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Estimating the fundamental frequency and harmonic parameters is basic for signal modeling in a power supply system. This 
paper presents a complexity-reduced algorithm for signal reconstruction in the time domain from irregularly spaced sampling 
values. Differing from the existing parameter estimation algorithms, either in power quality monitoring or in harmonic 
compensation, the proposed algorithm enables a simultaneous estimation of the fundamental frequency, the amplitudes and 
phases of harmonic waves. The reduction in complexity is achieved owing to completely new analytical and summarized 
expressions that enable a quick estimation at a low numerical error. It is proved that the estimation performance of the proposed 
algorithm can attain Cramer-Rao lower bound (CRLB) for sufficiently high signal-to-noise ratios. The proposed algorithm can be 
applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing 
problems. The simulation and experimental results verify the effectiveness of the proposed algorithm.  
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1.  INTRODUCTION 

ITERATURE ON ELECTRICAL parameter 
measurement techniques for power system applications 
is both voluminous and generally accessible. The 

magnitude estimation of a power system signal has been an 
important area of research for the past few decades, and the 
methods have almost been standardized for the signals with 
known frequencies. The electrical parameter measurement 
of a fixed-frequency signal is a straightforward task. 
However, if the frequency is not known a priori, it becomes 
a very difficult task to accurately measure the amplitude and 
phase. Various numerical algorithms for power 
measurements are sensitive to frequency variations. 

In an electric power system, an increase or decrease in 
frequency occurs due to disturbances in the power system. 
Large blocks of load are connected or disconnected, or large 
sources of generation go offline. Frequency variations are 
much more likely to occur for the loads that are supplied by 
a generator isolated from the utility systems (islands). Any 
frequency deviation from the nominal value of 50 or 60 Hz 
can substantially degrade the performance of the 
measurement devices that operate based on assumption of 
constant frequency.  

Spectrum estimation of discretely sampled processes is 
usually based on procedure employing the Fast Fourier 
Transform (FFT). The FFT is a computationally efficient 
algorithm for computing the Discrete Fourier Transform 
(DFT). However, although the FFT is quite efficient under 
fixed-frequency conditions, it does not offer very good 
performance unless the sampling frequency and the 
fundamental frequency of the signal are synchronized. It is 
well known that FFT loses its accuracy under 
desynchronization and nonstationary conditions, whereas 
the fundamental/harmonic frequency may vary over time. 
These errors appear due to the orthogonal finite-impulse-
response (FIR) filters having different magnitude gains at 
frequencies other that the nominal power frequency [1] and 
because  the  frequencies  of  harmonics  are equal to zero of  

 
 

the frequency response of the FIR filter with rectangular 
window, which is used in the DFT algorithms. These 
performance limitations are particularly troublesome when 
analyzing short data records, which frequently occur in 
practice because many measured processes are brief. 

To better satisfy the periodicity requirement of the FFT 
process, time-weighting functions, called windows and/or 
correction interpolation algorithms, are used [2, 3]. In this 
way, however, the error can only be reduced but not 
removed. If a window is not used, then the synchronization 
to the grid fundamental frequency is mandatory. 
Unfortunately, phase-locked loop (PLL), as a traditional 
synchronization method, has a rather long response time, 
particularly in the presence of the transient phenomena on 
the input signal, such as the power supply frequency 
variations or the phase jumps. 

In addition to the disadvantages related to the 
synchronization of the sampling frequency with the 
frequency of the signal, the FFT has disadvantages caused 
by frame implementation. Thus, the FFT processes entire 
frames of data and cannot provide in-between data. If the 
calculation is done in a sliding mode, i.e. the FFT is 
repeatedly applied to a frame of N elements computing of 
the last N-1-shifted elements of the previous frame and a 
single new element, then FFT requires intensive 
computational effort, which complicates its integration in 
low-cost microcontrollers. 

