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Determination of realistic uncertainty values in coordinate metrology is a challenging task due to the complexity of the implemen-
tation of numerical algorithms involved. Monte-Carlo error propagation is used to estimate the uncertainty of a position tolerance
using least-squares criterion. In this paper all the required steps are sequentially performed using a number real-world datasets.
Since no reference data sets are available for position tolerance evaluation hence drawings and numerical values of such data sets
are proposed.
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“So, a result without reliability (uncertainty) state-
ment cannot be published or communicated be-
cause it is not (yet) a result. I am appealing to my
colleagues of all analytical journals not to accept
papers anymore which do not respect this simple
logic”. (Paul De Bièvre, [1])

1. INTRODUCTION

M EASUREMENT result besides a measured value should
contain a measurement uncertainty. Determination of

realistic uncertainty values is a challenging task in coordinate
metrology. It is caused by the fact that coordinate measuring
machines (CMM) are very versitile instrument that is affected
by vast number of factors.

According to the ISO Guide to the Expression of Uncer-
tainty in Measurement [2] a measuring task should have a
mathematical model describing how the measured value de-
pends on input quantities. Using such a model one can aquire
probability distribution of the measured value. Standard devi-
ation of this distribution can be used as an uncertainty of the
measured value. As is shown by Cox et al. [3] in most cases
it is enough to know mean value and standard deviation and
there is no need to deal with explicit probability distributions.

Monte-Carlo error propagation is widely used for this pur-
pose [4]. The procedure is known as the ”virtual measuring
machine” (VCMM) [5]. This method is used in certified cali-
bration laboratories in Germany, UK and other contries [6] to
maintain traceability [7] of the measurement results.

Monte-Carlo simulation assumes that a probability distri-
bution of the input data is known. Usualy a normal distribu-
tion is used, but in principle any type of distribution can be
considered within this method. For an input data set one gen-
erates random deviations (simulating uncertainty in the input
data) and then a measurement model is computed. To get the
probability distribution of the result one should repeat the pro-
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cess. The process stops when the running average stabilizes.
This value (the running average) is the measurement result,
and its standard deviation is the standard uncertainty (accord-
ing to [2]).

In this paper Monte-Carlo error propagation is used to es-
timate the uncertainty of a position tolerance [8] using least-
squares fit1.

2. RELATED WORKS

Dhanish and Mathew [10] used Monte-Carlo error propa-
gation do determine the effect of CMM point coordinate un-
certainty on uncertainties of circular features. Liu et al.[11]
utilized Monte-Carlo error propagation to estimate form de-
viation uncertainties. Romano and Vicario [12] proposed a
research of an influence of position tolerance uncertainty on
parts acceptance using Monte-Carlo simulation. Sworn et
al. [13] considered how optimization criteria (Gauss, Chebi-
shev, inscribed and circumscribed circles) affects measure-
ment results. Hopp [14] proposed analytic method to eval-
uate the uncertainty a three-point circle fitting. Horn studied
the absolute orientation problem and proposed closed-form
solutions using unit quaternion [16] and orthonormal matri-
ces [17], his evaluation of a best-fit transformation is used in
this paper.

3. POSITION TOLERANCE, LEAST-SQUARES FIT AND

ABSOLUTE ORIENTATION

The goal of position tolerance is to ensure assemblability
of workpieces. Fitting of workpieces can be viewed as an op-
timization problem [18]: find the the parameters to transform
one coordinate system into the other that optimize a partic-
ular fitting objective for a set of points. Hopp claims [18]
that averaging fits used in metrology are biased with respect

1Though a median-polish fit [9] is also used to evaluate position tolerance
is was beyond the scope of this paper.
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to the extremal fit objectives suggested by tolerancing theory
and the averaging fits will be different from extremal fits2. In
this paper we use the averaging least-squares fit because of its
wide use in CMM software.

Position tolerance with a least-squares fit is a case of pla-
nar absolute orientation problem — finding the relationship
between two planar coordinate systems of nominal and actual
data respectively. Suppose we have a set ofN nominal points
in R

2 and a set ofN measured points inR2. The absolute
orientation problem is to determine an affine transformation
(rigid motion [19]) such that each measured point is moved
near the corresponding nominal point minimizing the speci-
fied criterion by a numerical process, Gauss or Levenberg—
Marquardt optimization or some other.

4. UNCERTAINTY EVALUATION

According to [2] in most cases a measurand Y is not
measured directly, but is determined fromN other quan-
tities X1,X2, . . .XN through a functional relationship:Y =
f (X1,X2, . . .XN).

The combined standard uncertainty of the functionf can
be evaluated as:

u(Y) =

√

N

∑
i=1

(

∂ f
∂Xi

)2

·u2(Xi).

