. The conventional Hilbert transform 
of a continuous signal ci(t) is computed as shown in (2) 
 

( ) ( )'1 '
- '

i
i

c t
H c t dt

t tπ
∞

−∞
=⎡ ⎤⎣ ⎦ ∫  ,                     (2) 

 
Coupling the complex conjugate pair ( )iH c t⎡ ⎤⎣ ⎦  and ci(t), 

we get the analytic signal z(t) as shown in (3). 
 

( ) ( ) ( ) ( ) ( )j t
i i i iz t c t jH c t a t e φ= + =⎡ ⎤⎣ ⎦  ,              (3) 

 
Where ai(t) and ( )i tφ  are the instantaneous amplitude and 

instantaneous phase as shown in (4) and (5) 
 

( ) ( ) ( )2 2
i i ia t c t H c t= + ⎡ ⎤⎣ ⎦  ,                     (4) 
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The instantaneous frequency is defined as the time 

derivative of the instantaneous phase as shown in (6) 
 

( ) ( )i
i

d t
t

dt
φ

ω =  ,                                (6) 

 
After analyzing IMFs with HT, we attained signal’s 

instantaneous frequency and instantaneous amplitude, and 
depicted HHT spectrum accordingly. In Fig.6, the Y-axis 
stands for signal frequency, and the X-axis stands for signal 

time. Fig.6 differentiates intensity of signal energy using 
different colors. Therefore the HHT spectrum provides an 
effective approach to simultaneous observation of 
distribution of BLDC motor fault signal energy in time and 
frequency domains. 

 
 

 
 

Fig.6.  The HHT spectrum. 
 

B.  HHT Spectrum Feature Extraction 
Using HHT for fault signals of a motor obtains 

instantaneous frequency, instantaneous amplitude, and an 
HT-matrix formed by time, frequency and amplitude to 
illustrate the HHT spectrum. First, according to the time 
row, its characteristics including maximum, energy, mean, 
standard deviation, and root mean square (RMS) can depict 
five time characteristic curves, namely (1) Tmax, (2) Te, (3) 
Tmean, (4) Tstd, and (5) Trms. Second, from the frequency 
row, we find the same five characteristic and obtain curves 
(6) Fmax, (7) Fe, (8) Fmean, (9) Fstd, and (10) Frms. 
Finally, we extract the same five characteristics from those 
ten curves to gain 50 features, from F1 to F50, and each of 
which will be trained by BPNN. The HHT feature selection 
is shown in Fig.7. 

 
 

 
 

Fig.7.  HHT spectrum feature extraction 
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4.  BACK PROPAGATION NEURAL NETWORK 
BPNN is a feed-forward network structure [21]-[22], as 

shown in Fig.8, including input layer and hidden layer. Each 
neuron only connects to its neighbor layer. In the k-th time 
network training, the error of the i-th neuron on output layer 
is as shown in (7), ti(k) is the expected output, and xi(k) is 
the real value on m-th layer. Shown in (8) is the feed-
forward phase, in which sm represents the number of neurons 
on m-th layer, m

jx  is the j-th neuron on m-th layer, ( )mf ⋅ is 

activation function, m
i , jw  is weight, and m

jb  is bias. The 
weights of BPNN are updated as shown in (9). The purpose 
of training BPNN is to minimize the error F(k), as shown in 
(10). 

 

Input Hidden Output
 

Fig.8.  The structure of BPNN. 
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4.  MEASUREMENT AND RESULTS  

Our study subject was BL90S motor (24VDC, 150W, 
3000rpm) bearing standard (bearing type specification 6001, 
12mm ID, 28mm OD, 8mm depth.) The typical bearing 
structure includes two homocentric races: 1) Inner race, and 
2) Outer race. Rolling elements are tiny balls rolling 
between two races, and the section of a rolling element is 
shown in Fig.9(A). To analyze bearing faults, we first made 
six bearing damage types using the Electrical Discharge 
Machining (EDM) technique. The six damage bearing types 
are shown in Fig.9(B): (a) 1.0mm holes on both inner race 
and outer race, (b) a 1.0mm hole on inner race, (c) a 1.0mm 
hole on outer race, (d) 0.5mm holes on both inner race and 

outer race, (e) a 0.5mm hole on outer race, and (f) a 0.5mm 
hole on inner race. Then we installed these damaged 
bearings on motors. Fig.10 shows the location of these 
damaged bearings. 