A Newton-type recursive numerical algorithm that also 
considers the system frequency as an unknown signal model 
parameter to be estimated has been proposed in [4]. It 
simultaneously estimates the frequency and spectra of the 
power system. This approach solves the problem of 
sensitivity to frequency variations. By the introduction of 
power frequency in the vector of unknown model 
parameters, the signal model becomes nonlinear, so 
strategies of nonlinear estimation are used. The recursive 
algorithm form is improved with a strategy of sequential 
tuning  of   the  forgetting   factor.    By  this,  the   proposed  
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algorithm convergence and accuracy are significantly 
improved. 

If the generator and the acquisition device are not 
synchronized, then the FIR filter with optimized frequency 
responses, which do not need synchronization, can be 
designed by the least-square (LS) technique [5]. In this case, 
the computational load is higher than in the synchronized 
case. The LS design method for large-order filters requires a 
considerable amount of computation that may not be 
completed within the available time that is one sampling 
interval. Thus, these filters cannot efficiently be online 
adapted during frequency deviations. If we want to avoid the 
burden of these calculations, than a proper tabulation of the 
weights can be applied.  

The proposed algorithm for estimation is based on the use 
of the values that were obtained as a result of the sampling 
of the continual input signal. This kind of processing must 
be done as many times as it is needed to enable the 
determination of the unknown signal parameters. The 
obtained system of the linear equations can be simply solved 
by using the derived analytical and summarized expressions. 
For this reason, the proposed method offers a significant 
improvement in computational efficiency over the standard 
reconstruction algorithms, at a lower numerical error. The 
method is designed for very accurate RMS measurements of 
periodic signals, and can be applied in precise measurements 
of other important quantities such as power and energy. 

Unlike the IEEE standard that was analysed in [6], the 
algorithm proposed in this paper is significantly more stable 
and free of the propagation error. Namely, when using the 
procedure prescribed by the standard, the amplitude errors 
of the fundamental will propagate through the method since 
the amplitudes are used to reconstruct the detected sine 
wave and obtain the results before they are used to 
determine the next harmonic parameters. Overall, the 
frequency and amplitude errors from the first calculation are 
propagated to the higher harmonics and the calculation of 
the nth harmonic will invariably be contaminated by the 
errors of the phases and amplitudes from previous steps.  

 
2.  SUGGESTED METHOD OF PROCESSING 

Let us assume that the input signal of the fundamental 
frequency f is band-limited to the first M harmonic 
component. This form of continuous signal with a complex 
harmonic content can be represented as a sum of the Fourier 
components as follows: 
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By sampling the signal (1), and by forming a system of 

equations of the same form, in order to determine the 2M 
unknowns (amplitudes and phases of the M harmonic), we 
obtain: 
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where l = 1, 2,..., 2M. The tl is time moment in which the 
sampling of the input analogue signal is done. The s(tl) value 
represents the value of the processed signal at the moment 
when the sampling is performed. The obtained relation can 
be represented in the short form as: 
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where: 
 

( ) ( )MlMkkftk lllk 2,...,2,1;,...,2,1;2, ==== απα  (4) 
 
The αk,l are the variables determined by the moment at 

which the sampling is done, as well as by the frequency of 
the corresponding harmonic of the input periodic signal.  

If the input signal being processed contains a DC 
component, then this component can be simply separated 
(determined) by using an adequate filter, after which it is 
measured, before the signal itself is subjected to sampling. 
In this way, the reconstruction system suggested in this 
paper gives possibility to process the most general form of a 
periodic input signal.  

 
A.  Frequency estimation 

The process of estimating the frequency of multi-sine 
wave signals, from a finite number of noisy discrete-time 
measurements, is an important task from both the theoretical 
and practical point of view. The problem has been the focus 
of research for quite some time and still is an active research 
area to date [7-11], since it is used in a wide range of 
applications in many fields such as control theory, relaying 
protection, intelligent instrumentation of power systems, 
signal processing, digital communications, distribution 
automation, biomedical engineering, radar applications, 
radio frequency, instrumentation and measurement, to name 
just a few. A list of several algorithms is reported: adaptive 
notch filter, time frequency representation based method, 
phase locked loop based method, eigensubspace tracking 
estimation, extended Kalman filter frequency estimation, 
and internal model based method. The requirements on the 
frequency estimator, and thus the choice of the solution, 
vary with the application, but typical issues are: accuracy, 
processing speed or complexity, and ability to handle 
multiple signals. This paper presents a method for 
estimating the frequencies of a multi (single)-sinusoidal 
signal, based on the detected zero-crossing (ZC) of the 
processed signal: 

