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The goals of this paper fall into three related areas: (i) we presenain overview of a universal algebraic paradigm in which
measurement specialists can construct formal models of measument in a unified manner and systematically reason about a large
class classical measurement operations, (ii) we construct conient von Neumann quantity algebras and quantity-channels betwee
them to represent measurements, and introduce the dual frameork of state spaces and state-channels between them to invigstte
the statistical structure of measurements, and (iii) we provide seeral detailed examples that illustrate the power and versatility of
algebraic approaches to measurement procedures.
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1. INTRODUCTION AND GENERAL BACKGROUND measurement-theoretic representation is shown in Figure 1
below, in which the homomorphis® between an empirical
THE MAIN purpose of this paper is to study a large classlational structur€?’,©) and a numerical relational struc-
of classical measurement procedures in the framewotkge (R, <) is also known under the uninspired natseale of
of quantity algebras and quantity-channels, and in a dua¢asurement”
measure-theoretic setting of state spaces and stateabkann N
Measurement procedures are modeled figdint levels of Q
abstraction, reflecting the variety of options in isolatihg : '
empirical and statistical structures of interest th@aively

characterize various measurement operations from a given D@ : : <!
perspective. In view of dierent conceptualizations, there are ':A : ':_ .
many competing models of measurement, and each model is L@ ‘>0
limited by the assumptions made in its design. In this sec- Q

tion we briefly describe three major theoretical approasbes Objects Numbers

melgsurerpent lt,hzt emoy S'gmgcam_prommenced'nhvancm's di Fig. 1. Visualization of measurement as an order-preserving map
ciplines ot appiie SC"?”Ce an. englneerllng, a.n then mnve O froma given domain of object§ to that of number®.
to present the algebraic paradigm on which this paper ighase _

In some ways, the most natural place to start is with the The assignment of numbets degrees, levels or amounts
oldestrepresentational theory of measuremeatronymed Of attributes instantiated by objects or events is fundamen
RTM), systematically developed by Krantz et al. in thr@l, since it justifies the use of real numbers and real-vhlue
Vo|umeS, Starting with the expository V0|um8]_[ In the functions in science. A crucial critical remark here is tties
tradition of empiricist methodology, the core idea of RTMNlisted help of mathematics does not come to significantly
is to treat measurement as a procesasgigningnumbers more than the study of various types of scales of measure-
to certain qualitative attributes — instantiated by a gidea Ment, transformations between them, and some related cri-
main of stereotype empirical entities (objects, events,) ett€ria for empirical meaningfulness. Crucially, RTM's cen-
— in such a way that the comparative relation characterifl measurement problem lies in ensuring theasurabm'Fy
ing the attribute under consideration is faithfully reneted Of attributes or in other words the numerigapresentabil-
by a corresponding order relation on numbers. In techniél of their empirical order structure. Recall that for an at-
terms, measurement procedures are captured by various (éiftte to be measurable, it is necessary to provide a list of
bedding)homomorphism&om given empirical order Struc-the form of equivalencaey « Q(x) < Q(y) for all objectsx andy. In
tures to selected numerical order structdre$his kind of this way, the natural ordering of numbers faithfully emuldtestemperature-
based ordering of objects. Reflecting this faQfx) is the temperature of

*Corresponding author: zdomotor@sas.upenn.edu objectx in the “scale” described b@. An unfortunate aspect of RTM’s ho-

1For example, the length attribute of rods is characterizethbyassoci- momorphisms is that they exist (in a strictly nonconstructierse) only if
ated “shorter than” comparative relation or by its convetise,temperature the comparative relatios satisfies certain nontrivial axioms, such as the fa-
of objects comes with the obvious "colder than" binary relatiand so forth. miliar transitivity condition: kQy & y©2z) = x& zfor all entitiesx,y and
Here the important illustrating point is that upon introdwygthe mathemati- z. This general picture can be extended by adding compatiieposition

cal shorthanck gy for “objecty is colder than object”, the definition of an operations on objects and events or by considering an ermpaidering of
embedding homomorphisQ for temperature can be stated quite simply ipairs of objects.
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conditions (a.k.a. axioms), governing the attribute’s pam value bymeasuremenis yet another. Because the attributes
ative relation, that is dficient for the existence of an em-of scientific interest stand in crucial lawful relationshiwith
bedding homomorphism from the empirical order structuegher attributes, their measurements are practicallyyswa

to the numerical order structure. It is disenchanting terleadirect or derived. It must be recognized that RTM is not able
that in many practical cases the decisive axioms (e.g.,dhet® serve the complex needs of engineering applications, sci
called Archimedean axiom that excludes infinitesimals)odreentific model development or theory validation. Therefore,
a highly theoretical nature, known to beftttiult to test in the despite its prominence in philosophy of science, mathemati
attribute’s domain of instantiating objects. Moreoversiime cal psychology and economics, RTM finds itself in a minority
applications of RTM it is truly hard to find the correct list oposition within the natural sciences.

empirical conditions that grants the existence of a repitese ' The strongest criticisms of RTM concentrate on the limited
ing homomorphism. For example, it is far from clear whapplicability of RTM’s measurement models in engineering
axioms should a measurement specialist choose for meagHet applied sciences. For example, RTM typically does not
ing the level of violence depicted in TV movies, in order tihclude in its measurement models the all-important cause-
grant the existence of a homomorphism that provides meaffect and other law-like relations between measurable at-
ingful and usable numbers for the occurrence of violent agiiputes, it lacks concrete representations of measuring p
in motion pictures. cedures, instruments and their dynamical interactiond,itan
As practical mathematical tools, RTM’s models of meds not tailored for a statistical description of measurensen
surement tend to operate at a lamentably high level of abrs, noise, and uncertainties in general. Additionaliaait
straction. For example, RTM’s axiomatic formulation oénalysis of RTM may be found ir2].

an equal-arm balance measurement cannot distinguish masse second approach to measurement processes is pro-
from weight. Along similar lines, RTM’s setup developegided by the combined resources of mathemasyatemsind

for the traditionaldirect-comparisorbased measurement o&jgnal theories or more concretely, by the conceptual frame-
length of rods by placing alongside a ruler and steppindfit Quork of algebraicsignal processing theory of measurement
against the rod under consideration, does not single osit fhéreafter abbreviated as STM. As a by-product of classical
collineartype of measurement from some other, say, nonstagstems and signal theories, STM is built around temporally
dard orthogonalmeasurements, employing the Pythagoregsnd spatially) varying smooth physicaignals and their
theorem. This tells us that incorporating specific modes teénsformations thereon by man-made phys&altemsin-
measurement into RTM’s models is an extremely problemtuding but not limited to sensors, transducers, filters; am
atic enterprise. Since extensive quantities are axioedtia- piifiers, analog-digital convertetsand signal reconstruction
sically in the same way, it is not clear exactly which quafinversion) modules. At the heart of STM rests the reduetion
tity is being measured. Another important practical poipdt idea that measurement processes are merely special case
is that in measuring length, RTM relies on the existence @f other processes studied in mathematical systems and sig-
highly idealized straight-lineigid bodies, yet the length at-na| theories. In engineering science, measurements of a tar
tribute is instantiated also by ropes, rubber bands, ands& et system’s signal are described by joint families dfed

of other curved real-world nonrigid objects. RTM’s measurential equations with constant diieients in a time or state
ment models do not make a sharp distinction between ggmain. As is well known, the traditional input-state-auttp
tablishing the value of a given attribute by measurement fi&mework of systems theory is extremely well developed and
by theory. For example, since temperature is a theoretigalvidely accepted in the engineering community. The basic
thermodynamical quantity (defined by the partial deriv@tiformal modeling methodology of STM consists of associat-
of the system’s internal energy over entropy) governed Ry with each physical system a suitablensfer operatoror
thermodynamical laws, its values cannot be determined gtransfer matrix(obtained from the representingfidirential
fectively by fundamentameasurement, based on the “coldefquations) that sends the system’s input signals to itsubutp
than" qualitative relation. Instead, temperature is comiyo signals, mirroring — modulo admissible errors — the syssem’
measuredndirectly, say, by a thermometer with a mercurgctual signal processing behavior in a designated range.
column, whose length is linearly related to temperaturee Th \within STM, measurement is understood to involve a
point here, of course, is that a realistic measurement af-a & ntinuous-time detection, processing and presentafion o

get attributeQ (instantiated by an object) employs a secongimation carried by the signals of interest that are fed by
(directly observablepointer attributeQ" of a measuring in- the target system into a serially connected chain of several
strument, whose values are nomologically related to thése@narate elements. In simple situations, a measuringinstr

. _ 2 .
Q by an equation of the forn@" = F(Q).* Thus, to obtain \ent consists of a front-ensensorand a cascaded tail-end
the value ofQ from a theory is one thing and to acquig¥s

SIntuitively, signals are understood to be temporally or isigtvarying
2For exampleresistance temperature devicesy on the simplified em- physical quantities, used to convey information about desied physical

pirical resistance lavR = Ro(1+ « - T), stating that a platinum wire’s resis-phenomena. Signals are represented by functions on a timee spaelated

tanceRr linearly varies with its ambient temperatufewhereRg denotes the domains. The most prominent examples of variation are smootkincons

wire's resistance in a melting ice amdstands for the platinum’s material and discrete temporal changes in signal values.

constant. 4For practical estimation algorithms in signal sampling $ge [
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signalinversionor reconstructiorunit.® A sensor is a system-remote place, where it is recorded in a computer for addition
instrument interface hardware, serving as a crucial compbnprocessing or storage, without any direct (human) obsénver
of most measuring instruments. It converts the informatibntervention. There is also a less common option in which the
interest (e.g., about the degree of temperature, pressude, signal is sent to a display unit.
so forth) carried by the target systemiaknownoutput sig-  Not surprisingly, STM has not been the subject of much
nal (i.e., time-dependent measura@{)) into a correlated in- cirtitical scrutiny, because (i) signals and systems tiesor
formation, carried by the sensor’s electrical, optical @me possess solid mathematical foundations and enjoy an uncom-
other kind of output signal. Since the design of sensorsni®nly wide range of applications (see in particulki]}, and
based on fairly well-established physical principles, dee (ii) measurement engineers and practicing scientistsalre s
scription of their behavior is given by the technical res@sr dom concerned with foundational issues in spite of the fact
of applied physics. that the study of measurement has always been impeded to
It is not generally realized that in STM the sensor’s outpuarious degrees by inadequate treatments of its founddtion
signal @/ (t) is just a raw intermediary that has to be fed intaspects. We shall now move on to provide a brief assessment
a reconstructor (inversion) module in order to be able t®f STM that is limited to (a) the nature of STMimodels of
obtain the terminal signa@(t) of interest which optimally measurementand (b) to STM'sinterpretation of measure-
estimatesr approximateghe system’s unknowmeasurand ment.
Q(t) with measurement erroEq(t) =qf 1Q(t) = Q). In First, one unfortunate aspect of traditional systems theor
fact, in ideal measurements the estim&§) is obtained (andits applications in STM) is that it treats inputs ancoits
from the measuran€)(t) by the composite transformatiorasintrinsic features of systems. As noted earlier, in the input-
6(t) = F1o F(Q(t)), whereF denotes the sensor’s transfegtate-output systems-theoretic framework, the typidarac-
operator and=—! stands for the reconstructor’s input-outputon between two systems is handled by placing the systems in
operator. Although in the majority of measuring deviceggries between input and output signals, forming apprtepria
the representing transfer operaferis not invertible, here signal algebra®l and?’ respectively, as shown schematically
we assume that the reconstruction unit is designed in sudh kigure 3.
way that its transfer operator can be viewed as a generalized
left inverse ofF that solves the so-calleidverse problent
Figure 2 shows the block diagram of a signal flow from the 9% A
target system to a measuring instrument and the physical T L
arrangement of instrument modules.

Fig. 3. Traditional transfer operator (matrix) description of
cascaded systems.

