10.2478/v10048-012-0019-4
MEASUREMENT SCIENCE REVIEW, Volume 12, No. 4, 2012

Design of Experiment for Measurement of Langevin Function

P. Twek* M. Tuckovd?, E. Fiserovd, J. Tieeld, L. Kub&ekd

IDepartment of Geoinformatics, Faculty of Science, Paladkigersity in Olomouc
2Department of Mathematical Analysis and Applied MatheosatFaculty of Science, Palacky University in Olomouc
3Regional Centre of Advanced Technologies and MaterialpaBieent of Experimental Physics, Faculty of Science,
Palacky University in Olomouc

The presented study focuses on a confrontation of the theoryf cegression models and theory of experiment with the real situatio
of determining properties of magnetic (nano)materials. Their magetic properties can be deduced by measuring their magnetiza-
tion, being the fundamental magnetic quantity of an arbitrary (nano)material. The results of the magnetization measurements date
mine the unknown parameters of a known nonlinear function that claracterizes the (nano)material under investigation. Knowledge
of the values of the unknown parameters enables to decide whethie (nano)material is suitable or not for a particular application.
Thus, in this work, we present a possible approach how to estimaténé unknown parameters of the nonlinear function by the re-
gression models, taking into account a relevant linearization criteria. Then, we suggest an appropriate design for the measurement
to get better estimators of the parameters.
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1. INTRODUCTION system which represents the basic physical quantity ofyever
magnetic material and/or nanomaterial. The magnetization
DUE To their high application potential, magnetic materican be measured in two ways. We recognize temperature-
als raise a significant attention of the scientific commdependent magnetization when the external magnetic field
nity [5]. It turns out that if the size of the magnetic material i kept constant and the magnetization is measured within
reduced, below its characteristic size, new physico-cbaimia given temperature range, or field-dependent magnetizatio
properties emerge that are totally different from thosekexhwhen the temperature is kept constant and the magnetization
ited by the material’s bulk counterpa#,[12]. This is caused is acquired within a given interval of the magnetic industio
by a fact that in the nanoworld, the magnetic behaviour of m@enoted a8) of an external magnetic field. The result of the
terials is governed by other physical laws than at the macgecond approach is the so-called hysteresis loop, beingfone
scopic scaled]. In almost all cases, we observe a magnetife main magnetic characteristics of a magnetic matered us
behaviour that is very promising and attractive for its subsfor its classification into a group of soft or hard magnetic ma
quent practical application. terials [L0]. From the measured hysteresis loop, it is possible
From the application viewpoint, iron- and iron-oxide-bé&s&o determine several parameters that unambiguously charac
compounds constitute one of the most important types tefize the studied material. On the basis of the values skthe
magnetic materialsg] 14, 15, 18]. If these compounds areparameters, one can decide if the material is suitable or not
synthesized as nanoparticles they can be utilized in a bréadthe intended application.
variety of practical branches of human activity (e.g., con- Nanosized magnetic materials exhibit one remarkable phe-
trast agents in nuclear magnetic resonance imaging, carri®omenon that is known as superparamagnetism and is charac-
of drugs, heat mediators in magnetically-induced hypertheerized by a zero value of the coercivity and remanent magne-
mia, tools in cell labelling, magnetic pigments in informeat tization [2]. When the magnetic nanomaterial is in the super-
storage industry, etc.). paramagnetic state, the corresponding hysteresis logg&so
In general, we distinguish two approaches how to syie origin of the M vs. B plot and the upper and lower branch
thesize magnetic nanoparticles, i.e., top-down (physerad of the hysteresis loop are identical, see Fig. 1.
bottom-up (chemical) approaciid]. As a result of both  In most cases, the profile of the superparamagnetic hystere-
synthetic ways, we can prepare various systems of magneicloop is described by the well-known Langevin function
nanoparticles differing in their sizes, size distribusoand (for another example of application sE]) which is given

shapes and may affect their degree of agglomeration. by [2]