 
1 0l ls s −⋅ <                                (5) 

 
The ZC method is widely used for its simplicity. However, 

its accuracy is influenced by ZC detection, quantisation 
error, harmonics, noise, etc... In addition, its tracking of 
frequency change is slow because a ZC can only be detected 
after at least half a cycle and it takes more cycles for stable 
results. As it has been defined by equation (5), the number 
of zero-crossings of the processed signal is evaluated by a 
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sign-test of consecutive samples. This type of approach is 
radically different from the methods described in [12, 13], 
that are based on the use of either PLL or filtering of the 
harmonics and after-sampling, or sampling of the whole 
signal filtering of the harmonics and post-processing etc., 
which are more complicated than the threshold crossing 
technique proposed in this paper. 

In order to increase the anti-noise capability, a 2n-length 
window of data can be used. A ZC is determined to be 
included in the window only when n consecutive samples 
have positive signs and n consecutive samples have negative 
signs. By taking n=3...5, the erroneous ZC brought by 
random noise could be effectively reduced. After the ZC is 
detected, the ZC position on time axis can be located by 
linear interpolation with two consecutive samples that have 
different signs. Assuming the two samples are sk>0 and sk-

1<0, the location of a ZC on the time axis is computed by:  
 

1

K

K K

sx k
s s −

= −
−

                               (6) 

 
After the locations of two consecutive ZCs at x1 and x2 are 

known, the frequency is computed by:  
 

( )1 2

1
2 s

f
T x x

=
−

                                (7) 

 
where TS=1/fS is the sampling interval. For online frequency 
estimation, a sliding window of samples is used so that the 
above x1 and x2 are referring to the start point of the data 
window. A security condition is also added to exclude 
erroneous ZC. That is, if the interval between two ZCs is 
significantly different from the previous interval, the newly 
detected ZC will be deemed invalid and the previous 
frequency result will be used instead. With this simple logic, 
the derived frequency accuracy is already sufficiently good. 
The idea was to develop a simpler algorithm of a low 
numerical complexity, capable of offering enough precision 
in determining the frequency of the processed signals. This 
was confirmed by the results of the checks that were 
performed on the suggested algorithm. 

In a power system application, it is inevitable that signal 
may be contaminated by inter-harmonics and random noise, 
which would have adverse impact on any frequency 
estimation algorithms. Therefore, it is necessary to add pre-
filters before the main algorithm is executed. 

 
B.  Proposed algorithm for signal parameter estimation 

The system determinant for the system of 2M unknown 
parameters (equation (3)), can be represented as: 
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A similar form of the obtained determinant (8) was the 
object of study in [14]. Unlike [14], this paper introduces a 
direct sampling of the processed signal, rather than its 
differentiating and sampling. This approach simplifies the 
methodology and reduces the possible mistake in the 
calculation of the unknown parameters. Apart from this, this 
kind of approach reduces the number of parameters 
dependent on the frequency of the processed signal [14] (the 
parameter Ak does not occur), while the value of parameter  
α (relation (4)) and the very determinants are calculated in a 
slightly modified manner. In its form, determinant (8) 
resembles the well-known Van der Monde determinant. 
Owing to relations derived in this way [14], it is not 
necessary to use the standard procedure for solving the 
system of equations. This standard procedure, in the case of 
an extremely complex spectral content of a signal, would 
require a powerful processor and enough time for 
processing.  

The given determinant can be solved as it was done in [14] 
(by using Euler’s formulas): 
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(the summing is done by all of the M’s of the set 
{ }M221 ,...,, ααα ). 
 