Since the resulting transfer operator representing the cas
ﬁ’ System Q caded total system is given by the compositior T of op-
erators modeling the respective component systems, we can
quickly conclude that STM's measurement models have the
equational operator forr@(t) =Fpo---0oF20F1(Q(t)), where
the sequenc€q,Fo,-- - Fy refers to the the transfer operators
representing the measuring instrument’s serially comaect
components with input measura@(t) and its output esti-

In most commercial instruments, the reconstructor is jUBAEQ(N).
an analog or digital information processing module that is S€cond, since STM's models of measurement rely on spe-
programmed or calibrated to generate the “reconstrucige” $ial representations of signals, using Fourier, Laplade, b
nal Q(t) from the sensor’s output sign@ (t). It is important lateral Z and other transformations that do not automati-

to bear in mind that in the sensory and reconstruction traf8lly generalize to noncommutative signal algebra frame-
formations of signalshere is no reference to numberghe Works, there are no readily accessible formal tools for rhode

measuring instrument’s output sigr@(t) is usually fed auto- INg quantum measurement.

matically into a feedback control system or is transmited t W& e€nd our assessment of STM's models with a brief di-
gression in which we consider an alternative to classicsd sy

5Here the notion ofeconstructioris similar to the one introduced by R.tems theory that is aual or a mirror image of thdnput-

Z. Morawski in P]. 7 .
SFor example, if the information carried by the signals is descr by output transfer operatormpproach, recalled above. It is

a Gaussian probability density function, then the inverssblem is usu- Widely known that the dynamical behaviors of most systems
ally solved by the method of least squares that determinesghal’s least encountered in physics, chemistry, biology and engingerin
squares estimator. For concrete applications Bedt[is easy to see that if an
incrementally linear sensor is described by the equafti) = 2- Q(t) + 3, "The formal framework for measurement advocated in this paperds-a
then the inversion module is characterized by the equ&{on= %(Q/(t)—:%). ant of this dual perspective.

Sensol Reconstruction|—,. Q

Fig. 2. Signal flow diagram of a simple measurement
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can be €ectively characterized by (ordinary, partial, timeby law-based time-indexed automorphisBysof the product
delay, etc.) dierential or diference equationsyithoutsep- signal algebra.
arating the pertinent signals intatrinsically given ‘input’ Finally, notice that the algebraic framework capitalizes o
and ‘output’ types. The reader is urged to consider the dgleas that make it suitable also for modeling passive artit sta
namical behavior of a simple pendulum or that of a planeteasurements, in which the interaction is passive and time o
in our solar system on which various measurements are rggace parameters are not included. As widely known, the sim-
ularly performed and ask “What is the intrinsic input signallest types of static deterministic measurements (e.ggtte
of a pendulum and what is the standard output signal of timeasurement by meter sticks, volume measurement by grad-
planet Mars?” Although everybody recognizes that the inpuiated measuring cups, granularity measurement by referenc
output framework of systems theory enjoys wide ranging apaterials, etc.) are based on the principle of direct compar
plications, for the purposes of measurement it is necessiaon, in which the quantity or signal to be measured is di-
to cast systems-theoretic models in a considerably more gettly related to a measuring devicesinter quantity which
eral setting that is capable of a highly flexible represémat is carefully calibrated against the measurand’s sampléd va
of any measurement operation whatsoever, performed on aag, without any explicit reference to dynamical interacti
target system studied in the natural sciences and engingeeror temporal changes. As sketched in Figure 5, in elemen-
A big step in this direction came with the developments tdry nonideal measurements, a measuring instrument’s alge
algebraicandbehavioralsystems theories that are based dira (usually generated by its pointer quantitlis mapped by
signalalgebras (or signal spaces). a homomorphisnM to the target system’s algeb# in such

The essential idea is to proceddally to the traditional a way thatM sends the pointer quantity to the measurand’s
systems theory and associate with each system an appeophiast estimate il’.
signal algebrdl that provides a formal ambience for all possi-
ble law-like relations between temporally varying sigreais|
for the target system's possible dynamical behavorghe M ]
dual algebraic approach to systems is not limited to systems A A
lacking inputs or outputs. As shown in Figure 4, with the help
of tensor product algebras, the algebraic framework cam als_

handle systems that require a decomposition of signals infdg: 5. Algebraic description of a static measurement, involving a
input and output types target system and a measuring device.

D It should be carefully noted that the homomorphisfn
/ goes from the instrument’s algeb?ato the system’s alge-
o J N’ E o bra?’, because of the fact that the measurand’s estimate is
inferred from meter reading.

Returning from our digression on algebraic systems the-
ory, we now make a few comments regarding STter-
pretationof measurement. On STM'’s signal-theoretic inter-
a target Sg;getation, measurement is basically a dynamical signal pro

In the case of two interacting systems, say, X ! )
tem and a measuring instrument, each constituent systerh€€Sing enterprise, whose purpose is to output the measured

described by an appropriate signal algefirand 2/’ respec- signal’s estimate that meets the needs of intended applisat

tively, and the combined system is characterized by the—erbthe world of control syst_ems. Since the numerical vallfes o
uct signal algebral ® ', generated by coupled or entangleﬁ'gnals are of secondary importance, measurement is not di-

signals. We know that for a dynamical measurement to tdigsted at making a contribution to the design and validation

place, there must be a physical interaction between the mdzscientific theories. Moreover, because STM is confined

surand’s system and the measuring instrument that outpuf@anly to continuous-time dynamical measurements of sig-
measurement result at the end of the joint dynamical evolld!S Static and passive measurements do not play any role in
tion of the total system, given suitable initial conditiosich - Related to this, pointer quantities and their relatfups to
interactions are modeled by tensor product signal algebf@§asurands are not included in STM’'s measurement models.
Now, the signal algebra-based approach recovers the inpii€ontrast to the above, classical measurement is commonly
output relations from the tensor product signal algebra wif'ought of as an empirical procedure, involving the measur-
the help of (i) a naturatmbeddingilgebra homomorphis and’s tgrget system that is dynamically coupled Wlth a mea-
and (ii) a product-typexpectatiormapE. The time evolu- SUring instrument in a such a way that after having reached

tion of the joint system-plus-apparatus signal is represianthe_'r stable_Jomt entangled state, the_mstrument’s _r&amll
point to an ink mark of a numeral on its scale that is strongly
8Note that the boxes are now annotated with the names of silgadiras. related to the measurand’s value. Last but not least, STM's

In many engineering applications, signal algebras are lysapecified by )0 55 rement models do not exploit the mathematical duality
structured sets of smooth real-valued functions defined ama domain,

e.g., the algebr&®(R) of smooth (i.e., infinitely dierentiable) real-valued _between quantities and physical states that is of the highes
functions on the continuum time domainof reals. importance in all approaches to measurement. Indeed, the

Fig. 4. Signal algebra description of cascaded systems.
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simultaneously-present quantities (signals) are nepe$ésa sumed to have the capacity to be irffeient states without
reasoning about the underlying target system and one-alsaing its systems-theoretic identity.
time states render the possible ways in which the system fixeStates encapsulate the totality of the system’s internal co
the values of its quantities. ditions, i.e., the way the system is at various instantsroéti
The third approach to measurement we shall advocate hiesealluded to earlier, the most important feature of quanti-
investigates measurement procedures by the powerful pendies is theirdual relationshipto states. The target system’s
tual tools of algebraic analysis, such as normed lineabadge state fully determines the values of the system’s chariaeter
and quantity-channels between them, and their dual courg quantities and conversely, at any given time the quantit
terparts, formed by state spaces and state-chafin€lsese values collectively specify the system’s state, i.e., freten’s
algebraic-analytic structures will enable us to providglieit physical mode of being at that time. In the case of systems
descriptions of a large variety of measurements. In keepstgdied in statistical mechanics such state specificatioes
with the terminology adopted above, we shall refer to thedthiunmistakably statistical in nature.

approach as aalgebraic theory of measuremefar simply  Since at each time the target system is in a definite state,
ATM). by the above-mentioned duality any quantity associated wit
For the approach we are going to adopt in this paperthe system must have a concrete numerical value, even if the
is appropriate to view measurement as a physical operatxperimenter does not know what it is. The nonempty set
performed on a target natural system that yields partiakinfof possible valuesf a quantityQ is commonly referred to
mation about the extant value of the system’s selected guaas itsspectrumor value spacend is accordingly denoted by
tative property. As mentioned in less detail earlier, memsuSpecQ). The simplest nontrivial quantities are Boolean or
ment operations are implemented by physical interactieas two-valued, meaning with “no” and “yes” values, formally
tween a natural system under consideration and a measusipgcified by the numerical doubleton set S@cf {0, 1} and
instrument, involving a calibratedointer quantitythat en- observed in binary measurements, such as gmegralarm
ables the experimenter to deduce the best estimate or appsystem lights, circuit testers, and other one-bit detsctér
imation (limited by its accuracy, sensitivity and resadufj considerably larger subset of the set of real numBdssused
of the extant value of the system’s quantity to be measuréat, the values of mass, charge, energy and other quantities
commonly called theneasurandto which the pointer quan-associated with physical systems. Crucially, by classiel
tity is dynamically correlated during the interaction. iy alization it is assumed that the a quantity’s continuum spec
known dynamical changes in the instrument are used to #am remains meaningful also at the Planck scale, even if mos
timate (within a specified range) the unknown values of thé¢the spectral values can never be identified exactly by any
coupled target system’s measurand. In this way, certain (uactual measurement procedure. Speaking philosophidally,
ally man-made) designated systems are used to tell us somi@wy of measurement errors, limited sensitivity and resolu
thing informative about some other systems in the world. Ttien, thermodynamical fluctuations in the measuring instru
amount of information provided by a measurement procedunent and quantum uncertainties, measurement-based-episte
depends on the strength of the underlying deterministic mpblogy provides strictly less information about the targes-
stochastic linkage, specified by the dynamical coupling ktem than available in the presumed ontology of quantities. P
tween the target system and measuring instrument. another way, in general, experimenters are not equipped to
Within ATM, a (physical, chemical, etc.juantity’® is a know the precise values of the target system’s quantities an
formal entity ascribed to the target system’s attributersf ithe system’s actual states. Simply, measurement resutis co
terest, whose numerical values encode the attribute’s-qui finite bits, expressed by rational numbers. What is usually
tative degree or amount possessed by the system at varknvn about the target systems are some reasoagpl®xi-
moments of time. Epistemically, quantities are the obs&rvemationsor interval-estimatesf certain quantities and values,
decisive information-gathering entities about the sys&dma- and likewise states. It should also be mentioned that in con-
havior. Therefore, as a quantity deployer, the experintengédering the value of a quantit®, e.g., the target system’s
gueries the target system with various measurements of quaagnitude of energy, by ‘value’ we mean themerical value
tities. Importantly, as was mentioned before, the result of the algebraic objed® that encodes the amount of energy
measurement of a target system’s measurand depends oithiueexists objectively in the system, independently oftivee
system’s extarphysical stateand of course the system is preer notQ is measured.
We propose to model measurement procedures by relying
9A linear algebraover the scalar fiel& of real or complexC numbersis on the following two basic conceptual ingredients: (ifla
asetwhich is both aring and a linear (vector) spaceoAned algebras an - 5 of realitycomprised of systems and measurement pro-
algebra which is also a normed linear space. A norm is needatiddimit .. . .
properties of certain sequences of quantities. cedures thereon, and (ii) @omain of algebraic modelo-
10since in practice measurement involves several processiggststart- gether with quantity-channels between them, intendedato re
ing with sensors, amplifiers and transducers, and endingredhnstruction, son about the chosen domain of systems and associated mea-
display and storage units, signal theorists have replduetbtmquantityby ¢ \rement procedures. We now turn to a general investigation
the termsignalthat serves well in STM’s approach to measurement. We shal . . . .
g?systems, measuring instruments and their involvement in

use the ternguantitybecause it is more general and is well established in t :
natural sciences. measurement operations.
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2.  MoNOIDS OF SYSTEMS AND CHANNEL STRUCTURES OF Physical equivalence is definable in terms of a subsystem
MEASUREMENT relation. We say thas is a subsystenof S’ and write
S < &, provided thats is a physically meaningful part
In the domain of realitywe have a class natural systems of S’ with its local states and quantities, satisfying the

of interest (e.g., various pendulums, electric circuieseas or Monotonicity
fluids in vessels, particles, elastic solids, and so fotta) are
at any instant of time in various modes of being (e.g., beify) S<S" = S$+S”<S'+S”, and
in a state of equilibrium, being heated, being accelerated, Nullity
so on), classically referred to asates In general, anatu-
ral systemis any part of the physical world that can (at leas

in principle) be separated from its ambience, and treated, @gis way, systems of the same physical type form a general-
an empirically meaningful and autonomous object of inVegeq partially ordered monoi¢s, 0, +, <), in which the phys-
tigation. For us, a system is an objectively existing pha#SiGeq| equivalence relatios ~ S’ is defined by the conjunction
thing-in-itself that can be acces_sed by observa_lthn anq M8& 5/ & S’ <S. The simplest example of a partially ordered
_surement. The t_emporal evolution (_)f systems is '”V_esmgaﬁonoid of systems is given by the sequence
in terms of quantity changes, reflecting the changes in the ta
get system’s states. 0<S<S+S<S+S+S<---