Once such a system of nanopatrticles is synthesized, it is
necessary to study its magnetic properties on whic.h basis we yi = B1- coth( Bz %) — B Ci=1...n 1)
can decide whether the as-synthesized nanoparticle system Bz %

meets requirements imposed by a given application. Frosn tvr\]/lhereB andp, are parameters which represent physical con-
viewpoint, we look for magnetization (denoted M$ of the L 2arep 1ch represent phy
stants unambiguously characterizing the investigated-nan

*Corresponding authopavel.tucek@upol.cz material. From the physical viewpoint, the coefficight
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30 nanoparticles was found to fall in the range from 5 to 10 nm.
:’ 24 7] 2. EXPERIMENT AND METHODS
o> 18 —
S 12 A superconducting quantum interference device (SQUID,
g i MPMS XL-7 type, Quantum Design) was used for the mag-
= 6 - netization measurements. Hysteresis loop was recorded at
E 0 300 K in 150 points of an external magnetic field ranging from
:g 5 —70000 to+70000 Oe. Firstly, at each measuring point, three
S - mutually-independent measurements were carried outtresul
b -12 - ing in 450 values in total. To measure the hysteresis loop,
5 -18 — we adopted the following typical measuring procedure. Af-
g 24 ] ter placing the sample into the magnetometer sample cham-

4 ber and centering it to get the proper signal, the tempexatur
-30 -] was set to a value at which the measurement of hysteresis loop

| L LA DL L L L was performed (300 K in our case). The magnetometer waited
60 -40 -20 0 20 40 60 approximately 30 minutes to become stable. Then, each mea-
surement was initiated when a given value of the induction of
the external magnetic field was reached; this took 2—-5 minute
including multiple measurements at each measuring paint. |

Fig. 1. Example of the hysteresis loop of a nanomaterial in the gy;r case, this measuring process was repeated 150 times.
perparamagnetic state.

Intensity of magnetic field H x 10° (Oe) = x

2.1. Description of a model

stands for the saturation magnetization of a given nanomateFrom the mathematical viewpoint, we have the values
rial and is a measure of strength of the nanomaterial magn®fi sample mean magnetization = (y1,2,....¥n)’, mea-
response in external magnetic fields. The coefficntep- Sured in the points of the external magnetic field intensity
resents a magnetic moment of a magnetically-active ion if%a.X2; ---Xn)'. The symbol prime stands for the transposition.
nanomaterial (i.e., magnetic element that drives the ntagndh our casen = 150 andy; is an average of three mutually-
response of the nanomaterial), divided by the Boltzmann céfdependent measurements in eaclThe statistical model is
stant and the temperature at which the measurement of ithéhe form of

hysteresis loop is performed. The coefficigatreflects the Y= ¢(B1,B2) +¢, (2)

tendency to reach the magnetic saturation; if the valy& & \\here theith component of-dimensional vector repre-

high, small applied magnetic fields are needed to magnBticlants the nonlinear Langevin functiof) (at the pointx;,

saturate the given nanomaterial. Thus, in many applica,tiop — (B, B2)’ denotes the unknown vector parameter arisl

nanomaterials exhibiting high values of both parametegs gfe n.dimensional vector of random errors. The observation

highly required. vectory is normally distributed with the covariance matrix
The aim is thus to find out the estimates of the parametgiZ\ -1 HereA stands for the diagonal matrix afx n order

of this function for data acquired from the physical expefjgith the valueAir (i) on the main diagonal, wheve = 1 and

ment. Thus, we use a regression model when the nonling@y — 3, the former being the weight and the latter being the

function is firstly transformed into its linear approxin@ti number of replications of measurements performed at point

by the Taylor series expansion. Concurrently, we find the lo-measurement has the same weight at any peirgachy;

cally D-optimal design of measurement to maximize the gg-an average of 3 measurements). The paranwetei0.002

curacy of the found estimators of the unknown parameters afgl2kg— and characterizes the accuracy of measurement (the

to maximize the economic efficiency of the experimer[  yajue was adopted from the documentation protocol of the
In the numerical part, we apply the proposed algorithmgeasurement device).

to analyze experimental data acquired from the magnetizati

measurement of spherically-shaped nanoparticlgsFe, O3 22 Linearization of the model

which were synthesized by a solid-state isothermal decom-

position of iron(lll) acetate dihydrate (bought from Sigma The statistical model?) is nonlinear. Let us consider ap-

