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Practical Procedure for Position Tolerance Uncertainty
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Determination of realistic uncertainty valuesin coordinate metrology isa challenging task dueto the complexity of theimplemen-
tation of numerical algorithmsinvolved. Monte-Carlo error propagation isused to estimate the uncertainty of a position tolerance
using least-squares criterion. In this paper all the required steps are sequentially performed using a number real-world datasets.
Since no reference data sets are available for position tolerance evaluation hence drawings and numerical values of such data sets
are proposed.
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“So, a result without reliability (uncertainty) state- cess. The process stops when the running average stabilizes
ment cannot be published or communicated be- This value (the running average) is the measurement result,
cause it is not (yet) a result. | am appealing to my  and its standard deviation is the standard uncertaintyo(dec
colleagues of all analytical journals not to accept ing to [2]).

papers anymore which do not respect this simple In this paper Monte-Carlo error propagation is used to es-
logic”. (Paul De Biévre, []) timate the uncertainty of a position toleran& (ising least-
squares fit.

1. INTRODUCTION
2. RELATED WORKS
M EASUREMENT result besides a measured value should
contain a measurement uncertainty. Determination ofDhanish and Mathewl[0] used Monte-Carlo error propa-

realistic uncertainty values is a challenging task in cowtk gation do determine the effect of CMM point coordinate un-
metrology. It is caused by the fact that coordinate meagurigertainty on uncertainties of circular features. Liu effall]
machines (CMM) are very versitile instrument that is aféeict utilized Monte-Carlo error propagation to estimate form de
by vast number of factors. viation uncertainties. Romano and Vicarib2] proposed a

According to the ISO Guide to the Expression of Uncefesearch of an influence of position tolerance uncertainty o
tainty in Measurement2] a measuring task should have farts acceptance using Monte-Carlo simulation. Sworn et
mathematical model describing how the measured value @k{13] considered how optimization criteria (Gauss, Chebi-
pends on input quantities. Using such a model one can aqsiiev, inscribed and circumscribed circles) affects measur
probability distribution of the measured value. Standand-d ment results. Hoppl§4] proposed analytic method to eval-
ation of this distribution can be used as an uncertainty ef thate the uncertainty a three-point circle fitting. Horn stdd
measured value. As is shown by Cox et 8].ih most cases the absolute orientation problem and proposed closed-form
it is enough to know mean value and standard deviation egaiutions using unit quaterniorl§] and orthonormal matri-
there is no need to deal with explicit probability distriloms. ces [L7], his evaluation of a best-fit transformation is used in

Monte-Carlo error propagation is widely used for this puthis paper.
pose B]. The procedure is known as the "virtual measuring
maghine" (VCMM) [5]. This method is used in certified cali- 3 pygi110N TOLERANCE LEAST-SQUARES FIT AND
bra'tlon'laboratorl'e.s in Germany, UK and other contrig}4d ABSOLUTE ORIENTATION
maintain traceability ] of the measurement results.

Monte-Carlo simulation assumes that a probability distri- The goal of position tolerance is to ensure assemblability
bution of the input data is known. Usualy a normal distribf workpieces. Fitting of workpieces can be viewed as an op-
tion is used, but in principle any type of distribution can bgnization problem 18]: find the the parameters to transform
considered within this method. For an input data set one gghe coordinate system into the other that optimize a partic-
erates random deviations (simulating uncertainty in tipeiin oy fitting objective for a set of points. Hopp claimsg]

data) and then a measurement model is computed. To gekffi averaging fits used in metrology are biased with respect
probability distribution of the result one should repeat pino-

1Though a median-polish fif] is also used to evaluate position tolerance
*Corresponding authokosarevsky@mail.ru is was beyond the scope of this paper.
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to the extremal fit objectives suggested by tolerancingrtheo e the radius deviation is random, independent, normally
and the averaging fits will be different from extremalZitin distributed with a mean value 0 and standard deviation
this paper we use the averaging least-squares fit because of i o;
wide use in CMM software. o
Position tolerance with a least-squares fit is a case of pla-
nar absolute orientation problem — finding the relationship
between two planar coordinate systems of nominal and actudl
data respectively. Suppose we have a s& abminal points
in R? and a set oN measured points ifR2. The absolute o "
orientation problem is to determine an affine transformmatio L€t Ti» & and @ be the deviations of thi feature coor-
(rigid motion [L9]) such that each measured point is movenates. As they are random variables the position toleranc
near the corresponding nominal point minimizing the Spege_watlons will also b.e random vangbles with standard ﬁew
fied criterion by a numerical process, Gauss or Levenberg"lonSGLi- Our goal is to findoy; using the value of radius

Marquardt optimization or some other. standard uncertainty. _ _ _
The implementation of Monte-Carlo simulation resides on

two probability theorems:

the polar angles are random, independent and uniformly
distributed in[— T, +71;

the standard deviation of modern CMM isg <
1074 [14).