On the basis of past experience we assume that systems of
the same physical type can bembinedinto larger systems Of composite systems and their copies, wireany system,
by suitablecoupling Thus, by takings andS’ to be two sys- Say, & simple pendulum or a single Newtonian particle mov-
tems of interest in a given class of systegnsf the same (or ing in a spatial region. The notion of physically analogous
compatible) physical type, the expressi®a S’ denotes the Systems is captured by suitable homomorphisms between par-
compositesystem inS of systemsS andS’. For examp|e, tially ordered monoids of systems that uphold a physically
two pendulums can be coupled to form a double pendulufganingful transformation of quantities from one classyst s
an electric circuit can be coupled with a voltmeter or with afems to another. There are several other operations omsyste
other electric circuit, and so on. Depending on the type @&d., the join of two systems), but we shall not considenthe
systems, the composition operation may be realized in abv&ere.
physically diferent ways, including (but not limited to) the In order to be able tofEectively reason about systems and
most familiar parallel and series configurations. The ctiissmeasurements thereon, ATM moves from a domain of real-
systemsS also includes copies of thevial systemO (e.g., a ity of interest to the domain of algebraic models by associ-
perfect wire in the class of electric circuits, a pendulurthwiating with each syster in S an suitable quantity algebra
negligible arm size in the class of simple pendulums, ets*? and its accompanying convex spa8@ls) of states'3
We must immediately recognize theffiulty in specifying Although the technical discussion in the preceding pagyra
the composite syster +S. We ask bluntly, how does themay seem i our informal track, it does point us in the right
experimenter realistically compose a system with itselfie Tdirection. Concretely, it tells us that investigators canded
answer: with an acknowledged element of idealization isis 4he dynamical behaviors of systemsiversally in terms of
sumed that each systemdrhas an unlimited number of phys-appropriately chosen quantity algebras and state spaces. W
ical copies. If two systemS andS’ are copies of each otherhave already emphasized that a target system’s quantiy alg
i.e., if they are physically similar in all relevant respe¢in- bra determines and is determined by a state space. The type
cluding behavior and quantitative properties of interebggn Of duality we have in mind is captured by the 2-level channel
we say that they anghysically equivalenand writeS ~ §’.11  diagram below.
Now it seems reasonable to set the composite sySteidto ~ Next, we extend the foregoing modeling idea of systems
be physically equivalent 8+ S’ with S ~ S’ for some system and their behaviors to modelimgeasurement actioribat are
S’ and treat the composition operation imeneralizedvay. also elements of the objectively existing domain of reality
That is to say, the composi®+ S’ is meant to be unique For our present purposes we shall use the mapping symbol-
modulothe congruence relatios. In particular, for all sys- ism.# : S — M to denote a given elementary measurement
temsS,S’ andS” in S the following conditions are assumedperation# that transfers information from the target system
to hold:

{v) O < S conditions.

12Here it seems appropriate to ask: Why should measurement sgiscial
associate an entire algebra of quantities with each systetaruwconsider-

(i) Commutativity:'S+S’ ~S’+S. ation? Because the system’s possible behaviors cannotibtasttily de-
scribed by a frugal list of basic characterizing quantifeeg., voltage, current
(i) Associativity:(S+S’)+S” ~ S+ (S’ +S"). and resistance in the case of classical electric circui@mplete descrip-

tions of system behaviors require longer lists of derivegfifedd) quantities
. together with law-like relations between them, scale charagel limit op-
(iii) Ildentity:S+O~S~0O+S. erations. These constructions on quantities are natuaaipmmodated by
normed algebras.
11From an empiricist point of view, in this case no experimentragsing 13These and other related mathematical notions are discusseorinde-
the behaviors under consideration can be used to distim@uiiom S’. tail in the next section.
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S to a selected measuring instrumémtin the case of a joint illustrated in the diagram of maps beld:
measurement procedure (involving a transfer of infornmatio
to two designated instruments) we writé : S — (M + M’), duantity-channels M

N
A measurement operation involving a target system thatdis dy A U
namically coupled with an instrument is symbolized by the
map.# : S+M — M, and so forth. This notational system S S
handles remarkably well all classical measurement ojersiti
arising in engineering and applied sciences. /
g 9 g PP tate-channels S(QI) M* S(QI )

By analogy with the above, we associate with each (statit
elementary measurement operatiefi : S — M, belonging
to the domain of reality under consideration, a suitalté#e- Experimenters investigating measurement methods can ana-
channelof the form lyze and interpret measurement procedures in two comple-
mentary ways, based on

M*
S(¥s) S(w) () State semantics: State-channels representing mea-

that represents thiaformationtransfer from the target sys- ~ surement operations are systematically interpreted in
tem’s state spac§(s to the measuring instrument's state mformatlon-.thetoretlc terms. For example, an ldeallstat.e—
spaceS(2y). In classical situations, a state-channel is basi- channel, bridging the target system and measuring in-

cally a transition probability (a.k.a. Markov kernel) tisainds strument, transfers a maximal amount of information that
each probability distribution in the system’s state space t faithfully determines the measurand’s extant value or the
unique probability distribution in the measuring instrurtie probability thereof. On the other hand, nonideal state-
pointer state space. This model of information transfeditga channels obliterate the information transferred from the
extends to vastly more general state spaces. observed system to the instrument.

Since in a large part of this paper we shall be concerm@%
with a dual methodology that models systems both in terms
their physical states and quantities, it is also importabting
quantity-channels into the picture. Henceforthivifdenotes
a quantity-channel, we shall adopt the habit of marking the
associated state-channel with an asterisk, &in

In an exact parallel to state-channels, the crucial idea now
is to associate with each (static) elementary measurenpent o

Quantity semanticsQuantity-channels, modeling mea-
surement operations, are interpretedniverse-problem
inferential terms, where inferences from measurement
data to the measurand’s best estimates are viewed as
estimation-algorithm results traversing the channel be-
tween the respective algebras of the measuring instru-
ment and target system.

eration./ : S — M aquantity-channebf the form As one might guess from the foregoing semi-formal treat-
" ment of quantity-state duality, a quantity-chaniMelis one-
My —— Us to-one (injective) if an only if its corresponding stateaonel

M* is onto (surjective). Likewise, a quantity-chanihlis a
that represents thiaferential transfer of data from the Mmea-syrjective map precisely whevi* is injective. These and a
suring instrument’s quantity algebra to the system’s at@ebjarge number of other properties of channels follow diectl
Formally, a quantity-channel is a unit-preserving positm-  from a category-theoretic duality between quantity algsbr
ear map between quantity algebras that sends the instrismejy{q state spaces.
pointer quantity to the measurand’s bestimatequantity.  ynfortunately, since the preceding diagram is based en-
A question can now be raised: Why are we using quantitjely on general principles, it reveals very little infoation
channels instead of algebra homomorphisms? Because aj@igut the exact nature of state-quantity duality. For this
bra homomorphisms are unnecessarily too restrictive inrmegason, we need a commutati@u space transformation
eling many measurement procedures. Moreover, all knowRgrant®
measurement operations and all known temporal evolutions
of dynamical systems are universally representable by a 14To get the full picture of duality and to gain insight into tempirical

. . . eaning of the diagram of channels, we introduce a tensog@at®alg of
propriate quantlty'Channels between quantity algebrdse uantity algebras (consisting of, e.g., Banach algebrasmiNeumann alge-

problem is that homomorphisms do not preserve the g@hss, discussed in Section 4) and quantity-channels battheen. Next, we
eral quantity-state duality we need. However, as it turrts oupte that the opposite categdalg®® with its arrows reversed is equivalent

uantity-channels (specified by unit-preserving, positia- to the categoryeProb of convex spaces of probability measures and transi-
d Y ( P y P 9. p tion probabilities between them. Now, the quantity-statalitiuis captured

ear maps) uDhOIq the dua“ty requirement. ) _ by the state functo8 : Qalg°® — cProb and its left adjoint. By choosing
In order to bring the full force of quantity-state dualityjuantity-channels as maps (and not algebra homomorphisms) weeirha
into play, we close this section by reca”ing a couple @ficitly imparted a crucial probabilistic structure to thbjects of Qalg°P.
diagrams that elucidate the intimate relationship betwe\élﬁat this means is that the objects@&lg®P are representable by concrete
. fobability spaces.
quantity-channels and state-channels. A parallel acco[m{J 15Chu spaces are specified by pairs consisting of quantitybedgeand

inference-to-the-best-estimator and information trandsf state spaces of the for(I, S()), belonging to a single category. Likewise,
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) 1"xM oA o about algebras and state spaces thereon. Another recurrent
SA) x A SA) <A theme we shall take up later is the representation of measure
ment and other operations by suitable channels between quan
M*xI ! tity algebras.
S(QI) x A € R 3. ALGEBRAIC FRAMEWORKS FOR MEASUREMENT

In this section we present a universal algebraic paradigm,
that serves perfectly well as a general description of tiewhich various models of measurement can be formulated in
quantity-state duality we are using in this paper. In the digunified manner. Although the basic framework is easy to de-
gram above, thevaluationmap€ : S(A) x A — R, defined scribe, unfortunately, the conceptual building blocksuisza
by the standard functional evaluati®{sS, Q) =41 S(Q) forall number of definitions.
statesS and quantitie®), occupies a pivotal position in treat-
ing states and quantities as counterpart notions. Here-‘co§nl
mutativity’ means that in the foregoing Chu space transterm™ "

tion diagram the two possible ways of composing maps alonguantity algebras generalize the familiar elementary-oper
the arrows give the same result. That is to sayatiiieintness ations on numbers. Specifically, a quantity algebra is a set

Quantity algebras

condition 2 with two basic binary operations on abstractly conceived
. guantities, namely thaddition operation, writterQ+ Q’ for
[€ o (I"xM)](8,Q) =[€o(M" x1)](S8,Q) two elementsQ and Q' in %, the multiplication operation

symbolizedQ-«Q’, and the respective associateeto 0 and
unit 1 elements ofI. It is also important to include scalar
multiplicationfor scale change, denotedQ for any “scalar”
cin the field of real® or complex number§.’ These opera-
tions satisfy certain axioms similar to those reservedifags

We have not yet considered how observers are to fit irf d tr)no%ules. Itt|s |mpﬁrt?nt to tt_)t_ear n de that Ia (rq]uantt;]ty
the algebraic framework just outlinéél. Although we in- algebra does not say what quantiies reatlly are, only how the

tend to study the structure of measurement operations iRe ave, r.elatlve o the algebra.s o_perahons. Algebrae gv
strictly observer-independent manner, it must be receaghi pecifications but do ’?Ot deter'”e |mplementat|9n. Quantl
that measurement is more than just an exclusively physi ebras are also furnished with powerful topological anmo

process. A human observer’s conscious mind wittinesses 3 gﬁiu;:soihat:rrstg;sed;n drec})fmrlr?st't:ﬁs“rglr:?j (:LZOQI\II- e_rgmg:t
receives information from the measuring instrument’s di s quantities, approximations, I

. . ntinuity property of maps between algebras.
through the eyes (or other organs) by reading (detectirey) {9
finite-resolution values of the instrument’s pointer qutgnt Clearly, length, mass, energy and all the other so-called ex

Of course, there is nothing sacrosanct about this, since f%ﬁ/;'ve quantities can be combined additively. Furtheemor

good mechanical robot can accomplish practically this mu th can be_mult!plled \.N'th itself to get an area, volume., 0
But there is more. We also have to consider how humaf arbitrary high-dimensional hyper-volume. As an applica

observersnterpretvarious measurement operations and h jon of Occam_s_ razor, In any quantity alggbra we allow all
their subjective sensations of instrument dials resulisiiefs Inds of quantities expressed by polynomials that may lack