The co-determinants required for reaching the solution of 
the given system of equations (3) are: 
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and so on. The co-determinants given above based on the 
following development can be written as: 
 
 

( ) ( ) ( ) 1
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1
2

1
2

1
1 ,...,, MXXX  are the co-determinants, obtained from 

co-determinant X2M,1 after the corresponding row as well as 
the first column had been eliminated. The second co-
determinant (or co-factor) is derived from the expansion of 
X2M along such a column. For this purpose, we must 
determine q

pX  as co-factors of X2M [14]. Therefore: 
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( ) q
p

qpq
p FX +−= 1                             (13) 

 
where q

pF  is obtained from X2M overturning p row and q 
column. We know that [14]: 
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where Δ is the Van der Monde determinant defined in [14]. 
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Hence, it follows that q

pX  is co-factor of matrix, whose 
determinant is Δ2M+1,M+1. 
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(the sum of all inverted M products of different indices). 

 
 
After the intensive mathematical calculation [14] we 

obtain: 
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for MqMp ≤≤∧≤≤ 121 . 
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for MqMMp 21;21 ≤≤+≤≤ , and qM

p
+F for Mq ≤≤1 . 

 
The results obtained from solving of the observed 

determinants were compared with the solution obtained 
from GEPP algorithm (Gaussian elimination with partial 
pivoting), offered in the Matlab program package itself (all 
of the calculations are done in IEEE standard double 
floating point arithmetic with unit round off 16101.1 −×≈u ). 
This represents a practical verification of the proposed 
algorithm for a case of ideal sampling (without an error in 

taking the value of the sample and determining the 
frequency of the processed signal). The difference in the 
obtained values and results obtained with GEPP algorithm 
were equal to 14101 −× . The derived relations produce 
solutions that are practically identical to the procedure that 
is most commonly used in solving systems of linear 
equations. 

Based on relation derived in this way, the unknown 
parameters of the signal (amplitude, phase) can be 
determined through a simple division of the expression that 
represents a solution of the adequate co-determinants with 
the expression that represents an analytical solution to the 
system determinant: 
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It is a fact that the obtained system of equations (3) can be 
described, after the processing, by a special form of the 
determinant (which is summarized as the Van der Monde 
determinant). This fact enables factoring and application of 
transformations that can be applied only on determinants. 
Any other procedure would lead to a much more complex 
calculation and to relations that are mathematically much 
more demanding. If the sampled real signal has inter-
harmonic components, the proposed mathematical 
transformations are not correct anymore. 

 
3.  PROPOSED RECONSTRUCTION ALGORITHM  

When using the proposed algorithm, the first step to be 
taken is to ensure that the order of the highest M harmonic 
component in the processed signal spectrum is adopted in 
advance, accepting that an M determined in this way is 
bigger than the expected (real) value. The M determined in 
this way can be corrected after each passage through the 
proposed procedure and adapted according to the actual 
harmonic content of the input processing signal, which 
enables additional estimation optimization. After this step, it 
is possible to perform the procedure of determining the 
frequency of the basic harmonic, using the previously 
described methodology and based on the detected zero-
crossings.  

In order to recalculate unknown parameters (amplitude 
and phase) of the processed periodic signals, it is necessary 
to have the results of the sampling of the input analogue 
signals s(tl), (equation (2)). The sampling of the input signal 
must be done in 2M points, so as to be able to recalculate all 
of the unknown values. The samples of the input signal are 
obtained by the means of sampling at precisely defined time 
moments, which are referred to in relation to the detected 
moment of zero crossing. The values of the derived 
expressions depend on the measured frequency f, because 
the values of the determinant elements are calculated based 
on coefficient αl, according to equation (4). Apart from this, 
other parameters of the derived system of equations will not 
be dependent on the frequency of the carrier. 
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With every passage of the described algorithm, the 
moment of sampling is referred to the detected zero-crossing 
of the processed signal, and its basic frequency is also 
calculated at the same time. In this way, the determination 
of the unknown parameters of the processed periodic signal 
is less dependent on the possible frequency mismatch. The 
algorithm proposed here is much less sensitive to the 
variation in the frequency of the carrier signal. The moments 
tl in which the sampling of the input signal is done can be 
completely random (asynchronous) and independent of the 
frequency of the processed signal, due to the way in which 
they are defined in equation (4). The interval between two 
consecutive samples is actually dependent primarily on the 
speed of the S/H (sample and hold) circuit and the AD 
(analogue to digital) conversion circuit, with which a 
numeric equivalent to the sample of the input signal is 
formed. However, due to the practical realization and the 
way in which real sigma-delta ADC function, the tl moments 
can be defined as tl = ltsample, where tsample = 1/fS (fS is the 
sampling frequency).  