4. UNCERTAINTY EVALUATION

Theorem 1 (Linearity of Expectation) [15, p. 8]: Let

According to P] in most cases a measurand Y is Nqty g ) and EXR,) be the expected values of random vari-
measured directly, but is determined frosh other quan- ables R and R. Then for every pair of Rand R the ex-
tities Xz, X, ... XN through a functional relationship¥ = pected value of.theirsum is:

f(X1,X2,... XN)-
The combined standard uncertainty of the functfonan EX(Ry + Ry) = EX(Ry) + EX(Ry).
be evaluated as:

N 7 3f\2 Theorem 2 (Function Linearization): Let n be the set of un-
ufY) = \/Z (ﬁx.) SU2(X). correlgted rgndom variable§X, ..., Xn } with expectations.m
i= and dispersiongi?. Let Z=H(X,...,Xy). Then expectation

The functionf corresponds to the measurement proce%r%d dispersion of Z are approximately equal to:

and the method of the evaluation. Depending on how 10 92H
the standard uncertainty is evaluated, the input quasititie mz =~ H(my,...,my) + = Z—ZUF
X1, X, ... XN may be grouped intd]: 25 ox

)

e TypeA evaluation (of uncertainty) — method of eval- , M /0H 2 )
uation of uncertainty by the statistical analysis of series oz~ Zx <5X|> o,
of observations. 1=

¢ TypeB evaluation (of uncertainty) — method of evalu- where all partial derivatives of H are evaluated at
ation of uncertainty by means other than statistical an&l, .-, "h).

ysis of series of observations (i.e. previous measurement ) . ) .
data, manufacturer’s specifications, handbooks). FunctionH (X, ..., X,) is defined by the position tolerance
fitting criteria. The position tolerance is about findingarel

Most of CMMs measure volumetric coordinatesy;z) of tionship between two coordinate systems using specifie-crit
the probe center. It is possibl2(] to consider all CMMs er- rion. In this paper a minimization of the sum of the squares is
rors as the uncertainties of,y; z)-coordinates’ measurementused:

_ T_he result of a position tolerance _ev_aluatlon is a set of_de- Liso=H(Fay,--,Fay,Tngs s Ty ) =
viations for each feature. Every deviation has an uncditain

Metrological vocabularyq] defines measurement uncertainty N

as a “parameter, associated with the result of measurement, —  min (rn —T(r 'a't))2 (1)
. . . » . - N ajr» Yy )
that characterizes the dispersion of the values”. Thediwiit ae{fm;ﬂ]i;
the distribution for a specific confidence level are called ex teR
panded uncertainty?]. To interpret the results presented ivhere T (r5; a;t) — planar absolute orientation transforma-
this paper let us assume that tion; r, — measured coordinates vectof, — nominal coor-

dinates vectorgr — rotation anglet — translation vector.

¢ the deviations of points coordinates are in spherical co- . . S
. ) . Planar absolute orientation transformation is evaluated u
ordinate system with polar radiusand polar angle§ . . .
ing orthonormal matrix17]:

andg;
2Averaging fit is not in accordance with the definitions givanGD&T T(r 'a't) - cosa sina Fott
standards and does not ensure assemblability. a7\ _sina  cosa at®
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Table 1: Coordinates for the symmetric pattern Table 2: Coordinates for the asymmetric long pattern
Point X, mm Y, mm Point X, mm Y, mm PointNo X, mm Y, mm
No No 1 0.0 0.0
1 55.20 31.88 10 33.12 -57.38 2 584.4  -834.6
2 33.12 57.38 11 55.20 -31.88 3 584.4 -1911.6
3 0.0 63.75 12 33.12 57.38 4 0.0 -2746.2
4 -33.12 57.38 13 66.24 0.0
5 -55.20 31.88 14 33.12 6.38
6 -66.24 0.0 15 11.04 31.88
7 -55.20 -31.88 16 -22.08 2550 LetL; be the result o Monte-Carlo trial of equation);
8 -33.12 -57.38 17 -33.12 -6.38 then according to4, Sub Clause 7.6], the mean value:
9 0.0 -63.75 18 -11.04 -31.88 L

19 22.08 -25.50 -
L= M i;L. 3)

o . is used as the measurement result, and the value:
As shown by Horn 16] minimization of the equationl

can be substituted by the minimization of - 1 M o
. u (L):iM—li;(Li_L) (4)
. 2 =
Liso= min Zl(r’ni —T(r'a;a;0))", (2) 3
el as the standard uncertaintyl) of this result.