. . . po 8 - -
about the measurand’s values. And last but not least, in viSWS't?f" S|gn|gcqn;:é.d It n:jUStsb.E? _emp.ha_?.lzed that e;dglven
of their powerful sense forfiective idealization, human ob-guantity may bé introduced a sic(primitive) or as ade-

servers are amazing formal model builders with speciat akmle_d (def|ned)fnodt|9n. qu etxamplel, thbe cpncep()jt ?f e?egg re-
ities to recognize “interesting” dynamical behaviors. tme mains unspeciiied in mainstream aigebraic mogels of ClaSsIC

formity with our commitment to algebraic approaches to meRechanical systems without the introduction of length, snas

§ur§m§nt, in this paper we shall not be Concemeq with the, the ambience of complex scalars, quantity algebras arellysua
intriguing structure of mental states and the associated pguipped with a special complex conjugation-based unaryatipa Q,

ceptual processes Charactering pointer readings. called!nvolfution forming f-algebras ox-algebras, needed in modeling the
; ; ) avior of quantum systems.
Since the phySICal content of a target system's algGbrg%gln opting for the conceptually simplest and most economic akgeb

model is largely contained in the quantity algebra assediatnodel, it is standard to admit certain mathematical elementseimtodel
with the system, we must first review some important faatet are devoid of physical meaning, as long as the model alsgepses a
rich supply of empirically significant elements in its appbt&subdomain.
maps are also given by pairs, consisting of quantity- an@-staannels. For For example, the classical pendulum equation physicistdadyg use admits
more details, se€l[]. infinitely many solutions that are specified by physically megless super-

16signal processing theory of measurement (STM) treats themofiob-  luminal velocities. In the case of quantity algebras, theméhoice between
server systems-theoretically as a generalized measuritrgrimant that eval- complexpartial algebras, riddled witrad hoc constraints thaexcludeall
uates the dierence between the target system’s controlled input and meaapirically insignificant quantities and traditional normedebras that are
sured output signals. likely to include gquantities ruled out by applications.

holds for all statesS in S(’) and for all quantitiexQ in 2.
Upon applying theevaluationmaps€ and€’ to their ar-
guments, the foregoing adjointness condition reduceseo
equalityS(M(Q)) = [M*(S8)](Q), showing how the gquantity-
channeM and the state-channil* are related.
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and time quantities. In contrast, in algebraic models ofhguaredictions and measurement results renders the model in-
tum systems the notion of energy is usually specified indepadequate and prompts its replacement by a more detailed or
dently of the mass quantity. Of course, it is always posgiblealtogether dierent algebra. The choice of quantities and the
introduce the energy quantity as basic. Upon amalgamatsize (or degrees of freedom) of the generated algebra depend
the structure of quantity algebras and the definitional wr laon the desiredevel of description (from coarse-grained to
like relations between quantities, we find that the dedoript fine-grained), and on the stipulated predictive accuraay an
of the target system’s behavior cannot be said to be compleggolution of the target system’s behavior. Statetedently,
without additional (usually equational) constraints,yided the quantities for the target system should be selectedcim su
by special maps (operators) between quantity algebras. &\eay that from the knowledge of their values and laws the
shall give further details later. experimenter can reliably determine the system’s behavior
The so-called intensive quantities that are often definedwithin an antecedently specified degree of accuracy. Un-
(e.g., via diferentiation) in terms of pairs of extensive quarfertunately, model-based computations and instrumesédba
tities (including density, pressure, and electric, chainécnd measurements cannot be accomplished without some form of
gravitational potentials) tend to arisef@arameterf the tar- approximation— dictated not only by the required accuracy,
get system’s states and extensive quantities, and oftemdorbut also by mathematical and instrumental tractability- Al
convex subspace of the underlying quantity algebra or thatleough it may seem correct to think that the higher the ddsire
the algebra’s conjugate or (pre)dual space. accuracy, the larger the modeling algebra of quantities (ca
Quantity algebras are blessed wiibsitivequantities, sym- rying more information), this relationship fails episteatiy,
bolized by the inequalityQ > 0 and having the fornQ = when tractability becomes an issue (e.g., high-accuragy mo
Q- Q for some quantity’ in B. It is elementary to verify els of classical macroscopic systems based on noncommuta-
that positive quantities form a convex cone and thus indudee quantum system algebras are hopelessly complex and in-
a natural linear partial ordering, denot€d> Q' and defined tractable).
by Q- Q > 0. To increase the applicability of quantity alge- Importantly, even if the initial choice of a particular quan
bras, we are striving for additional operations on quaettiti tity algebra may be subjective and some values of some quan-
Curiously, each positive quantit® of 8 has a square root,tities are not determinable by measurement, \thkdity (or
symbolized+/Q and is given by the unique quantiy such invalidity) of the accepted algebraic model is an objective
that the equalityQ = Q" « Q" holds. Obviously, positive quan-property and so is the system’s state. Needless to add, the
tities have positive numerical values. Of primary impocd&an measured value of a measurand (refidrom the calibrated
for us is the notion of an invertible quantity. A quanti®y instrument’s dial) is the measuring instrument’s property
in a given algebrdl is said to banvertible provided that the  To capturequantity entanglementssociated with two (or
equalitiesQ-Q’ = 1= Q'+ Q hold for a unique quantit) in more) systems and S’, the representing algebrdg and
20, symbolizedQ~! and called theénverseof Q. For future s are combined into thetensor productlgebra?ls ® As;,
needs, we denote the multiplicative group of invertible- elgenerated by elementary tensor quantities of the fQren’
ments of quantity algebr®l by 2. We can now define thewith Qin %s andQ’ in As . Since tensor products tend to lack
spectrunii.e., the set of possible values) of quanf@strictly canonical projection and diagonal maps, they are significan

algebraicallyas follows: more general than the usual direct (Cartesian) products. Te
sor product algebras are needed in modeling physical it#era
SpecQ) =q¢r {ceR|c-1-Q¢ A} tions between coupled systems that allow entangled stases.

. . . ith many other algebraic constructions, tensor produg-al
We' remark In passing that the spgctra (ie., value spaces&lr%i are unique only up to an algebra isomorphism relation
variousderived quantities are obtained by the following albetween them. We denote the isomorphism relation between
gebraic specifications: Spdd {1}, Spe¢+Q) = {+Vc|ce uantity al ebr.aQI and2l’ by o = o’
SpecQ)}, SpecQ+Q) = {c? | c € SpecQ)}, and Sped® 1) = d yag ys==
{c1| ce SpecQ)}, if Q"1 e AL, In the case oéxponential _
quantities (defined by the familiar convergent series) weha3-3  Quantity-channels
Spec€?) = (€| ce SpecQ)}, and likewise for lo@, sintQ) |t is high time we had the precise definition of a quantity-
and the other elementary functions. channel from the duality-based algebraic point of view we

have been advocating. A map of the form

3.2. Construction and design of quantity algebras

M ’
How should quantity algebras be constructed? In prac- " > U

tice, the choice of a quantity algebra for the target systémm quantity algebral to quantity algebral’ is called a
involves a well-informed judgment and the algebra’s cdfreguantity-channeprovided that the following conditions are
ness and that of accompanying physical laws are experimeatisfied for all quantitie®, Q' and sequence®:,Qy,--- in
tally checked by comparing the system’s measurement sesif and for all scalarg,b € R:

with the predictions generated by the algebra and laws. Any

significant discrepancy between algebraic model-gergtraté€i) Linearity: M(aQ+bQ') = aM(Q) + bM(Q’).
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(i) Unity: M(2) = 1. of view the system’'statecan be thought of as an equiva-
o lence class of potentigireparation procedureapplied to the
(iii) Positivity: Q>0 = M(Q) > 0. system which gives the same probability distribution fdr al

. L . measurement outcomes. In a dual setting, a quantity may be
(iv) Weak . continuity: If WIM peo Qn - = viewed as an equivalence class of possible measurement pro-
Q’thef_““"_'mn%'\"(Qn) - M(Q)Z where the so-called cedures which gives the same probability distribution fior a
weak limitin the algebral is defined by preparations. This is all very suggestive, but we find the op-

posing objectivist approach to classical measurementmipt o
Wm0 Qn=Q < lim S(Q,-Q))=0 ontologically more meager but also moreetive. Specif-

e ically, earlier we have assumed that the system’s quasititie
for all statesS in state spac&(). We shall encounter POSSESS their value§ independt_ently of whether'or. ngt theey ar
the formal definition of the notion of state shortly. meaSL!red. Fro_m this perspective, the system is in its curren

state, irrespective of whether or not the experimenter lsnow

In typical applications to measurement, it is helpful taithi @nything about the system’s preparatory history.
of quantity-channels as mappings that send instrument-quan
tities to various estimates or approximations of measwang 5 siate spaces and state-channels
Clearly, some quantity-channels are better than othetsisn t
respect. In accord with the accepted algebraic paradigm, we next
introduce special spaces, callstdite spaceghe elements of
which arealgebraic stategor statistical stateas they are also
commonly known), representing the possible physical modes
We now move to the next conceptual issue of howwthke of being of systems at various moments of time. It is evident
uesof quantities at any particular time are specified (detéhat there are three basic options in the mathematical fiarmu
ministically or probabilistically) by the target systenirger- tion of algebraic states. One alternative is to declarebatie
nal conditions at that time, referred to as the system’sipays states as basic (undefined) notions, paralleling the indepe
state As far as the nature of physical states is concerneddé@ntly introduced concept of quantity. Another viewpot i
can be as simple as a particle’s position coordinate and ristart with algebraic states and treat quantities as fitate
mentum value or as complex as the “statistical mode of B@ns of some kind. The view we shall adopt in this paper is
ing” of a material body made up of an enormous number (e k. define algebraic states with reference to the targetsyste
greater than 189) of interacting particles, investigated in staquantity algebra. Proceeding in this manner means thatquan
tistical mechanics. In this connection it is revealing toKo tities are viewed as primary, while algebraic states arernes
at the state as a snapshottbé way the system @t each sense complementary, encoding the decisive dual (statisti
moment of time that gives rise to a snapshot of the currgfitucture of quantities.
values of quantities. Bear in mind that these snapshotsttend The upshot of all of this is that we may introduce algebraic
havestatisticalcontent, requiring a probabilistic encoding iistates in terms of quantities or view quantities as funstiom
terms of suitable probability measures. We know that a siiates. For us, it is the power of the algebraic approach that
gle reading of a pointer is subject to several kinds of errgrmtivates our preferred way of defining states as special fun
that cannot be eliminated. In realistic settings, repeated- tions on quantity algebras. So what is the conceptual signifi
surements of measurar@ under identical or exchangeableance of algebraic states in measurement theory? Unguestio
conditions result in a probability distribution (approxited ably, the most significant import of algebraic states in nkode
by a histogram) on Spe@j rather than in a sharp value, coning measurement operations is a structural enrichmeniedgeed
centrated at one point in the value space. Even if the tarft(i) the statisticaldescription of quantities in terms of prob-
system'’s state is prepared in the laboratory in a maximadipility distributions of their possible values and the anpa-
precise way, due to random noises the result of measurenmming statistical indicators, such as averages and vagjgdng
of Q will generally not be a single point, but a nontrivial probstate-channels, representing information transfers fien-
ability distribution on Sped)). surands to their pointer quantities, and for (iii) deepgriime
To obtain a sfficiently general framework for representingnterpretation of measurement models. We address this topi
the variety of physical states and quantity values disclis$@ more technical detail below.
above, we shall suppose that a target system is always in somé&e have already indicated that with quantity algetas
kind of a statistical state (including deterministic limit-caseand quantity-channels in the picture, in the dual settinthef
situations) that is responsible (probabilistically oredetinis- algebraic approach to measurement the investigator assseci
tically) for the extant values of quantities. with each systen$ in the given domain of reality a convex
The question now arises as to how did the system getsfgaceS(Us) of algebraic statesn , belonging or extendable
be the way it isnow? Empiricists have an answer and it it the algebra’s dus*, i.e., we haves() c A*.
the following: The system has beereparedto bethat way By a faithful normal algebraic statehenceforth simply
by its past interactions with other systems. From this postate we mean a real-valued linear function of the form

3.4. Determining the values of quantities
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S : % — R that satisfies the following conditions for all quan- (i) Positivity: M* sends input states to output states.

tities Q and sequence®q,Qo,--- in A: . )
Q d &1, Q2 (i) Convexity:M* has the so-calledffine property

(i) Unity: S(1) =1.