Due to the presence of the error in determining the 
samples s(tl), and variables αl, which is caused by their 
dependence on the carrier frequency f of the processed 
signal, in the practical applications of the proposed 
algorithm we need to have the best estimate of the given 
values, according to the criterion assumed. This can be done 
by the means of recalculation of the values s(tl) and αl, 
through N passages, (N is arbitrary). In this process we form 
series s(tl)i  and αni (i = 1,...,N), as given in the proposed 
algorithm. The random errors Δn of measurements are 
unbiased E(Δi) = 0, have the same variance var(Δi) = σ2, and 
are not mutually correlated. Under these assumptions, we 
can use the weighted average procedure for decreasing 
random errors in determination of observed values. The 
weighted average is used for measurements that are not 
correlated and have a varying degree of accuracy. The 
averages ( ) llts α̂,ˆ  of the values s(tl), and αl are calculated for 
all l=1, 2,..., 2M as: 
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where ,, isi ww α are non-negative weights of series 
( ) ., liilts α The ,, αnns defines the numbers of different values 

in the above series through N passages. The value of N will 
depend on the required speed of processing – the higher the 
N, the more precise the estimation of the value is. In this 
particular case, the estimation procedure does not require the 
matrix inversion and is considerably less demanding from 
the processor aspect. The proposed solution can be 
modified, in order to reduce the error in determining the 
samples of the input signal. In [15] it was shown that 
implementation of sampling and reconstruction with internal 
antialiasing filtering radically improves performances of 
digital receivers, enabling reconstruction with a much lower 
error. 

After using the procedure described above to perform the 
estimation of the value of samples s(tl) and variables αl, it is 
necessary to perform the recalculation of the unknown 
amplitudes and phases, for all of the harmonic components 
of the processed band-limited periodic signal. According to 
the Fourier coefficients determined in this way, it is possible 
to perform the calculation of the effective value of the 
signal, the active power and energy. When this is done, it is 
possible to start the sampling of the processed signal again.  

 
Computing time 

The suggested algorithm can be applied in operation with 
sigma-delta ADC, thus enabling high resolution and speed 
in processing of input signals. The time needed to perform 
the necessary number of samplings of the input signal that is 
the object of reconstruction is defined as sampleMt2 , which 
represents the value approximate to the time needed for 
reconstruction (in simulation). In practical applications of 
the proposed algorithm, the determined time for the 
reconstruction of the processing signal ought to be increased 
by the time necessary to estimate the variables s(tl), and αl 

(this time is directly dependent on the value N), and the time 
interval Δt, which is necessary to perform all the other 
recalculations according to the proposed algorithm. 
Considering all of the facts presented above, the 
reconstruction time can be defined as 

tfNttMN sample Δ+≈Δ+⋅⋅ /2 , because of the 

necessary synchronization with the zero crossing of the 
input signal. The speed of the proposed algorithm makes it 
as fast as the algorithms analyzed in [16, 17]. 