Aldrich company) in air at 380C (for synthesis details, seqoroximation[i’0 of the parametef3; The initial value 01‘[30

[4]). Prior to the synthesis itself, the iron(lll) acetate wasas set with respect to the values of parameemsnd 3, de-

homogenized by grinding in an agate mortar resulting in theed for variousy-Fe,O3 nanoparticle systems and reported

size distribution of the precursor particles of 1-5 mm. The literature. We compared the quadratic approximatiom wit

weight of the precursor powder was 1 g and the reaction tihe analytically exact course of the Langevin function. It

was 1 hour. The size distribution of the as-prepardte, O3 showed that the quadratic course approximates the readeour
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of the Langevin function in a sufficiently large neighborbdooWatts intrinsic curvature of the mode3)(at the point[S’0 is
of a given pointB°. Since we can choose a sufficiently largdefined as{]

neighbourhood” of the pointB0 such that the true value of (int) / R0 )

B lies in ¢ and the third derivatives of the Langevin func- C'"™(B”) =sup{ku: dB € R“},

tion can be neglected for an arbitrary pophe &, the para- W
metric space of the paramet@rcan be restricted to the set
0, where the model can be approximated in terms of the \/UZK’(5B)/\M{:\K(5[3)

here

uadratic model. In particular, = ,
a P ka SB'F'NFS
—_ 1 A _
V- 0(B0.B9) = FoB +5K(3B) +e,  (3) ME = 1-PR.
PR = F(FAF)IFA.
where . . _—
Moreover, letol » be a chosen tolerable increase in the signif-
5B = B —BO icance levelr induced by model linearization. Then, the lin-
0 n0 earization region for consistency between experimentt da
Eo_ d(p(ﬁlv/tBZ) and linearized model is given as a set defined as
B
2
K(OB) = (Ki(3B),...,kn(SB))’ LB = {;3%.5;3 - 5B'F'NFSB < ZO(-T :d“(fx} . (6)
Ki(6B) = OB'HidB cin(B")
H = 9%¢(xi, B7. B7) i—1 n wheredmay is the solution of the probabilistic equation given
pap SN o ¥ as

P{X2 5(max) > X2 »(1—a)} = a +tol .
In our case, thdth row of n x 2 design matrixF, i = Dtn-2(Omax) = a2 )} <

1,....n, is defined as Here the symbo}{ﬁfz(émax) d_enc_Jtes_a random variable with
a non-central chi-squared distribution with- 2 degrees of
, (%, B, BY) (%, B2, BY) freedom and with the non-centrality parameiasy x2 ,(1—
fi= ( b ) 3B, ) ’ (4) a) represents thél — a)-quantile of the central chi-squared
distribution withn — 2 degrees of freedom.
with Hence, under assumption of normality, for sufficiently
0 no smalltol &, the quadratic modeBjf can be approximated by
90, B, By) coth(B2-xi) - 1 the linear model%) within the linearization regiot,,. We
B 2 Bg X explain the practical use of this region in the next section.
d(p(xa,Bf,Bg) B —Bf'Xi Bf To dete_rmine the linearization .reg.ion., the supremum is to
0B = [sinh(BY- x-)}z (B2 %~ be found. in ord.er to _evaluate the intrinsic curvature. The fo
2 A lowing simple iterative procedure introduced i8] [can be
The matrixH;, i = 1.....n, is in the form of used. This procedure is based on the original idea proposed

by Bates and Wattsl]; however, in this form, the algorithm
0 S ST is modified in order to use the matrices of the first and second
7 zﬁo[szizg(sfé‘g)])z g;f,‘ derivatives during the calculation directly.
TR o) B i insi int) (g0 -
2 [sinh(B5x )] 2 Algorithm 1 (Intrinsic curvatureC(™)(8%)). In the first step,
we choose an arbitrary vect@u; € R? such thatéu'léul =

Nevertheless, the quadratic mod8) (s still rather com- 1. After that, we determine the vectds defined as
plicated. If we neglected also the second derivatives of the