(i) Positivity: Q>0 — S(Q)>0. M*(c-S+(1-¢)-8)=c-M*(8)+(1-c)-M*(S)

iii) Continuity: limp_e -Q|l=0 liMpseo - .

(i) S(()(g);n:uby Mn-collQn = Qll =0 = fimn-.ec IS(Qn) for all statesS andS’ in S(’), and for all scalars &
c<1

(iv) Faithfulness:If Q> 0, thenS(Q)=0 = Q=0. ) )
The foregoing fiine (convexity) property captures the

Since in classical measurement we encounter mmﬂy. familiar I’andomizationor StOChaStiC equiVaIenCBrinCipIe:
ful and normal algebraic states, and because these natuMly target system in stat§ with probability ¢ and in state
states are required by quantity-state duality, in whabfed S’ With probability 1-c cannot be empirically distinguished
we shall always work with faithful normal states. Accordrom the system in state S +(1-c)-S".
ingly, unless the contrary is explicitly stated, the stgtace ~ There are special conditions investigators regularly isepo
S() will always be specified by the set of all faithful normaPn state-channels in various contexts. We mention jusethre
algebraic states on quantity algei¥a Here, the numerical Of them to standardize our terminology:
value 8(Q) is interpreted as thaverage(or expectation) of
quantity Q, given that the target system is in a physical stat
represented bss.

Turning to the structure of state spaces, perhaps the most
important one is their closure under the familmixing oper-
ation that is widely used in probability calculus. Specifica
if statesS, S’ are inS(A), then their convex mixture defined
byc-S+(1-¢) 8" (with 0<c<1is also in¥). Thus, (jiy The state-channeM* referred to above is calledr-
states form aonvexspace. Each state space comes with itS' thogonalprovided that it preserves the orthogonality of
lattice of faces and other related structure, but we will not  states, j.e. we ha L S8’ = M*(S) L M*(S’), where
pursue the details. A state is said tofnge (extreme or de-  the orthogonality relatio$ 1 S’ is satisfied just in case

terministic) provided that it is not a proper mixure of anyrpa the statesS andS’ belong to a disjoint pair of faces of
of other states. Formally, a stafeis pure justin case forany  the state spacg(2r’).

pair 81 andS; of states and a scalar<c < 1 the following

éi) A state-channeM* of the form above is calledurejust

in case the inclusioV *(S.()) € Sex(W’) holds. Intu-
itively, pure state-channels map pure states to pure states
A channelM* is pure if and only if M*(S)](P) =1 or

0 for all two-valued (projection) quantitieB and pure
statesS.

conditional (iii) A state-channeM* is calleddeterministicf and only if
it is one-to-one (bijective) and orthogonal. Determimisti
S=c81+(1-0) -8 = §=8:=8, state-channels send pure states to pure states in a one-to-
one fashion.

holds. Since pure states play a crucial role in determmisti
measurement, for future needs, we denote the subset of pun@ applications involving static measurement operations,
states by5.,(%). Importantly, for any pure stats the average state-channels take as an argument the target systenv exta
S(Q) is actually the extant value of quantify. state and send it to the measuring instrument’s currerg.stat
Next, we need to recall some facts from information tha&he physical significance of state-channels is the follgwin
ory about state-channels, arising (by duality) from qugnti Channels transmit input information carried by the syssem’
channels. We begin with the pertinent formal definition. Byextant state to the instrument, where it arrives in the fof o
state-channelve mean a map from an input state sp&#’) (generally) reduced or corrupted information, encodechiy t

to an output state spa&E) of the form instrument’s state.
. In sum, the central point of algebraic theories of measure-
S(') M (), ment we will explore via examples can now be stated very

) . simply as follows:
defined by the compositioM *(S) =¢t So M for all statesS

in S(A), whereM is a previously specified quantity-channel. 1. To each systens belonging to a partially ordered

It is important to appreciate a converse definition, statirag monoid of systemsgS, O, +,<) we associate a quantity
the quantity channe¥l can be specified in terms of a given  algebra?ls'® in such a way that the following conditions
state-channeM* as follows: M(Q) =4t Q’, whereS(Q') = are satisfied for all systengsandS’ in S:

M*(8))(Q) for all S. "
; _ The associated quantity algel¥fg together with its dynamical structure,
Returning to the general casestate-channeis any map discussed inJ], is intended to capture the target system’s basic behdviora

. 4 H H H
of th?_form M S(U) — () that satisfies the following teatures of interest. Additional structures are needeesaiibe the system'’s
conditions: perturbation and interactions with other systems.
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(@) sy = As @ Ug. see next, von Neumann algebras (as Banach spaces) are al-
- ways duals of something, namely, they are duals of Banach
(b) Ao =R.
spaces.
(c) If S< &, then there exists an embedding algebra By definition, a normed algeb# is said to be aion Neu-
homomorphism mann algebraprovided that it is thelual Banach space of an-
J:Us — AL, other uniquely given Banach space, symboliZiechnd called

the predualor conjugateof algebrall, so that the algebra iso-
2. To each elementary measurement operaiénS — M morphism?l = (2L,)* holds?!
we associate a quantity-chanhl: 2, — g that rep-

resents thenferentialtransfer of data from the measuring, 1 \jeasure-theoretic representation of commutative von
instrument’s quantity algebra to the system’s algebra. Neumann algebras

In parallel with the above, there is also a dual associationlt is well known that every probability space?’, 8, P) de-
of state space and state-channels. A quantity-chavinehd termines a unique real unital commutatixen Neumann alge-
its associated state-chanit are two complementary repre-bra— traditionally denoted by the Lebesque space symbolism
sentations of the same measurement operation. £.(Z,8,P) — of all essentially bounderkal-valued random

In the universe of algebraic models we adopt there are th¥ggiables of the fornf : 2° — R, where this time two ran-
major kinds of quantity algebras of measurement-theoreigm variablesf and f” on 2" areidentified whenever they
interest, earmarked specifically fsmooth continuousand are equaP-almost everywhere, meaning the induced equiva-
measurablequantities (measurable in the sense of classi¢@nce relationf ~ f holds. As anticipated, the equivalence is
measure theory), which have been given appropriate nang&ined byf ~ " if and only if P([ f = f’]) = 1. Here and in
One further feature of quantities should be mentioned: th&at follows we use the notatidif = '] for the measurable
spectrum (value space) of each quantity in an algebra carsgfix| f(x) = f'(X)} in 8.2
a subset of the fiel& of real numbers or that of the fieftlof Essential boundednessin, (2", 8,P) means théinitenesof
complex numbers. Although complex numbers greatly sifle canonicaessential supremumorm||f|l.,, defined by the
plify various technical problems and support the correatlle SUpremum formula
of generality, known to be essential for the construction of
quantity algebras afuantumsystems anduantunifields, in
this paper we find it convenient to work over the base field of Il =af SUF{C > 0' P({xe 2 |If(X)]>c}) > 0}~
reals. Since smooth (i.e., infinitelyftBrentiable) quantities
are continuous and continuous quantities are measurable TWe definition says that the absolute value of each measur-
shall discuss only the algebras of measurable quantities. able quantityf is bounded by a positive constaRtalmost
everywhere. Boundedness allows to work with arbitrar-
ily long multiplications of quantities. As usual in analy-
sis, the algebra’s operations are defined pointwise by set-

. . ting [f + f/](X) =gt T(X)+ f/(x) and [f « f"](X) =g T(X)- f'(X

Next to Banach algebras of continuous quantities, the S|m—g[ 109 =ar 109+ F'(3) [Fe 77100 =ar 109~ ()
plest and most widely used class of quantity algebras is\give2iganach algebras do not have a predual Banach space and twpote
by real and complexon Neumann algebrasf measurable have any projection quantitie_s, other_tmaandl. From agategory—theoretic
quantities. Unfortunately, von Neumann algebras can be ctgrspective, thelual construction leading from spageto its dual spacel

. . defined by the space of bounded linear functional8Ipris a contravariant

acterized 'n_many ways, some abstract and others concr tor from the category of Banach spaces to itself. Aldnglar lines, the
based on Hilbert-space operator algebras, but none of thg&aual construction is given by a contravariant functonftthe category of
seems sfiiciently intuitive. Importantly, von Neumann aIgeA/OQZNe_umann algebras to the category of Banach spaces.
bras are Banach spadBsust ke Banach algebras. However, Sy speding, he clement (7,13 w ot urcios, bu
the main dfferen_ce between Banf’iCh algebras and von N?Q.’, everywhere except on the physically unimportant sishsEP-measure
mann algebras is a large supply idempotent(two-valued) zero. For this reason, the spectrum of a measurable qudnistgefined in
guantities in the latter, satisfying the idempotence @wQ = terms of itsessential range
Q, also known agrojectionquantities. Projection quantities
will play a fundamental role in much of what follows. Specif-
ically, each quantity in a von Neumann algebra is canoii-words, a numerical valuebelongs to the essential rangefofand hence
cally representable by a weighted sum or integral of projeg-f's spectrum) if and only if every neighborhood ohas a strictly posi-
ti titi We shall i ifics bel Von N tive probability measure. The idea of equivalence classepiahtities can
lon quantiies. Vve sha Q'Ve some specl '?S. PTOW. on etHe' circumvented by viewing quantities as measurable furgtidrhe form
mann algebras are also important for their intimate retatios : 25 — R, defined on @-conegligible subset (obtained frof by sub-

ship to their conjugate (predual) Banach spaces. As we stratting all sets oP-measure zero)

4. VoN NEUMANN ALGEBRAS OF MEASURABLE QUANTITIES

Spec) =ar {c| Ve > O[P(ixe 2 ||T(¥) - dl < &]) > 0]}.

20Recall that aBanach spacés a normed vector space that is complete Zo0={xe 2 | Vgeg[x € B=> P(B)>0]).

with respect to the metric induced by the norm.
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for all x in 2. We also need the usual scalar multiplicanapping theorem which will be regularly used later in vari-
tion, defined by ¢- f](X) =4t c- f(X). The essential supre-ous measurement examples is the existence of a unique von
mum norm turns the algebrf. (2, 8,P) into a Banach Neumann algebra isomorphism

space with its predual (conjugate) Banach spage?’, 8, P) |

?f apsolutely mtegrgble functions ((;onta|n|ng a!l depsit 2..(SpecQ)) Q 21(Q)

unctions) with a finite norm|f||1, defined by the integral

[1fl1 =af f%|f(x)|P(dx) < 0. The following important pre- between the algebr&..(SpecQ)) of essentially bounded
dual and dual algebra-isomorphisms holl, (2", 8,P). = Borel measurable functions of the forfn: SpecQ) — R
L1(Z,8,P) and81(2,8,P)* = 8..(Z,B,P). (where SpedD) is furnished with a unique probability mea-

It is well known in operator theory that any abstractly givesHreP on the Boolean sigma-algebra of Borel subsets, modulo
unital commutativeron Neumann algebfais isomorphic to a measure class equivalent®,and the von Neumann algebra
concrete von Neumann algel#a(.2", 8, P) for some proba- %(Q) generated by the measurable quan@and the unitl
bility space(.2", B, P) with its to-within-isomorphism unique of 2.
predual Banach spada (.2, 8,P). Remarkably, the algebra The isomorphismiq sends the canonicatientity func-
2.,(2,8,P) depends only on the sigma ideal Bfnull sets tion J : SpecQ) — R (defined byJ(x) = x for all x in
andnoton the specific choice of the meas@eTherefore, for SpecQ)) directly toQ = I o(J), it maps theconstantfunction
notational convenience we introduce the abbrevia#iga2) £1: SpecQ) — R (having the same value 1) to the algebra’s
for 8..(Z", B,P). unit 1, it assigns to the square function on Sggcthe quan-

Because the objective of classical measurement is to idé#y- Q% and so forth. Here the main technical point is that
tify the extantvalue of the target system’s selected measuihe foregoing isomorphism ensures that we can locally ma-
and, it is important to understand which other quantities (cnipulate the abstractly given quantities and represemtieg-
termined by the measurand) will also acquire known valuggrable functions in the same way. For a detailed account of
upon completing the measurand’s measurement. Put anog@gbra representation results, the reader is referretP}o [
way, suppose the experimenter measures measazod To mirror the algebraic and metrical properties of measur-
obtains its value, sag,e SpecQ) or the best estimate thereofable functions in the generated quantity algeti(®), it is
Evidently, the experimenter does not have to perform amotlégstomary to sef(Q) =q¢ I o(f) to be the image of the mea-
measurement to know the value, say, of the squared measufable functionf : SpecQ) — R under isomorphisnhg.?
andQ? = Q+Q, because (s)he already knows that the valueAithough the foregoing notation does not seem natural at firs
Q? will be 2 or its best estimate, obtained by easy (approsight, it does make good sense after showing that the follow-
imate) calculation. Needless to add, we can quickly generi@d linear and structural conditions hold for all real-vedu
ize the foregoing idea alerived measuremetn any ‘scale- measurable functions, g, and f; on SpecQ) and scalars
changing’ real-valued measurable functiban SpecQ), giv- CteR:
ing the valuef(c) (or its approximation) off (Q). Simply,
by measuring measurar@ the experimenter automatically () [f+al(Q) = f(Q)+g(Q).