In order to demonstrate the efficiency of the new 
procedure there is a comparison of the computing time of 
the proposed algorithm to GEPP algorithm in solving the 
system of equations (3), Table1 (using Matlab program 
package, version R2010b). The circumstance of verifying 
real-time characteristic is in computer with Intel Pentium 
2.0G Dual CPU, 2Gb RAM, and Windows XP 2002 
operation system. The results given in Table1 practically 
present the estimated value of the time interval Δt. The 
proposed procedure shortens the time needed for calculation 
by 2 to 3 times, depending on the number of the harmonic 
components of the processed signal. With a more powerful 
hardware platform and a different program environment, the 
time for the realization of the proposed algorithm will be 
many times shorter. 

The paper [18] gives a measurement of the required 
processor time, in the realization of the matrix method in the 
reconstruction of signals, in the form in which it is 
implemented in many program packages. The method 
suggested by this paper does not require any special 
memorization of the transformation matrix, nor does it 
require recalculation of the inversion matrix. In this way, it 
is much more efficient in implementation and it is not 
limited only to sparse matrices. In addition to this, the 
proposed solution becomes easier for hardware realization, 
while the proposed algorithm can be practically 
implemented on any platform. 
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Table1.  Comparison of the computing time. 
 

 
 

4.  SIMULATION RESULTS 
The algorithm proposed in this paper is tested by means of 

the input data obtained through computer simulation. First, 
an input-frequency modulated sinusoidal test signal (step 
frequency change from 50 to 49.8 Hz at t = 0 s) was 
processed. A white noise with SNR = 60 dB was added to 
the sinusoidal signal. The test has been developed with the 
distorted source voltage (10% third, 5% fifth, 3% seventh 
and 2% eleventh harmonics). The phase angles of each 
harmonic were randomly chosen. The results obtained 
confirm a good dynamic response of the algorithm for the 
frequency step change and accuracy. The proposed 
algorithm is capable of adaptively tracking time variations 
of the characteristics of the power signal over time. It is 
observed that apart from a brief transient at the time of the 
step change, the algorithm effectively follows the variations 
in frequency. As shown in Fig.1, we have obtained a 
technique that provides accurate frequency estimation with 
error in the range of 0.001 Hz. 
 
 

 
 
Fig.1.  Estimation for f = 50 Hz for t<0 s and f = 49.8 Hz for t>0 s 
with SNR = 60 dB and with harmonics presence. 

 
 
The ability of the frequency estimation over a wide range 

of  frequency  changes  is  investigated  using  sinusoidal 
test     signals     with     the    following    time    dependence  

 

( ) ( )ttf π10sin5.050 +=  as shown in Fig.2. The good dynamic 
responses can be noticed. Considering the case simulates 
extreme conditions in a power system, the error can be 
accepted by most applications. If additional filters such as 
high-order IIR (Infinite Impulse Response) filters or moving 
average filters are applied, the influence of noise can be 
further mitigated at the price of filter delay. 

 
 

 
 
Fig.2.  Estimation for ( ) ( )ttf π10sin5.050 +=  with SNR=60 
dB with harmonics presence. 
 
 

The effect of noise presence in the signal was studied by 
estimating the frequency and magnitude of signals that 
contain noise. A sinusoidal 50 Hz input test signal with 
superimposed additive white centred Gaussian noise was 
used as input for the test. The random noise was selected to 
obtain a prescribed value of the SNR, which is defined as 
SNR = ( )σ2/log20 A , where A is the magnitude of the 
signal fundamental harmonics, and σ is the noise standard 
deviation. Fig.3 shows the maximum errors observed in 
frequency and harmonic magnitude estimates when input 
signals of 30, 50, and 70 Hz having SNRs of 40, 50, 60, and 
70 dB were used. It should be noted that, in practice, the 
SNR of the voltage signal obtained from a power system 
ranges between 50 and 70 dB. At this level of noise, very 
little error is expected with the proposed technique, as 
depicted in Fig.3. 

In order to investigate the statistical properties of the 
proposed estimator, noisy samples generated by computer 
simulation are used. Noisy samples are obtained by adding 
white noise samples to the samples of processing signal. For 
the estimation of deterministic parameters, a commonly 
used lower bound for the mean square error (MSE) is the 
Cramer-Rao lower bound (CRLB), given by inverse of the 
Fisher information [19-21]. Fig.4 and 5 depict the MSE of 
the amplitudes and frequency after 105 simulations, 
respectively. Results clearly show that the proposed 
estimation schemes asymptotically reach the CRLB as in 
[21, 22]. 