The function f corresponds to the measurement process
and the method of the evaluation. Depending on how
the standard uncertainty is evaluated, the input quantities
X1,X2, . . .XN may be grouped into [2]:

• Type A evaluation (of uncertainty) — method of eval-
uation of uncertainty by the statistical analysis of series
of observations.

• Type B evaluation (of uncertainty) — method of evalu-
ation of uncertainty by means other than statistical anal-
ysis of series of observations (i.e. previous measurement
data, manufacturer’s specifications, handbooks).

Most of CMMs measure volumetric coordinates(x;y;z) of
the probe center. It is possible [20] to consider all CMMs er-
rors as the uncertainties of(x;y;z)-coordinates’ measurement.

The result of a position tolerance evaluation is a set of de-
viations for each feature. Every deviation has an uncertainty.
Metrological vocabulary [7] defines measurement uncertainty
as a “parameter, associated with the result of measurement,
that characterizes the dispersion of the values”. The limits of
the distribution for a specific confidence level are called ex-
panded uncertainty [2]. To interpret the results presented in
this paper let us assume that

• the deviations of points coordinates are in spherical co-
ordinate system with polar radiusr and polar anglesθ
andφ ;

2Averaging fit is not in accordance with the definitions given in GD&T
standards and does not ensure assemblability.

• the radius deviation is random, independent, normally
distributed with a mean value 0 and standard deviation
σ ;

• the polar angles are random, independent and uniformly
distributed in[−π;+π];

• the standard deviation of modern CMM isσ <

10−4 [14].

Let r i , θi andφi be the deviations of theith feature coor-
dinates. As they are random variables the position tolerance
deviations will also be random variables with standard devi-
ationsσLi . Our goal is to findσLi using the value of radius
standard uncertaintyσ .

The implementation of Monte-Carlo simulation resides on
two probability theorems:

Theorem 1 (Linearity of Expectation). [15, p. 8]: Let
Ex(R1) and Ex(R2) be the expected values of random vari-
ables R1 and R2. Then for every pair of R1 and R2 the ex-
pected value of their sum is:

Ex(R1 +R2) = Ex(R1)+Ex(R2).

Theorem 2 (Function Linearization). : Let n be the set of un-
correlated random variables{X1, ...,Xn} with expectations mi
and dispersionsσ2

i . Let Z= H(X1, ...,Xn). Then expectation
and dispersion of Z are approximately equal to:

mZ ≈ H(m1, ...,mn)+
1
2

n

∑
i=1

∂ 2H

∂x2
i

σ2
i ,

σ2
Z ≈

n

∑
i=1

(

∂H
∂xi

)2

σ2
i ,

where all partial derivatives of H are evaluated at
(m1, ...,mn).

FunctionH(X1, ...,Xn) is defined by the position tolerance
fitting criteria. The position tolerance is about finding rela-
tionship between two coordinate systems using specific crite-
rion. In this paper a minimization of the sum of the squares is
used:

LLSQ = H(ra1, ..., raN , rn1, ..., rnN) =

= min
α∈[−π;+π]

t∈R
2

N

∑
i=1

(rni −T(rai ;α; t))2
, (1)

whereT(rai ;α; t) – planar absolute orientation transforma-
tion; rai – measured coordinates vector;rni – nominal coor-
dinates vector;α – rotation angle;t – translation vector.

Planar absolute orientation transformation is evaluated us-
ing orthonormal matrix [17]:

T(ra;α; t) =

(

cosα sinα
−sinα cosα

)

ra + t.
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Table 1: Coordinates for the symmetric pattern

Point
No

X, mm Y, mm Point
No

X, mm Y, mm

1 55.20 31.88 10 33.12 -57.38
2 33.12 57.38 11 55.20 -31.88
3 0.0 63.75 12 33.12 57.38
4 -33.12 57.38 13 66.24 0.0
5 -55.20 31.88 14 33.12 6.38
6 -66.24 0.0 15 11.04 31.88
7 -55.20 -31.88 16 -22.08 25.50
8 -33.12 -57.38 17 -33.12 -6.38
9 0.0 -63.75 18 -11.04 -31.88

19 22.08 -25.50

As shown by Horn [16] minimization of the equation (1)
can be substituted by the minimization of

LLSQ = min
α∈[−π;+π]

N

∑
i=1

(

r ′ni −T(r ′ai ;α;0)
)2

, (2)

in the coordinate system where centroids of nominal and mea-
sured datasets are equal. A closed-form solution proposed by
Horn et al. [17] was not used in this paper since most of CMM
software implementations rely on a generic minimization pro-
cess rather than on ad hoc methods.