“measures” in aderived (computational) fashiomll quanti-

ties of the formf (Q). (ii) [f-gl(Q) = f(Q)-9(Q).
(iii) [c-f](Q) =c- f(Q).

(iv) If f<g,thenf(Q)<g(Q).

The so-calledspectral mapping theorermllows us to say » 10
considerably more about how to move between the meas&Y) If 7(3) = &7, thenf,(Q) = &™.
and’s abstract von Neumann algebra and the associated 98- ¢ |im £ —f then i £ —f
crete measurable function algebra. For the general ca<g, Ig 6] o= o Moo fn(Q) = 1(Q).
be a measurand of interest in a von Neumann algilanad let (vii) [ho f](Q) = h(f(Q)), whereh € £.,(f(SpecQ))).
2A(Q) be the von Neumann algebganerateqwithin ) by Q
and the algebra’s untt. It is not hard to see that the resultifyiil) [If(Q)Il = sup|f(c)l | c € SpecQ)}.
commutative von Neumann algeb?qQ) (i.e., the smallest .
unital von Neumann subalgebra #f containing measurand('x) Spec(Q)) = f(SpecQ)) = {f(c) | c € SpecQ)}-
Q and unitl) is given by the norm closure of all polynomials Basically, as alluded to above, there are two mathemat-
in indeterminate. Simply, the generated algebra includes all o '

" . > . ically equivalent ways to reason about a measurand and

quantities whose values can be obtained via derived measure

ment, based o@. An important consequence of the spectralz4as was mentioned above, the probability measeie needed only for
ensuring appropriately many null sets.

23Noncommutative complex von Neumann algebras are reserveddor qu  2°Becausef (Q) denotes the quantity that corresponds to the measurable
tum systems. Since our interest is in classical measuremetitjsipaper function f under the algebra isomorphism, mathematicians working in spec-
we shall focus only otommutativevon Neumann algebras, satisfying theral analysis often refer to this type of correspondencbaseasurable func-
commutativity lawQe Q' = Q' Q. tion calculus

4.2. Measurable function calculus
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its derived quantities, (iplgebraically and (i) measure- 3 ccspect) lif=c) = 1. This leads at once to derived-quantity
theoretically In the algebraic approach, the measurandepresentations encoded Bf) = ¥ ccspect) 9(C) - Lyt=cy for
spectrum Spe€}) automatically specifies the spectrum adny real-valued Borel measurable functigon Specf) and
any derived quantity, having the polynomial foeg-1+c,- to joint representations of the forg(f, f') = . 9(c,c’) -
Q+C-Q®+---+¢,-Q" or a limit thereof with respect to Y= fr=cy -

the norm-induced topology. From a measure-theoretic per-

spective, all calculations of values of derived quantiaee , 3 gpeciral representation of measurable quantities
performed on the corresponding measurable functions of the

form f : SpecQ) — R. Since the measure-theoretic approach Based on the spectral mapping theorem, we can now clar-
is equivalent to the algebraic method, why bother with the #ly how projections can be used to represent any measur-
gebras of abstract quantities at all? Because the algedaicable quantity whatsoever. L& be a quantity in a unital
proach is particularly well-suited to modeling not onlyssa commutative von Neumann algeb?a Appealing to mea-
cal measurement, but also measurement procedures arisirggitable function calculus, we may define a canonical projec-
guantum mechanics and quantum statistical mechanicsewhi@n quantityIllg(B) =4+ 1g(Q) for any Borel measurable set
(due to noncommutativity requirements) concrete measubei the Borel sigma algebr@specq) of measurable subsets
theoretic representations are not available. In particala of SpecQ). Clearly, since the characteristic functidg is
gebraic models provide (at the right level of generality ardprojection, the quantitfio(B) (encoding algebraically the
simplicity) a unified mathematical framework for the study goroposition ‘Q takes its extant value iB") is also a projec-

all known types of measurement operations, including but i@n, belonging to the von Neumann alge®6Q).%° ltis
limited to classical and quantum, static and dynamicakrmetassigned to the projection functidg by the isomorphisnhg.
ministic and probabilistic, direct and indirect, discréitee We have now constructed a crucial projective represemiatio
and continuous-time, joint, repeatable, parallel and sequmap Ilg : Bspecn) — A(Q)p, called theprojection-valued
tial, biased and unbiased, invasive and noninvasive, demoleasurglacronymed PVMassociatedvith quantity Q that
tion or nondemolition, and model-based measurements. allows us to look at quantities from a new point of view.

Since for any measurable 8t B, its characteristic func-  In general, a PVM is any mappind : 8 — %, on a
tion 1g is automatically a (2-valued, idempotent) projectiomeasurable spage?’, 8) that assigns to each measurable set
guantity in2,,(.2"), the set of projection quantities forms & in 8 a unique projection (i.e., two-valued quantili)B)
Boolean sigma algebra, mirroring the underlying Boolean &lelonging to the algebr@ in such a way that the follow-
gebra of proposition& We have thus established that all exng measure-theoretic conditions hold for all measurabte s
ternally given (data) propositions are automaticaiiernal- B,B’ in 8 and for all sequences of pairwise disjoint measur-
izedin a von Neumann algebra in terms of projection quaable set8;,B5,-- in B:
tities?” Evidently, all linear combinations of characteris-
tic functions (i.e., the so-called simple or step-funcgpnf (i) T(0) =0andIl(Z") = 1.
the form ;.G - 1g; with measurable setBy,---,B, in 8 , ,
and scalar3|51n,~~~ ,Ch in R are also members of the concreté") BC B = II(B) <II(B).

von Neumann algeb_ra. The other .measurable funqtiqns%m T(By + By +---) = [(By) + T(By) + - -, where the count-
£.(2,B,P) are obtained as (essential norm-based) limits of able sum on the right-hand side is interpreted as the limit

converging sequences of simple functions. of the sequence of partial sums in the so-called weak
In the same spirit, it is easy to see that any measurable topology of?1.3

function f € £,(Z") with finitely many values has apec-

tral decomposition represented by the weighted suim=(iv) TI(BnB’) = II(B) - II(B).

Yi<nGi - Ljf=¢; Of projection quantities, induced by the mea-

surable partition{[f = ¢;],[f = c2]l,---,[f = cull} of 2728 (v) BNB =0 = II(B) -1(B") = 0.

The foregoing spectral representation of quanfityeadily

extends to a countable spectral resolution, also having thélote that projection-valued measures behave like special

form of the weighted-sumf = ¥ ccspecq) €+ Lji=cj, Where probability measures, except that their values are not essnb
but projection quantities in a von Neumann algebra. More

?%In general, the set of projectiort; in a von Neumann algebfiis a  significantly perhaps, PVMs are not only important and inter

complete lattice under the partial orderiRg Q iff PeQ = Q<P =P, and N h . . .
lattice operation®v Q = P+ Q- P+Q andPA Q = P+Q in the commu- esting in their own right, one can actually integrate fumcsi

tative case. The lattic®, of projections of the von Neumann algetffa with reSPeCt to them. Specifically, the SO-Calﬂlb_thw rep-
is Booleanif and only if the algebra is commutative. In particular, the aresentationtheorem states that to each quanf@yin a von
gebra of projections i (2", B,P) is isomorphic to the quotient Boolean

sigma algebra, obtained frof by quotienting with the equivalend@~ B’ 29Note that forf € £,(27), we havdl(B) = 1yteBy, Where the expression

iff P(B-B')uU(B' -B))=0. [f € B] denotes the measurable subBgtg 1jr¢p = f~(B) = {x| f(x) € B}
27In quantum measurement theory this is the most compelling refasonof Specf).

replacing propositions by projections. 30Recall that in commutative settings, theeak topologys defined by the
28Here, as before, the expressiph= ¢;] denotes the measurable set of aliveaklimit wlim n_,., Q, = Qif and only if limp_,.. S(Qn— Q) = 0 for all states

pointsx satisfyingf(x) = ¢ with 1 <i <n. S.
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Neumann algebrdl there corresponds a unique projectiorte singletongc},{c’},--- .. The question now arises as to how
valued measur&lg such that the followingpectral integral can we make the PVM approach more realistic.
representations hold Because the exact values of quantities (and states) are gen-
erally inaccessible to direct observation, that is to dayex-
perimenter is denied knowledge of sharp propositions of the
Q :f x-Mg(dx) and f(Q) :f f(x)-Mg(dx)  form [f =c], a crucial epistemic strategy is a passage from
SpecQ) SpecQ) the underlying point set Spe@) framework to its higher-
level Borel algebraBspec) setting. Owing to this concep-
tual move from equational propositiofi$ = c] to more gen-
ral and less informative set-theoretic propositions eftinm
f € B], the experimenter will certainly know whether or not
%% € B] holds for appropriately large Borel ses Unfor-
tunately, stochastic systems possess behaviors in which th
experimenter does not strictly know the propositions of the
form [ f € B] either, but (s)he may know that the outcome
is more likely to be in some parts of Sg@ahan others. As
t We will see later, in this context the experimenter’s episte

for any essentially bounded measurable functidn:
SpecQ) — R. In a function algebra setting, the foregoin
spectral integral is defined in the usual way, starting from s
ple functions and then moving up to all measurable functio
by a limit construction. In particular, the characterigtiac-
tions satisfy the following conditions:

() fpecg 180 Tio(d) = Mg(B).

(ii) The constant functiog, gives the resolution of the uni

f Ho(dx) = 1. access to measurement outcomes is encoded by probability

SpecQ) @ values of the formP([ f € B]), thought of as the probability

(iii) For the simple functionf = 3G - 1g, with pairwise thatthe extant value df is in the Borel seB. .
disjoint measurable subses, By, - - - B, we have As a matter of fact, in quantum theory of measurement it
fspec@ 18((X) - M(dX) = ¥ 1<icnGi - Mo(Bi). has become customary to go one step further in the direc-

tion of fuzzifyingor smearingthe measurement results by re-

So what are these spectral representations of quantities gg/2cing all measurand® with spectral measures of a highly

for? The single most important consequence of writing qua#gneral formll : 8 — ¥ on an arbitrary probability space

tities in their canonical spectral form is in relating quties (% >3,P) with values in the target system’s quantity alge-

to their associated measurement operations. For example?g¥- These so-called (normalizepsitive operator-valued

appealing to the spectral representation result the pisysige@suregwith a generally accepted acronym POVM) satisfy

may view the position quantit of a free Newtonian par- the following conditions for all r_negsurgb_le_ s@&s B and f_or

ticle moving in a straight line in terms of its correspondin%II countable sequences of pairwise disjoint S8y, - in

projection-valued measuléqg that outputs valu@lg(B) = 1, '

when the particle is in regioB and value 0 when it is not, for

any measurable spatial regi@ Thus, to measure the parti- () I(0) =0andII(2) =1.

cle’s exact position means asking and answering all qmstio(ii) T(B) > 0.

of the form “Is the particle in regioB?” at the same time and

then moving on to perform the corresponding binary yes-(if)) TI(B;+B,+---) =TI(By)+II(By) +-- -, where the sum on

measurements. In concordance with the spectral representa the right-hand side is again interpreted as the limit of the

tion of the position quantityQ, exactly one answer will be sequence of partial sums in the weak topologflof