 
 

 
Number of 
harmonic 

components, M 

 
Proposed 
algorithm 

 
GEPP algorithm 

5 0.00084 s 0.00171 s 
7 0.00091 s 0.00215 s 
8 0.00098 s 0.00251 s 
9 0.00104 s 0.00297 s 
11 0.00119 s 0.00399 s 
15 0.00173 s 0.00564 s 
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Fig.3.  Maximum estimation errors for noisy input signals. 

 
Fig.4.  MSE of the frequency as a function of SNR. 

 

 
Fig.5.  MSE of the three harmonic amplitudes as a function of  

SNR. 
 

Table2.  Comparison of simulation results by the proposed 
reconstruction algorithm, FFT and continuous wavelet 

transformation (CWT) [18] 
 

 
Proposed reconstruction 

algorithm 
 Harmonic 

number 
Amplitude 

[VPP] 
Phase 
[rad] Amp.error 

[%] 
 

Phase error 
[%] 

1 1 π 0.0018 0.0019 
2 0.81 π/3 0.0024 0.0022 
3 0.62 0 0.0022 0.0021 
4 0.58 π/6 0.0015 0.0016 
5 0.41 π/4 0.0015 0.0021 
6 0.33 π/12 0.0021 0.0019 
7 0.16 0 0.0020 0.0022 

FFT (sampling rate = 25 
kHz; 

data length = 25000; 
time period = 1 s) 

 
 

CWT 

 
 

Harmonic 
number 

 
Amp.error 

[%] 
 
 

 
Phase 

error [%] 

 
Amp.error 

[%] 
 

 
Phase 

error [%] 

1 0.296 0.322 0.023 0.034 
2 0.035 0.038 0.032 0.028 
3 0.875 0.843 0.049 0.026 
4 0 0 0.144 0.012 
5 0 0 0.013 0.154 
6 0 0 0.012 0.017 
7 0 0 0.223 0.186 
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Additional testing of the proposed algorithm was carried 
out by simulation in the program package Matlab and 
SIMULINK. Standard sigma-delta ADC with the effective 
resolution of 24 bit, and sampling rate fS = 1 kHz was used 
as the ADC. During the simulation, the parameters of the 
input signal corresponded to the values given in Table2. The 
execution time of the proposed algorithm on hardware 
platform described earlier was 0.0167s. In the course of the 
simulation conducted in this way, the output PSD (Power 
Spectral Density) of the ideal, thermal noise affected and 
clock jitter affected was in the range of -100 to -170 dB for 
the signal-to-noise distortion ratio (SNDR) ranging between 
55 dB and 76 dB. 

A signal containing the first 7 harmonics was used, with 
the fundamental frequency f = 50 Hz. The superposed noise 
and jitter will, in simulation performed in this way, cause a 
relative error in detection on fundamental frequency of 
0.001 %. It can be seen that the accuracy of the proposed 
algorithm is within the limits that are attained in processing 
a signal of this form, in [17, 21, 23-25], and better then the 
one presented in [26]. In the time domain, the relative error 
between the signal and its reconstruction was 0.0025 %. The 
errors in the amplitude and phase detection are mainly due 
to the error in measuring of the input signal samples and the 
error in determining the value of the derived equations. 
 
Experimental results 

In order to verify the results obtained by simulation, 
experiments were conducted, using a laboratory prototype of 
“star” connected induction machine. Control structure 
consists of six thyristors, while each pair of back-to-back 
connected thyristors is connected between the phase source 
voltage and the appropriate phase of the induction machine, 
in the “star” connection. The parameters of the induction 
machine are: wound rotor type, two pole pairs, with: 

HLHLLRR mrSrS 3.1,055.0,63.14,2.5 ===Ω=Ω= . The 
firing angle α is defined as the angle between zero crossings 
of the phase voltage to the conduction beginning of the 
appropriate thyristor. 