Langevin function, i.e., neglecting the quadratic tectd3), 5s= (F/AF) '(H1duy,...,Hndu )AMEK (8uy).

we would arrive at a linear model given as ) )
Then, we identify the vectdiu, = ds/vds ds. In the last
v— (B2, B9) = FpB +«. (5) step, we verify the inequality given @&i,du; > 1 tol,
where tol is the sufficiently small positive number. If the in
To assess whether the quadratic mo@ldan be really equality is satisfied, we terminate the iterative processtar
linearized it is necessary to verify the consistency betweatrinsic curvature is equal to
the experimental data and the linearized modg! (More
precisely, it is necessary to test the hypothesis if “lirest i) 0 \/UZK’(5U2)/\M,/:\K(5UZ)
model 6) is true” against an alternative if “quadratic model ctn )(B = SU-F'AFdu
. " S . . 2 2
(3) is true”, at the significance level. One possible solution
of this problem, based on the Bates and Watts curvafi]re [f the inequality is not satisfied, we return to the first stép o
leads to the so-called linearization regid@. [The Bates and the algorithm where we update the initial vectu; by dus.

%
[sinh(B2x )]
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There are other types of linearization regions based on thé. D-optimal design of the experiment
Bates and Watts parametric curvatutgderived for particu-

lar statistical inferenced], e.g., for the bias of the estimator, ¢ ¢ timator of th K {6T0 ful
for a confidence level of confidence domain, etc., however, staccurate estimator of the unknown paramiefo fu N
| this objective as much as possible, we construct D-ogtim

practice it is usually sufficient to use above mentioned oriI o : . t (DOE) which L
For other approach to test the consistency between data gn of experimen ( ) which secures a minimum area
of the confidence ellipse for the parameef7].

linearized model, sec . If X = {xa,...,%} is the set of all experimental points,
L then the functiord : x — (0, 1), with the properties such that

2.3. Estimation in linear model 5(i) = 8(x) > 0,i=1...,nand 3", (i) = 1, describes
Let us consider the linear modd)(i.e., the model in the the design of the experiment; the numidt) represents the

form of y — (P(B%BS) =FoB+¢,0B8=p _[30_ Recall thaty relative number of measurements at the peint The sup-

is the n-dimensional normally distributed observation vectdort of the design is given by the set of experimental points

with the covariance matriw?A~! such thaty represents anto Which a non-zero value was assigned by the de8igre.,

average of three independent measurements at thexpoint SP(0) = {i : 8(i) > 0,X € x}. The information matrix of the

is the known design matrix anfij3 is the vector of unknown designd is defined as

regression parameters.

The main objective of the whole analysis is to obtain the

— A f/
The best linear unbiased estimator (BLUE) of the regres- M(9) T O()AifiT;,
sion parameted is given as 9] 1€SR9)
5 ey lera [~ 0 ~0 wheref], is theith row of the design matri¥ (4) and }; is
OB = (F/AF) "F'A {y— @1 B2)) - (7) thedwre]:ilghlt of meas#rerz]menft at the pointin our cage,/\i " 1I g
and the elements of the information matrix can be calculate
Hence, the BLUE of the paramet@ris calculated from using the formulas given as
o~ N ’
B=05p+p° ®) LY (comipern- 575 )
i= 2 A
and its covariance matrix is then given 9} [ n 1
. L Mz = My= 'Zld A <C0th(Bz-Xi) - m)
var(B) = o? (FAF) . 9) =
y —Br-% B
To describe the accuracy and reliability of the estimated [sinh(B2-x)]2 ~ BZ-% )’
values, a confidence domain can be used. The confidence do- n B x g\
main for the parameteB is a set in parametric space Bf Mz = i;d Ai- ([sinh(Bz-xi)]z + /322'Xi> .

which covers the true value ¢ with a given probability of )
1— a. Explicit formula for (1 — a)100%-confidence domain f N denotes the total number of all measurements carried

for B can be written asq] out in the experiment, the number of measurements that are
performed at the poing € Sp(9d) is equal tor (i) = (i)N.
S1-a(B) = Let us consider an arbitrary fixed designwith the sup-