Jacobian for Levenberg—Marquardt [21] minimization of
(2) was computed using finite differences:

JF =

(

D(α + ε)−D(α)

ε

)

,

whereD(α) = |r ′ni −T(r ′ai ;α;0)| and ε was chosen to be
10−11 which provided numerical stability of the results.

5. IMPLEMENTATION DETAILS

Minimization of the sum of the squares was done using
Levenberg—Marquardt algorithm implementation from AL-
GLIB [24] optimization library (based on Minpack [25]).

To evaluate a position tolerance deviations one needs nom-
inal points coordinates and measured points coordinates, usu-
aly from a CMM. CMM uncertainty is composed by many
factors that can be put in several major groups [10]: influ-
ence of CMM hardware, workpiece form deviation, distri-
bution of the measured points, evaluation algorithm and its
implementation. To generate uniformly distributed valuesof
θi and φi a linear congruential generator [22] is used. To
generate normally distributed values ofr i Law—Kelton po-
lar transform [23] was applied as proposed by Dhanish and
Mathew [10] in their study.

The number of Monte-Carlo trials for every simulated ex-
periment was chosen according to [4, Sub Clause 7.2.1] and
with confidence level 0.95 equalsM = 106 trials.

Table 2: Coordinates for the asymmetric long pattern

Point No X, mm Y, mm
1 0.0 0.0
2 584.4 -834.6
3 584.4 -1911.6
4 0.0 -2746.2

Let Li be the result ofith Monte-Carlo trial of equation (1);
then according to [4, Sub Clause 7.6], the mean value:

L̃ =
1
M

M

∑
i=1

Li (3)

is used as the measurement result, and the value:

u2(L̃) =
1

M−1

M

∑
i=1

(

Li − L̃
)2

(4)

as the standard uncertaintyu(L̃) of this result.
The extended uncertainty was calculated using 2.5% and

97.5% percentiles for a confidence level of 0.95. The differ-
ence of the percentiles is used as the width of the uncertainty
inverval.

The standard uncertainties of the input data are (Uin, µm):
1.7; 1.7+ L

350; 1.7+ L
200; 2.4; 2.4+ L

350; 2.4+ L
200; whereL is

the distance from the origin to the corrent bore in the pattern,
mm.

Simulation software was written in Free Pascal. Simula-
tion is performed on an Intel Core i7 2.6 GHz machine. The
runtime for each value of input uncertainty with 106 trials is
within 3 minutes.

6. EVALUATED DATA SETS

Since no reference data sets are available for position toler-
ance evaluation hence drawings and numerical values of such
data sets are proposed.

Simulation was made using three different data sets, where
point coordinates correspond to centers of bores in a work-
piece:

1. Symmetric pattern (Star) — coordinates of 19 symmet-
ricaly arranged bores (table1).

2. Asymmetric long pattern — coordinates of 4 assymetri-
caly arranged bores on long distance (table2).

3. Asymmetric short pattern (rectangular) — coordinates of
6 bores in rectangualar grid (table3).

The proposed bores configurations cover different types of
workpieces typically involved in position tolerance evalua-
tion.
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Table 3: Coordinates for the rectangular pattern

Point No X, mm Y, mm
1 -10.0 25.0
2 -50.0 25.0
3 -10.0 65.0
4 -50.0 65.0
5 -10.0 105.0
6 -50.0 105.0
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Fig. 1: Drawing of the symmetric pattern

q1

q2

q3

q4

Fig. 2: Drawing of the asymmetric long pattern

q1 q2

q3 q4

q5 q6

Fig. 3: Drawing of the rectangular pattern

Fig. 4: FunctionU95(Uin.avg) for different patterns.

7. RESULTS

The histogram of series of Monte-Carlo trials is a plot of
the measured position tolerance deviation versus the number
of measurements at that deviation. The histogram can be used
to model the probability distribution of the measurements.In
the evaluated model, if the number of trials is increased, then
the histogram begins to take on some definite shape. As the
number of trials approaches infinity, the histogram distribu-
tion approaches some definite, continuous curve, called the
limiting distribution [26]. Different types of models result in
different limiting distributions.

Histograms of position tolerance deviations for each data
set are presented in figures5—7.

The dependancyU95(Uin.avg) for different patterns is pre-
sented in figure4. Horizontal axis corresponds to average
input uncertainty, vertical axis — simulated width of uncer-
tainty interval.

Final results of Monte-Carlo simulation for different values
of input uncertainty are in table4.

8. CONCLUSION

Using the wide spread theoretical position tolerance model
and based on Gaussian distribution the input CMM uncertain-
ties are propagated to the position tolerance uncertainty.The
dependencies constructed show that uncertainty transforma-
tion is linear and significant uncertainty values arise for long
workpieces of several meters length.
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