. . 0
in the coordinate system where centroids of nominal and m 9-21'/3 extren(rjfi:j U?Cfrtaln;);i(\j/vis C?If/u'fti% Léssmgrﬁ'sd/;’ﬁapd
sured datasets are equal. A closed-form solution propoged b’ o percentiies for a contidence levet of ©.9>. The ditter-

Horn et al. [L7] was not used in this paper since most of cmpince of the percentiles is used as the width of the unceytaint

; ; ST Inverval.
software implementations rely on a generic minimizatioo-pr L . i
cess rather than on ad hoc methods. The standard uncertainties of the input data &kg, (xm):

. L . L . . L . L . H
Jacobian for Levenberg—Marquar@1] minimization of tlh7dl7t+ @’fljthﬂj’ 24 2t4tJE 350 2'4Tbﬂj’ \{vhter:eL 'St
(2) was computed using finite differences: e distance from the origin to the corrent bore in the pafter

mm
3= D(a +¢)—D(a) _ Simulation software was Written. in Free Pascal. _Simula—
F = - < ) tion is performed on an Intel Core i7 2.6 GHz machine. The

runtime for each value of input uncertainty with®1ials is
whereD(a) = |r'n, — T(r';a;0)| and € was chosen to bewithin 3 minutes.
10~1 which provided numerical stability of the results.

6. EVALUATED DATA SETS
5. IMPLEMENTATION DETAILS
Since no reference data sets are available for position tole

Minimization of the sum of the squares was done usiRgce evaluation hence drawings and numerical values of such
Levenberg—Marquardt algorithm implementation from Aldata sets are proposed.
GLIB [24] optimization library (based on MinpacR¥]). Simulation was made using three different data sets, where

To evaluate a position tolerance deviations one needs n@f§int coordinates correspond to centers of bores in a work-
inal points coordinates and measured points coordinases, iiece:
aly from a CMM. CMM uncertainty is composed by many
factors that can be put in several major group8l:[ influ- 1 symmetric pattern (Star) — coordinates of 19 symmet-
ence of CMM hardware, workpiece form deviation, distri-  yicaly arranged bores (tabi.
bution of the measured points, evaluation algorithm and its ) _ .
implementation. To generate uniformly distributed valoés 2. Asymmetric long pattern — C(_)ordmates of 4 assymetri-
6 and @ a linear congruential generato?d is used. To caly arranged bores on long distance (t&ble
generate normally distributed values mfLaw—Kelton po- 3. Asymmetric short pattern (rectangular) — coordinates of
lar transform R3] was applied as proposed by Dhanish and 6 bores in rectangualar grid (tat8g
Mathew [LQ] in their study.

The number of Monte-Carlo trials for every simulated ex- The proposed bores configurations cover different types of
periment was chosen according & Bub Clause 7.2.1] andworkpieces typically involved in position tolerance ewalu
with confidence level 0.95 equdls = 1 trials. tion.
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Table 3: Coordinates for the rectangular pattern

PointNo X, mm Y, mm

1 -10.0 25.0
2 -50.0 25.0
3 -10.0 65.0
4 -50.0 65.0
5 -10.0 105.0
6 -50.0 105.0
.3 -2 1
.4 15 14 A2
A3
.5 16 - 19 11
.6 A7 18 .10
7 8 .9

Fig. 1: Drawing of the symmetric pattern

A

Fig. 2: Drawing of the asymmetric long pattern

.5 .6
.3 .4
.1 .2

Fig. 3: Drawing of the rectangular pattern
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Fig. 4: FunctionUgs(Uin. avg) for different patterns.

7. RESULTS

The histogram of series of Monte-Carlo trials is a plot of
the measured position tolerance deviation versus the numbe
of measurements at that deviation. The histogram can be used
to model the probability distribution of the measuremeitts.
the evaluated model, if the number of trials is increaseeh th
the histogram begins to take on some definite shape. As the
number of trials approaches infinity, the histogram distrib
tion approaches some definite, continuous curve, called the
limiting distribution [26]. Different types of models result in
different limiting distributions.

Histograms of position tolerance deviations for each data
set are presented in figurgs-7.

The dependancyes(Uin.avg) for different patterns is pre-
sented in figuret. Horizontal axis corresponds to average
input uncertainty, vertical axis — simulated width of uncer
tainty interval.

Final results of Monte-Carlo simulation for different vaki
of input uncertainty are in tabié

8. CONCLUSION

Using the wide spread theoretical position tolerance model
and based on Gaussian distribution the input CMM uncertain-
ties are propagated to the position tolerance uncertalrts.
dependencies constructed show that uncertainty tranaform
tion is linear and significant uncertainty values arise éorg
workpieces of several meters length.
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