“yes”, when the particle is actually in regidd However, it

is important to realize that the particle’s position at aiweg In quantum physics, positive operator-valued measures are

moment depends on its actual physical state, and theref@gularly used in modeling the (tail-end) statistical aspe

one cannot tell tell ahead of time where the particle realty outcomesf quantum measurement procedures, indepen-

is. Nevertheless, as we shall see shortly, measurememytheently of the physical structure of measuring instrumenike

predicts that the particle will be in regiddwith probability probability that the measurement outcome belongs to a Borel

S(IIg(B)), given that at that time it will be in the physicaket is given by the expectation value of the POVM'’s quantity.

state represented [#. Now, since classical mechanics treats the class of discrefgrojective(binary) measurements, each

particles as deterministic systems, its st&tés determinis- quantityQ has a spectral decompositi@¥= Y. ccspec) € e,

tic, specified by the particle’s position and momentum velueso that the probability of obtaining outcornés given by the

and therefore the probability value will be 1 precisely whesxpectationS(I1;) with respect to the system’s extant st&e

the position coodinate falls into regid in S(A). We hasten to add that the foregoing POVM-based
In this manner, PVMs explain how sharp measuremestsatisticalmodel of measurement says nothing about the tar-

are possible in terms of ideal binary measurements. On t)&d system’s post-measurement state, i.e., the sysigos’s

scenario, any quantit) can be looked at from the point ofterior state, conditioned by the observed measurement out-

view of its (infinitely long) disjunctiofQ = c] or [Q=c’] or come. Not surprisingly, the statistical model provided#aest

--- propositions, algebraically represented by a weighted sdetailed characterization of measurement in that it adsoun

(or integral) of projection quantitieH ¢, IL;¢y,---, assigned only for the target system’s measurement outcomes that can
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be manipulated and fed into various postmeasurement proceShe abstract framework of states includes the following

sors. general versions of basic statistical indicators for aditest
Next, we shall need to understand how abstractly givetatesS:

states of a system under consideration may be interpreted

probabilistically. The state space framework providesra fu (i) Expectation of Q:S(Q) =¢+ fspecQ) XPg.s(dx).

damental theorem that addresses this issue. In detail, each

quantityQ in a von Neumann algebf determines anféne (i) Variance of Q: Varg(Q) =4t S(Q%) — S(Q)%. By def-

mapping of the form inition, the so-calleddeal measurement operatiox
satisfies the conservation law of variance: &) =

I T ; ; ; ; :

() Q P(SpecQ)), Vary«s)(Q"). Variance is particularly useful in assess

ing the fidelity of state-channels.
defined ble’é(S) =4t Po,s for all statesS in S(), where the
unique probability measury s satisfies the classical expec- Itis time we had some concrete examples of measurement
tation formula models.

S( f (Q)) = f f(X) PQ,S (dX) 5. ALGEBRAIC MODELS OF ELEMENTARY MEASUREMENT
SpecQ) PROCEDURES
for all measurable functionk: SpecQ) — R. The equality
Pgos = Sollg (in which Ig is the projection-valued mea- In this section we survey a number of concrete examples of
sure associated wit®) gives a direct definition of the above-classical measurement, alluded to in the previous sectitias
specified probability measure. In particular, for any a Boremphasize at the outset that we do not have space to present

subseB of SpecQQ) we have thgrobability a complete analysis of all examples. Each example merits
considerable study in its own right and we intend to pursue
Po.s(B) = S(Ig(B)) = S(18(Q)) such studies in the future. Here our goal is to show how alge-

] o ) braic constructions capture the decisive structures oforea
stating thalQ's extant value is in the subsBi given that the ent operations. The examples of elementary measurement
system is in a physical state encoded 8y Actually, the e shall cover in this section fall naturally into three tistely
above-mentioned fundamental theorem says more: To eg@lint classes: direct, indirect and joint measurements
state-channeM* there corresponds a unique transition prob- e gimplest and earliest types of direct measurement (e.g.
ability (Markov kernel)Tw giving a commutative diagram  |ength and mass measurements) are based on the principle

S M () of direct comparison A direct-comparison process relies on
comparing the measurand’s values with those of its assatiat
. X pointer quantity of the same dimension and in a comparable
o Qo range. It is convenient to begin with the basic idea of astati
measurement of length.

IP(SpecQ)) P — IP(SpecR’))
M
5.1. Classical comparison-based length measurement
with HE, oM*(8)=Twm oH’gg(S) for all statesS in S(A) and

hfncePQ’;M*(S)(B) = [Tm(Pos)I(B) for all Borel subset8  gic or ruler with a calibrated equally-spaced mark foy, sa
of SpecQ). i ) ) ) _each millimeter along the ruler’s total length of one meitex: (

. The reader will surely notice that in parallel with the earrli 10% millimeters). We know that the (approximate) length of,
discussed passage from abstract measurable quantitiasto for example, a flagpole is found by placing the meter ruler

sical random variables we have just introduced the dual idaﬂangside it, starting from one end and then repeatedly: step

of reasoning about abstract states in terms of concrete pr&lﬂg it off, until the flagpole’s other end is reached. At that

ability measures. Thus, .the earlier posed question is talfﬁﬁ‘nt the scale mark that is closest to the flagpole’s othdr en
up again: Why bother with abstract states, when probabjli-roa4 and added to the millimeters obtained from the total
tiy measures seem to fice? Because states occupy a Uniymper of collinear ruler steppings along the flagpole'srent
fying position in the representation of all kinds of phys$icgenqih - An earlier version of the length measurement struc-
states, including those of quantum systems, where the funﬂ'ﬁ‘es presented here is discussedirP}

mental theorem about mapping states to classical prohabili

measures fails. In particular, quantum measurement refies 3Today's technology is blessed with many types of non-cormgth
noncommutative probability theory, which is formulated exneasurements, including ultrasound, laser and radar-bamgirnents.

; ; ; hese technologies have taken over the task of length measotdrom
CIUSIVely in the Ianguage of algebralc states. For a SyQ‘.ieméimple-minded meter stick devices. In the algebraic approadbliow we

treatment of transition probabilities in a rather geneediisg i giscuss only the simplest cases of measurement, whereabgiinstru-
see B ment scale must be read to obtain the measurement result.

In this example the measuring device is the familiar meter
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Suppose we wish to measure the lenfytti a flagpole with

a meter ruler. Sd is a measurable quantity (representable £, (Re)
by a random variable), where we take the closed real interval 2,([0,L],) ————— 2.([0,L])
Spec() = [0, L] to be its value set with a ficiently largeL. £e0(3e)

Now the basic modeling idea is to regard the flagpole as cﬁg'ned by the injective algebra homomorphism
target system and associate with it the von Neumann alge
gel sy g %%Q(h) 4t hoR, for all functions h on [0,L],) and

£2,,([0,L]) of quantities, isomorphic to the abstract von Net§-°° O .
mann algebrai(¢), generated by and1.32 Since this alge- Y the surjective homomorphisfl,(J.)(g) =4t go J. for all

bra contains all quantities that aderivablefrom the length functionsg on [0,L]. Since the first channel represents length

guantity ¢, it follows that their values can automatically pgheasurement, we introduce t.he_ S|mpI|f|eq notatidp fpr .
calculated from the extant value &f 2,(R,). The second channel is just a left-inverse projection

Having assigned a quantity algebra to the flagpole, we nBlap of norm one, also known as a statistically significant

construct an algebra for the ruler. We know that in order to dfansition expectatio (| R,).

tain information about the flagpole’s actual length, theezxp Note that in the foregoing definitions of quantity algebras
imenter will have to get it from steppingfcthe ruler against W€ did.not include any details of exactly how the ruler inter-
the flagpole and from reading the numerals at the rutiss acts with the flagpole. Instead, we considered only the way
crete markings. Clearly, the fidelity of this measuremerfopositions of the fornf ¢! = k] about the pointer quantity
operation depends on the ruler&solutionand accuracy33 v_a_lues might be translated by the quantity-channel intpgro
One of the most intuitive ways to proceed is to introduceS§ions of the form[¢ = c] = {x| £(X) = ¢} about the measur-
discrete-valued pointer quantify that characterizes the ruler@nd’s values.

so that/’s spectrum Speé{) is specified by the ruler's read- As an intermediate translation step, we rephrase these
ing scale, i.e., by the set of points in, [Q corresponding to propositions in terms of projection quantitiég,_y; and

the millimeter marks, encoded by parameter O: 1= respectively. It is easy to see that the pointer quantity
has the spectral representatin= &- 1j,1_.y +2&- Lyt _pep +
Specf") = [0, L], =4 eNNJ[O, L], --- and similarly, the measurand’s estimate is given by the res-
; ! 1
= . > =
where the discrete latticel = {0,¢,2¢,3s,---} denotes the olution £(¢) = Zie1 Re(0) I 3 ccapery for all €2 32, and

uniform grid of equally spaced points one millimeter apaQtOtherW'Se'
(i.e., the step-size represents the distance of one milime- Now we can immediately conclude from the foregoing
ter), capturing the ruler’s discrete length structure. \We g@halysis of length measurement that the quantity-chavinel
now able to introduce the ruler’s finite-dimensional von Neg§ends the ruler’s projections (representing pointer psapo
mann algebré&..([0, L].), isomorphic to the von Neumann alfions) to the flagpole’s projections (encoding the measiisan
gebra2i(¢"), in which the pointer quantity corresponds to th@PProximation) as follows:
canonical identity functior¥, defined byJ(x) = x for all xin
[0,L]..

The measurand’s values are related to those of its pointer
quantity by theround-gf map®. : [0,L] — [O,L],, defined
by R.(C) =qr Ke, if ke— 3 <c<ke+3 forall k> 1, and

Me(Lper-kep) = Me(lie)) = Lo 3 o 3y

for all k. It is clear that a ruler-based length measurement

R.(C) = 0 for all 1. ntuitively. th 4-G R is far from being ideal. Indeed, based on the assignment
8(.0) =vor ahc< fbl ntu:tlvefy, the round- hmap_ £ Mg(€") = Mg(3) = ¢, ruler-reading provides only a step-
asslggz to eac 0 ?_oss'h e'vatlma measglrlanwt el unLque function approximatiory of ¢, constant on half-open inter-
point lg(c). in [ , ] that is closest to it*. We also have vals ﬂ(a—%,ks+%). In general we havd! () = 31, h(ke) -
the obviousnclusionmap3. : [0, L], — [0, L] that sends the . -
i . ) kel es 1y foralth:[o,L]; — R.
points of the discrete subset, [, to the continuum value “Tke-zke+3) ™ _
set [QL]. We know from functional analysis that the above- Of course, if an alternate meter ruler is marked at eetf
defined round-fi and inclusion maps induce two quantityMillimeter along its length, then its resolution becomesmi
channels icantly better and therefore the measurand’s step-fumetj
, , , , _ _ _ proximationM ¢ (¢7) will also be correspondingly more fine-
32As discussed in Section 4, the interval [Pis conveniently viewed as 2

= . grained. In the limit, when the distaneegoes to zero, a

a probability space, where the Boolean algeBri&s generated by the open . . . )
subsets of [0L] and in simple cases the probability meas@és just the Maximally “good” resolution characterizes &teal measure-
standard Lebesgue measure thereon. mentwith Mo(f(¢")) = f(¢) for all functions f defined on

*Even iln thel_mOSt gber?efa' glomexé_Of me?SUfetTe”L readg‘ng thareeasgpec(). Measurement results based on these two meter rulers
ment results relies on being able to discriminate betweenta fimia count- s - L ‘oL
able set opossible pointeqt?antity values, defined by a coarse-grained varT’J!re ShO_Wh_ in Figure 6 The dlagonal line in the schematic di-
ant of the measurand’s spectrum. Due to the discrete naturestimeasure- @gram indicates the ideal measurement of length and the two
ments, the hallmark of the algebraic approach is to asdistretemodels step-functions correspond to the measurand’s appro>omsti
to measuring instruments and try to represent the targetnsyisyeacontin- - gptained by aruler having a mark for each millimeter and an-

uumstructure. In many applications, continuum models can be adens other ruler having a mark for each half millimeter
category-theoretic inverse limits of directed sequenceBszirete models. 9 :

34A concrete analysis of rounded data may be foundjn [
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in that state. ThusS may be represented by a Dirac proba-

£(c), ¢(c) bility measuredc. In this case we hav8(1,=¢)) = Pr.s([€ =

cl) = 1 precisely when the flagpole’s length is actuallyand

47 S(1je=cy) = 0 otherwise. Intuitively, a pure state ensures a
probabilistic certainty about the extant valuefoNow, since

3 1 the state-channé¥l, is also pure (in view of being deter-
mined by the discretization ma®..), it transfers the flag-

2 pole’s deterministic state to the ruler's deterministi@tst so
that the ruler’s readout is exactly.(c) in that state, captured

1 by 6%, (). Thus, by the fundamental state representation the-
orem we have

A ‘ ‘ ‘ ‘ R(0) S(Zyet =k, (1) = Per mzs) (L€ = Re(0)])
_ 1 2 3 4
SOOI = [TiP)IIE = Re(ON) =1,

4.0 - if P,s([¢ =c]) =1, and O otherwise.