{u eR?: (u—ﬁ)’F’/\F(u _E) < 02)(22(1—0{)}. (10) portSpd) = {X,,...,%,}. We denoteys = (Vi,,...Vi,) as
the vector of sample mean magnetization observed at the
Geometrically, the confidenAce doAmaAin is an ellipse with tints x,; particularlyyi, is the average of (i1) indepen-
center at the estimated poifit= (B1,B2)’. The smaller the dent measurements at the poiqf, etc. By using formu-
area enclosed by the confidence elliggeq (B) is, the more las (7)-(9), the BLUE of the parameteB, derived from the
accurate the estimates Bfare. experiment carried out according to the designis given
Moreover, the confidence domain for the param@tés a 453, — p° 4 ‘%’5 with the covariance matrix V: rﬁ5> —

proper tool for decision whether the model can be linearized, _, 1
or not. The linearization regioﬁﬁm(ﬁo) is also characterized? (Fs/\sFs) ", where
as an ellipse, however, its center is at the approximatet poin _ _
B°. Semi-axes directions are determined by the eigenvector OB = (FsM\sFs)~'Fosl\s [Vs — 95 (B, B2)] - (11)
matrix F'AF and are identical for both types of are@; (3°) Here F5 and g5(B9,BY) are constructed fromF and

andé‘)l,a(ﬁ).(;l'hus, by shifting the center of the Iinearizatiora)(ﬁf’ﬁzo)’ respectivelly, by omitting rows with indexes to
region.Zint(B") to the estimated poinB, we obtain simple which zero values were assigned by the desigiihe matrix
!mearlzatpn criterion: '!'he quadratlc model can be_ “"Hf' g is constructed similarly by omitting rows and columns cor-
if the confldencgdomalé"l,a(ﬁ) is a subset of the lineariza-responding tad(i) =0, i.e., A5 = diagi,r(i1),. .., Ai, I (in)].

tion region.Zint(B), i.e.,61-a(B) C Zint, Or, equivalently, if  The design is said to be D-optimal if and only if it min-

/o imizes the determinant of the inverse information matrix
X5(1—a) < —— [3,17]. It can be determined by the following iterative proce-
Clin(B7) dure B, 17
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Algorithm 2 (D-optimal Design) In the first step, we choose 1pX10°
an initial design &(i) = 1/k with the support Sid) =
{Xiys-- -, % }. The number of elements in the support &p
should be greater than or equal to number of estimated |
gression parameters ¢.

In the following steps, we determine a sequence of desii <= 8f

01,0, ... such that the desigds. in the (s+ 1)-step is a "
convex combination of the desi@dg from the s-step and the 6f
one-point design with the suppqmi;l}, where the indexi ; st -

is a solution of maximization problem given as

é04 0.645 0.65 040‘55 0.66 0.065
max{AfiM 1 (&)fi :i=1,...,n}.

Fig. 2: Linearization region (dashed line) and 95% confidence do-

In particular, the support of the desigd,; is defined as - (solid line). Model before DOE.

SH&1) = SH&) U {x;,,} and

1 if i= & Sp(ds) 005
i _ k+isj1 . I Isy1
Os1(ist1) {W if Xiz,, € SH(d)

Sia(l) = k+s+1

if X € SP(&s) & | #1051

Consequently, the information matrix of the desilyn, is
given as the same convex combination of the information r
trices of the desigds from the s-step and one-point desig

y ~ magnetization [emu]
o

» measured points
—approximate values|

with the supportx;: ., }, i.e., 008 5 5 ; : .
X ~ intensity of magnetic field [Oe] x 10"
k+s 1 ,
M(0s+1) = K+s+ 1M (&) + K+ s+ 1/\i§+1fi§+1fi§+1' Fig. 3: Approximation of the measured values by the Langevin func-