After installation, we measured the fault signals, recorded 
these current signals with a NI PXI-5422 data recorder. We 
then analyzed the signal features using HHT and CEA. To 
obtain the unit of consistency and comparability, we 
standardized features and applied these features to BPNN to 
identify motors faults. The system is shown in Fig.11. 

 

 
 
Fig.9.  (A) the section of a rolling element (B)The damage bearing 
in which (a) 1.0mm holes on both inner race and outer race (b) 
1.0mm hole on inner race (c) 1.0mm hole on outer race (d) 0.5mm 
holes on both inner race and outer race (e) 0.5mm hole on outer 
race (f) 0.5mm hole on inner race.. 
 

 
 

Fig.10.  The location of these damaged bearings. 
 

 
 

Fig.11.  The architecture of the measurement system. 
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This study recorded current signals from an intact bearing 
and six damaged bearings with a NI PXI-5422 recorder. We 
recorded 50 current signals for each type of bearing and 
2,000 points for each current signal. Then we extracted 
features from each signal using HHT and CEA, and the 
results are shown in Fig.12 and 13, in which the X-axis 
represents signal count, the Y-axis represents signal 
features, and the color represents energy intensity. This 
indicates that HHT and CEA can successfully analyze 
signals from intact bearing and six damaged bearing types. 

After cross-validating the results, we found that HHT 
bearing fault identification method can successfully identify 
average 98% of motor faults, including intact bearing and 
the six types of damaged bearing. We further put the system 
under 20dB and 30dB noisy environment to validate the 
robustness of the system. The analysis results indicate that 
even with 20 and 30 dB noise the average identification rate 
is at least 95.6% and 97.9%, respectively. The identification 
rates, accuracies, and computing time of HHT for each type 
of damaged bearing are shown in Table 1. We also found 
that the CEA bearing fault identification method can 
successfully identify average 99% of motor faults. Even 
under 30dB and 20dB noisy environment, the average 
identification rates are 98.6% and 98.1, respectively. The 
identification rates, accuracies, and computing time of CEA 
for each type of damaged bearing are shown in Table 2. 
Comparing HHT with CEA, we found that CEA overmatch 
HHT in both identification rate and computing time. 

 
6.  CONCLUSION 

This paper applies Current Envelope Analysis (CEA) to 
analyze bearing fault signals in BLDC motors and 
successfully identifies damage types in bearings. We 
analyzed current signals in BLDC motors using CEA and 
HHT, and applied results to BPNN to identify fault types. 
According to our analysis results, CEA average 
identification rate is 99.1%, and HHT average identification  

 
 

rate is 98%. CEA requires shorter computing time than HHT 
does, and maintains relatively high identification rate. To 
prove the system robustness, we added noise into the system. 
We found that under 30dB noisy environment CEA and 
HHT identification rates are 98.6% and 97.9%, and that 
under 20dB noisy environment their identification rates are 
98.1% and 95.6%. These results prove that the CEA method 
can accurately identify fault types in BLDC motors. 
 

 
 

Fig.12.  The feature distribution of HHT. 
 

 
 

Fig.13.  The distribution of CEA feature. 

Table 1.  The identification rates, accuracies, and computing time of HHT for each type of damaged bearing. 
 

0.5mm 1.0mm Ave.       Types 
Signals Healthy 

Mix Inner Outer Mix Inner Outer accuracy 
Computing time

(sec) 

Original signals 100% 99.7% 100% 99.3% 99.8% 97.4% 93.3% 98% 433 

30 dB noise 100% 98.7% 100% 97.8% 98.7% 99.4% 93% 97.9% 440 

20 dB noise 100% 95.3% 100% 99.4% 94.6% 94.4% 94.1% 95.6% 436 
 

Table 2.  The identification rates, accuracies, and computing time of CEA for each type of damaged bearing. 
 

0.5mm 1.0mm Ave.       Types 
Signals Healthy 

Mix Inner Outer Mix Inner Outer accuracy 
Computing time 

(sec) 

Original signals 100% 100% 100% 100% 100% 100% 93.6% 99% 89 

30 dB noise 100% 99% 100% 100% 100% 100% 91.7% 98.6% 93 

20 dB noise 100% 98.6% 100% 98.9% 100% 100% 97.2 97.2% 94 
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