3.5 - We mention in passing the case repeatedlength mea-

3.0 1 surement. For example, if the flagpole’s length is measured

25 - twice, then the representing state-channel has the form

2.0 1 M@

15 - S(2 ([0, L])) : S(2([0, L]» %[0, L].))

1.0 -

05 | where in deterministic situations the channéf® sends

' 0 each Dirac staté. (representing the flagpole’s actual length)

T ‘Rg (C)

0 051015202530354045 to the average d|str|but|oé[6m(c) +0dx/ (9] obtained from

two independently performed measurements for all vatues
Fig. 6. Ruler-based step-function approximations of length quant@early’ in this measurement there are two probabilidgical
‘ independent pointer quantitié5 and¢), together with two in-
dependent aroundffomaps. The situation ai-fold repeated
Length measurement can also be reasoned about in temmegisurement processes is treated similarly, where the prob
of state-channels, having the form ability distribution of measurement outcomes has the form
P =210k
As for nondeterministic cases, when the flagpole’s actual
length is uncertain (due to various perturbation factons,
can safely assume that there is a normal probability distrib
whereJ;} is anextensiormap that, roughly speaking, extendsion that correctly describes the flagpole’s geometric ¢ond
discrete probability distributions on 0], to optimally ap- tion. As expected, flagpole states characterized by normal
proximating continuous distributions on,[d. This process distributions are transformed by the state-chariviél into
is actually a special case pfobability kinematics ruler states, having the form of binomial distributionsttha
Recall from the end of Section 4 that all states in the staiigcretelyapproximate the continuum input distributions. A
spaceS(2..([0, L])) are representable by probability measurgsgate-channel transfer from a continuum distribution togn
belonging tolP ([0, L]). Importantly, the state-chann® is timal discrete distribution is illustrated in Figure 7.
represented by a unique transition probability of the form

M
S(€([0.L].)) Ji S(£([0.L]))

P([0,L]) —~— IP([0,L],)

bility distributions on [QL],. It is well known that the above-
displayed transition probability is equivalent to tlshan-

"
that sends all probability distributions on JlJ to some proba- > ‘ ‘ ‘ ‘
L

nel distributionT2* : [0,L] — IP([O,L],), where the num- e %0
ber{[T.*](c)}({ke}) denotes the probability that the flagpole’s

length measured by the rulerks millimeters, given that its Fig. 7. State-channel transfer of normal ditributions to
actual length i. approximating binomial distributions.

In deterministicsituations it is natural to assume that the
flagpole’s extant stat& is pure, meaning the flagpole’s acStates represented by normal distributions usually arcse f
tual length is a definite (albeit unknown) real number, saymeasurements that are repeated arbitrarily many times unde
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the same or exchangeable conditions. In this case the mesang a calibrated scale, etched in the stem of the thermome-
surement process involves an infinite sequeﬁcéT,m of ter. Importantly, the relationship between the tempeestund
probabilistically independent random variables, whosge=a the mercury column’s height is linear over a limited tempera
sian product value space, [d% =g+ [0, L] x[0,L]. x--- with ture range, having the empirical law form

its sigma Boolean algebra of cylinder sets induces a qyantit

channel of the form t={lo(1+aT),

where¢ denotes thdéength of the liquid mercury column in
M the thermometer’s capillary at temperatrefy is the nomi-
(8 ([0, L])) N2 ([0, L]e) ® £ ([0, L) @), nal height of the column at zero temperature of Celsius, and
«a is the mercury’s coficient of linear expansion. Note that
. 2 = s " mercury-in-glass thermometers g@ssivenstruments in that
tion (representing its extant state) to a joint probabiitstri- there is noexternalenergy source needed for obtaining the

i N
bution on [q L]S ) measurement outputs.

For the balance of this subsection we wish to emphasize- - ental to mercury-in-glass thermometers and re-
that the algebraic formalism presented above is also @pplig,;q measuring instruments is thieermometricmap  :
ble to direct measurements of mass on an equal-arm balag Ecl) — Specl), defined bye(r) = fo(1+a - 7) for all 7
scale. The target system is any small-size object with an ¢ Spect), that assigns in a law-like manner to each tempera-
known mass that is placed on the balance scale’s right pan degree of the ambient thermodynamical system a unigue
asuitable set of stanc_iard weights with known masses IS _ad cury column length, realized by the measuring instrdimen
to the left pan and adjusted until a perfect balance is aekilevaf,[er the two systems reach a thermal equilibrimAlong

For concreteness, we can assume that a balance scale can BT lines. the thermometric mapnduces the von Neumann
sure objects with masses up to 1000 grams and the smaﬁ? ’

; , LS Lbra homomorphism
detectable mass for which there is a standard weight is 0.0q P
grams. As in the case of length measurement, instruments of

Lo
this type provide only an optimal approximation of the mea- £x(Spec()) £a(Spect))

sured object’s actual mass. The theoretical limit for th®fe that models temperature measurement, based on reading the
lution of a balance is set by the fact that, due to perturbatiomercury column’s length values. In particular, the homomor
the measuring instrument cannot be brought to absolute rggisme,, () sends projectiofi,—¢j (representing proposition

In practice, the instrument's resolution is determined iy ty, - cJ)) to the projectiorl, _ ¢, (representing proposition
smallest mass of available standard weights. T=%7 1

sending, roughly speaking, the flagpole’s probabilityritist

(£)

aly

[T= C(;—f(?]]). In ideal temperature measurements, the temper-
ature quantity is fully determined by the length quantitg, ,i

we haver = £, (£)(;5 (¢ - tol)).

Microscopically, temperature is understood to be the av-Since most real-world measurements are nonideal, the
erage kinetic or thermal energy of a targeermodynami- foregoing continuum model of measurement remains in-
cal system’s atoms or molecules. Unfortunately, the tempepmplete without its discretized counterpart. A complete
ature of thermodynamical systems cannot be measuredngpdel of indirect temperature measurement is given by
rectly. However, since higher degrees of temperature cthre commutative diagram as shown below that includes the
respond to motions with greater amplitudes, thermometgientinuum part and the associated transformation of discre
property-based measuring instruments can record a certafdings of column length values to the correlated discrete
manifestation of the increased energy of atoms or moleculedlues of temperature:

The most used macroscogltermometrigproperties in ther-
mometry are the volumetric expansion and electrical resis-

5.2. Indirect temperature measurement

tance of certain materials. Naturally, thermometers egnplo 2o (£)

physical principles that link temperature changes to gerta 2..(Spec()) £..(Specl))
easy-to-measurermometrigoroperty changes. In this way,

thermometric quantities can be profitably utilized in measu 2o (Re) w(R,)

ing temperaturéndirectly. It is well known that indirect mea-

surements have largely taken over the task of measurement

from the basic and lessfective direct measurement methods. £([0.L:) Loo(Ey ) £([0.T])
Perhaps the most popular physical principle used in ther-

mometry is the expansion of liquids with increasing tempera . ;
Y hansi 1 . 9 P ﬁl is easy to see that the discrete homomorph&gis, o)
ture. All of us are familiar with mercury-in-glass thermome . . 1 9
o . . sends the earlier discussed half-open intenials-[5, ke + 3)
ters. Liquid mercury is encased in the glass bulb of a narrow
glass capillary that expands to a greater V_Olur_ne when it getsthe gynamics of mercury-in-glass thermometers in terms of heas-r
hotter. The length of the mercury’s expansion is measureds&y from system to thermometer is treated4h [
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of column length to half-open interval&d — 3, ke’ + 3) of

temperature. Crucially, because thermometer readings pro

vide only an estimate of the mercury column’s actual lengthyy«(s)1(f & g) = f f £(3) - 9y) Po.or s(dx. dy)
the length-based derived measurement of temperatureois als Spe® JSpedy

just an estimate of the ‘true’ values ©f Formally, we have

T = 8. (8)(F (€ to1)). for all real-valued functiong on SpecQ) andg on SpecQ’),

A second common derived temperature measurementviterePq v s denotes the probability measure on the product
performed byresistance temperature devicdheir design is value space Spe@) x SpecY’) representing stats. Intu-
based on the familiar principle that the electrical resiséeof itively, the state-channdl * of a joint measurement takes the
certain metals (e.g., platinum and nickel) increases wiglirt system’s state$ as input and gives the probabily distribution
increasing temperature. For a smaller range of temperat@g o s on the measurand’s values as output. As before, the
the usual polynomial model relating resistance to tempegatidentity mapsJ and3d’ on value sets are the respective pointer

is safely approximated by the linear empirical law guantities forQ andQ’.
There is an alternate equivalent representation of joint
R=Ro(1+aT) measurement that uses the dual quantity-chamhel It
renders the following diagram of marginal channels commu-

in which R is the conductor’s resistance at temperattire 54je-
Ro denotes the metal’'s nominal resistance at zero tempera-
ture (when it is immersed in melting ice), anddenotes the

metal conductor’s resistance-temperaturefiocient. Impor-

tantly, resistance temperature devicesamtevemeasuring in- 2..(SpecQ))

struments, since the energy in the output signal comes from a

external power souce, needed for measuring resistance. Typ £0 Mo
ically, resistance thermometers consist of a coil of platin

wire wound on a ceramic insulator mounted into a steel tube, M

and connected to one arm of a Wheatstone bridge furnished £(SpecQ)) ® £ (SpecQ)) A

with a small power source and a calibrated meter. Resistance

temperature measurement is doubly indirect in that tempera Ly 5
ture changes are linearly related to resistance changesrtha
measured by a calibrated ohmmeter. 2..(SpecQ’))

Today there is a large variety of thermometers that are
based on considerably more sophisticated physical ptaip

than the ones recalled above, such as bimetal thermomeiggsexpected, the marginal guantity-chanrdls andM ¢ in-

infra-thermometers, and pyrometers. cluded in the diagram represent the measuremen@ arfid
Q. By exactly the same reasoning as used in the previous
5.3. Joint measurement of quantities section we obtaiM(f ® 1) = (Q), M(1®g) = 9(Q’), and

henceM (f ®g) = (f ®9)(Q® Q') for all real-valued functions
We now move on to consider simultaneous measuremefys defined on the value sets @fandQ’. In particular, we
of several quantities. Injaint measurement of two quantitieshaveM (J ® 1) = Q andM(1® J) = Q’, suggesting that the
information about their values is received from the redpectjoint measurement of and Q' is treated as a case of ideal
pointer-quantities of two measuring instruments. A simpieeasurement. We already know that channelsnfomideal
example is a simultaneous measurement of the position §idt measurements are based on discretizations of vatse se
angular velocity of a pendulum’s bob. Here we are interest8gecQ) and Sped’), determined by the resolution and sen-
in the algebraic representation of measurements of thes tygsitivity of the measuring instruments selected @rand Q’,
Any pair Q and Q' of measurands of a target system respectively.
generating the von Neumann alge®¢Q,Q’) C % — can  In joint measurements often it is of interest to deter-
be viewed, thanks to the spectral mapping theorem, as raiine how quantitiersQ and Q' covary jointly. Recall
dom variables taking their values in their respective vakts that the covarianceof Q and Q' at stateS is defined by
SpecQ) and Sped)’). As one of the basic conclusions of the:ovars((‘)_’Q,):df S(Q*Q)-8(Q-s(@)- We know that covariance
algebraic paradigm we note that loint measuremerdf two might be positive, negative, or zero — giving a idea of how
measurands is meaningfully represented by the state-eharjuantitiesQ andQ’ are related. An important special case is
given by probabilistically independenimeasurements o)
M andQ, defined byS(f(Q)+9(Q)) = S(f(Q))+S(9(Q)) for
S(A(Q, Q) ——— (L (SpecR)) ® L. (SpecR))), all statesS.

defined by the averaging integral
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