tion before using DOE.
If the inequality given as

ng—1 B
MaAARIM (S a)fi 1 =10 <k tolo, Since X2(0.95) = 5.99 < 2/3nay/C™ = 3297986, the
where k is a number of regression paramet@rand tob is a cc_)nfidence domain !ies vyithi_n the Iineari_zation region (see
chosen tolerance, is satisfied, the algorithm is terminaedi F19- 2) and thus the linearization of model is possible.
the designds, 1 is considered as D-optimal. The points from The estimates of paramet@rand their standard errors in
the initial design which have a relative frequency of measuthe linearized model ag; = 0.0513+0.0005 and3; = 7.94-
ment tending to zero are omitted from the optimal design. 107°=0.19-10~°. Substituting the estimates into Langevin
function (1), we get an approximatioyillustrated in Fig. 3.
We can quantify the goodness-of-fit of the model by, for ex-
3. NUMERICAL STUDY ample, the coefficient of determinatid®. It is defined as
. o o [9] R? = 1— SSE/SST, whereSSE= (y —y)'A(y — ) is the
Firstly, we explore the linearization regions in order te d¢.ciqual sum of squares aSST= (¥ — ml,)A(y — mly) is
cide whether the linearization is possible. Table 1 listsits 1,4 total sum of squares. Hare= (1/n) 3", ¥ and & is the
obtained by linearization of the model, describing the megs o formed by ones. In our caséx? :I6.996.
surement of magnetization in all 150 experimental points. F The above-presented experiment was realized at all 150

calgullgtlon, we used relatior§) with tolerancetol - = 0.01 points of the experimental set. These points were spaced
and(10). symmetrically but not equidistantly. Most measurements
were distributed from—20000 to+20000 Oe. Then, we

Bef(;;e_ DOE Sgrg(')'sg's Re;;”tsf];rgglhzt;'de attempted to search for the D-optimal design of nanomate-
nt X 5 el rial's magnetization measurement. We determined the-start
14.0150-10 C'"™ =0.0098 . - . .
ZooB) 0.0013 X2(0.95) — 5.9900 ing design of measuremeny with two points{xz,Xis0} =
095 18888 10-6 22 ’ {—6000Q 70000 € x which formed the support of the start-
: ing designdy.

Tab. 1: Linearization region and 95% confidence domairgfor The D-optimal experiment design chooses two points that

Model before DOE. can be considered as optimal points for the measurement as
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Fig. 4: D-optimal design of the experiment for the measurementFfy. 5: Approximation of the measured values by the Langevin func-
the Langevin function. tion after using DOE.

shown in Fig. 4. We determined the frequency of the megecording to DOE an®* = 0.996 with respect to the origi-
surement in these points as it is shown in Tab. 2. nal measurements. Approximation of the Langevin function
using DOEyp, is depicted in Fig. 5.

Initigl(ziisign % (S:)In:tso_s l;r(ecfgggy _ Itis clear thatthe vari_ance of estimates obtain_ed using DOE

& & (X150) = 0.5 er;) _ 005 !s_smaller than the variance qf e_stlmates obtamed_ f_ror_n the
Optimal design| &' (x1) — 0.498 | Ty, — 225 ||j|t|al model. The D-optimal .crltenon leads to the miniraiz

5+ 5" (Xp7) = 0.499 | 1y, =225 tion of the confidence domain of thel unknown vector param-

_ _ _ eter estimator and therefore, we arrive at more accuraite est

Tab. 2: D-optimal design of the experiment. mates. Approximated Langevin functions are almost the same

_for both experiments (the sum of squared differences otffitte

Since the function %) is symmetric, we divided the rela L . .

. . . . - values in original pointgy, ..., X, is less than 0.00005), how-
tive measurement frequencies both into two optimal IC)Omet\sler the experiment carried out according to DOE is simpler
{1, %7} = {70000 —2000G and into points X125, X150} = ’ P 9 P

{2000Q07000¢. Then, we split the original 450 measure- Analytical course qf th.e Langevin function does not copy
ments into four optimal points(x;) — 112, r(x»7) — 113, thg course of magnetization perfectly (see Fig. 3. and Fjg. 5 _
[ (x125) — 113, andr (xqs0) — 112 in a proportion of the rel- This is the reason Why.we can expect th:'?lt the pgrametgr esti-
ative measurement frequency. mates obtained from different designs will be slightly eliff