The experimental setup consists of voltage and current 
transducers, a connector block, data acquisition card and 
processing computer (PC). An acquisition card NI 
ELVIS/PCI-6251 Bundle (National Instruments) is used to 
input the current and voltage signals at each phase in the PC, 
where they are subjected to the proposed algorithm for 
processing. LEM HTR current and LEM CV3 voltage 
transducers were used as measurement hardware. The DAQ 
card sampling rate was 250 kS/s.  

For n = 1500 rpm (the synchronous speed of the machine), 
“star” connection, the parameters of current and voltage 
harmonics in phase ‘a’ were recorded using the existing 
software (NI LabVIEW), Table3. The signals with this 
harmonic content were also processed using the proposed 
algorithm for the estimation of signal parameters. The 
difference in the amplitude and phase detection between the 
data acquisition card and proposed reconstruction algorithm 
are also given in Table3. The analysis shows that the 
proposed algorithm remains highly accurate in processing of 
periodic signals in real environment. 

Table3.  Comparison of experimental results by the proposed 
reconstruction algorithm and results obtained with acquisition card 
NI ELVIS/PCI-6251 Bundle 
 

Acquisition card 
(α = 110o) 

 

Proposed reconstruction 
algorithm 
(α = 110o) 

 
 

Parameters 
Measured 

values 
Phase 
(deg) 

Amplitude 
differe. [%] 

Phase 
differe. [%] 

Iph_a1 (1st 
harmonic) (A) 

0.63 57.87 0.0021 0.0024 

Iph_a3 (3rd 
harmonic) (A) 

0 0 0.0019 0.0025 

Iph_a5 (5th 
harmonic) (A) 

0.13 -21.77 0.0026 0.0022 

Iph_a7 (7th 
harmonic) (A) 

0.04 -80.21 0.0018 0.0028 

Iph_a11 (11th 
harmonic) (A) 

0.1 154.85 0.0018 0.0021 

Iph_a13 (13th 
harmonic) (A) 

0.114 25.47 0.0013 0.0023 

Iph_a17 (17th 
harmonic) (A) 

0.02 -12.63 0.0029 0.0017 

Iph_a19 (19th 
harmonic) (A) 

0.029 -56.48 0.0023 0.0027 

Vout_a1 (1th 
harmonic) (V) 

271.94 0 0.0018 0 

Vout_a3 (3rd 
harmonic) (V) 

33.62 122.23 0.0028 0.0023 

Vout_a5 (5th 
harmonic) (V) 

23.12 -42.37 0.0017 0.0026 

Vout_a7 (7th 
harmonic) (V) 

10.52 74.68 0.0017 0.0023 

 
5.  CONCLUSION 

The estimation procedure proposed in this paper is a new 
complexity-reduced algorithm for estimation of the 
frequency and signal parameters. The derived analytical 
expression opens a possibility to perform fast calculations 
with a low numeric error. The computing time is determined 
by the time that is necessary for the collection of the 
required number of samples of the processed signal and the 
estimation procedure itself. In any case, the time is much 
shorter than with any other known matrix method used. All 
the necessary hardware resources can be satisfied by a DSP 
of standard features and real sigma-delta ADC. Based on the 
identified parameters of the AC signals, we can establish all 
the relevant values in the electric utilities (energy, power, 
RMS values). The measurement uncertainty is a function of 
the error in synchronization with fundamental frequency of 
processing signal (because of the non-stationary nature of 
the jitter-related noise and white Gaussian noise), and the 
error that occurs in determining the values of the samples of 
the processed signal. Through computer simulations, it is 
shown that the mean square frequency and amplitude errors 
of the developed method can attain CRLB for sufficiently 
high signal-to-noise ratios. The simulation and experimental 
results show that the proposed algorithm can offer 
satisfactory precision in reconstruction of periodic signals in 
a real environment. 
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