We carried out new measurement of the same sample m&gk Relation of the Langevin function is strictly givenigt
up of y-F&0s nanoparticles, however, this time, we pefifferences in the estimations caused by the choice ofrdiffe
formed the measurements only at the optimal points of the 8% designs could be neglected from the practical viewpoint
ternal magnetic field. As clearly seen, the estimates obdairiowever, improvement of the analytical form is the subjéct o
from the model before DOE and after DOE are almost tifigrther research.
same. Namely, we compared the confidence domain of both
models and subsequently evaluated the effect of the D-aptim

criterion. Results of these measurements are summarized in 4. CONCLUSIONS

Tab. 3. At present, the nanosized materials are of eminent inter-
After DOE Semi-axis | Results of right side est both from fundamental and applied reasons. However,
Dt 19.8663 Omax=2.6129 their research, synthesis, analysis, and charactenzatie

0.0456 Cc —418-10 10 very money-consuming and therefore, it is highly needed to

€o9s(B) | 5.5287-10% | x3(0.95) =599 achieve the most accurate results and effective approalches
1.2701:10°° order to get the estimators of the unknown parameters, we
Tab. 3: Linearization region and 95% confidence domairgfor Used the theory of nonlinear regression models which pro-
Model after DOE. vide not only the estimators themselves but also their accu-

racy. This is the main goal for the physical characterizatio

The change in the design significantly affected the Batefnanoparticle samples as precise knowledge of these param
and Watts intrinsic curvature of the model. After DOE, theters predestinates nanomaterials for their future plesait
confidence domain also lies within the linearization regisn plication.
expected, i.e.x5(0.95) = 5.99 < 2/8na/C™ = 7.73-10°.  To find the most effective approach, we used the theory of
The estimates of parametf and their standard errors inpptimal design of experiments. We used the D-optimal cri-
the linearized model arg; = 0.0510+ 0.0002 andf, = terion to minimize the volume of confidence domain of the
8.70-10°+0.09-10 °. R? = 1 with respect to measurementsinknown parameters. It turned out that it is absolutely suffi
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cient to carry out the magnetization measurement only at f¢10] O’Handley, R.C. (2000)Modern magnetic materials: Princi-
optimal points as we get the same values of the unknown pa- ples and applicationsJohn Wiley and Sons, New York.
rameters estimators but with a higher accuracy. This repiEt] Pazman, A. (1993Nonlinear statistical mode)Kluwer Aca-
sents the most important outcome of our presented approach. demic Publisher, Dodrecht-Boston-London and Ister Science

The additional very important profit of the presented woek li Press, Bratislava.
in a decrease in the cost of the measurement as demonstifadPoole, Ch.P., Owens, F.J. (200B)troduction to nanotechnol-
in Tab. 4. ogy, John Wiley & Sons, New Jersey.

[13] Strbak, O. Kopcansky, P., Frollo, I. (2011). Biogenic magnetite
in humans and new magnetic resonance hazard quedieas.

- Before DOE | After DOE surement Science Revigvolume 11, No. 3., 85-91.
Number,\(jlf stabl_llzatt!on processes 5h 220 . oh 4‘; . [14] Tucek, J., Zboril, R., Petridis, D. (2006). Maghemite nanoparti-
Helijriscl:(;lr?s(‘:]u;?teion 31 Imln 0.7 Imln cles by view of MOssbauer spectroscojyNanosci. Nanotech-
- . nol. 6, 926-947.
Operating costs 34 EURO 5.6 EURO . . .
Pfi)ce of r?elium 33 EURO 77 EURO [15] Tucek, J., Zboril, R., Namai, A., Ohkoshi, S. (201@)-
Total Costs 67 EURO 13' 3EURO Fe03: An advanced nanomaterial exhibiting giant coercive

field, millimeter-wave ferromagnetic resonance, and magneto-

Tab. 4: Cost savings obtained by application of DOE. electric couplingChem. Mater22, 6483-6505.

[16] TuCkova, M., TEek, P., Tdek, J., Kubgek, L. (2010). Search
for optimal way to precisely evaluate magnetic response of
ironoxide based nanomaterials-a new statistically-based ap-
proach.Nanocon 2010, 2nd International Conferenek8—
484.
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