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A new approach based on hybrid Hopfield neural network and self-adaptive genetic algorithm for camera calibration is 

proposed. First, a Hopfield network based on dynamics is structured according to the normal equation obtained from experiment 
data. The network has 11 neurons, its weights are elements of the symmetrical matrix of the normal equation and keep invariable, 
whose input vector is corresponding to the right term of normal equation, and its output signals are corresponding to the fitting 
coefficients of the camera’s projection matrix. At the same time an innovative genetic algorithm is presented to get the global 
optimization solution, where the cross-over probability and mutation probability are tuned self-adaptively according to the 
evolution speed factor in longitudinal direction and the aggregation degree factor in lateral direction, respectively. When the 
system comes to global equilibrium state, the camera’s projection matrix is estimated from the output vector of the Hopfield 
network, so the camera calibration is completed. Finally, the precision analysis is carried out, which demonstrates that, as opposed 
to the existing methods, such as Faugeras’s, the proposed approach has high precision, and provides a new scheme for machine 
vision system and precision manufacture.   
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1.  INTRODUCTION 

AMERA CALIBRATION is a process of modeling the 
mapping between 3D objects and 2D images, which is a 
key step for 3D measurement with robotic vision and 

manufacturing inspection, for example the measuring of 
micro-drill [1-2]. Ma estimated the intrinsic parameters of 
the camera by designing two sets of three pure orthogonal 
translation motions, and obtained the orientations of the 
camera with respect to the hand frame with a set pairwise 
orthogonal translation motion [3]. Zhang estimated the 
intrinsic and extrinsic parameters via homography matrix in 
the light of orthogonality of rotational matrix with the 
homography obtained from the 3D coordinates in target 
block and its 2D coordinates [4]. Cai, Li and Qiao proposed 
a camera calibration approach using neural networks, where 
transformation matrices of the binocular vision system can 
be replaced by the stable weights and the activation 
function, but there is no way to get the projective matrix of 
camera [5]. Ge, Yao and Xiang adopted neural network with 
embedded orthogonal weights to achieve camera calibration, 
however, the lens distortions are not included [6]. Faugeras 
adopted a linear pin-hole model of camera, and in the light 
of orthogonality of rotational matrix, obtained the 
intrinsic(without distortion) and extrinsic parameters of 
camera from the projection matrix by decomposition [7]. 
There is a report on the calibration of camera with the 
Hopfield network and simulated annealing algorithm to 
obtain  the  projection  matrix,  however,   the  global  search 

 

 
 
capability of the Hopfield network and annealing algorithm 
is not strong [8].  

Based on our research of camera calibration with 
computational intelligence, a flexible camera calibration 
with the Hopfield neural network and adaptive genetic 
algorithm (HNNAGA) is proposed, so the camera projection 
matrix is estimated according to the output vector of 
Hopfield network. 

Our paper is organized as follows: we first introduce how 
the camera’s pin-hole model is deduced with a sequence of 
geometrical transformations. In Section 3, the Hopfield 
neural network (abbr. as HNN) is structured according to the 
physical model of camera, and an innovative self-adaptive 
genetic algorithm is introduced, where the cross-over 
probability and mutation probability are tuned self-
adaptively according to the evolution speed factor in 
longitudinal direction and the aggregation degree factor in 
lateral direction, respectively. In Section 4, we present the 
calibration experiment and precision analysis. Finally, 
conclusions are presented in Section 5. 

 
2.  PERSPECTIVE MODEL OF CAMERA 

As can be seen from Fig.1, OUV and XYO1  are the 
image frames measured in pixel and mm, respectively, 

CCCC ZYXO  and wwww ZYXO  are the camera frame and the 
world frame measured in mm. Assume ( 1,, ii vu ) to be the 
homogeneous coordinates of point pi, )1,,,( wiwiwi ZYX  the 
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homogeneous coordinates of point Pi in the world frame, the 
transformation relation of OUV  and wwww ZYXO  can be 
described as follows [9-11]: 
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Fig.1.  Perspective model of camera 

 
 
With the eliminating of ciZ in Eq. (1), we have: 
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where [ ]iiiiiiiiii uZuYuXZYX −−−=− 0000112f , 

[ ]iiiiiiiiii uZuYuXZYX −−−= 100002f , 
T,,,,,,,v ],[ 333124211411 mmmmmm LLL= , If n  points’ 

coordinates in OUV  and WWWW ZYXO  are tested, an over-
determined equation is obtained and described as follows 
 

eFv =                                        (3) 
 

where F is 112 ×n matrix, consisting of row vectors such 
as 1f , 2f , ii 212 ,, ff −L , n2, fL , and 

T
nn vuvuvu ][ 2211 LL=e  is column 

vector. Thus, the normal equation can be obtained by 
pseudo-inverse means as follows: 
 

IFvF T =                                     (4) 
 

where FF T is a symmetric matrix, whose elements are ija  

( ,11,,1L=i 11,,1L=j ), and eFI T= . Let FFA T= , 
thus we have 
 

IAv =                                       (5) 

3.  CAMERA CALIBRATION WITH HYBRID HOPFIELD NETWORK 
AND INNOVATIVE GENETIC ALGORITHM 

3.1.  Design of THE Hopfield neural network 
While the camera calibration is carried out, a continuous 

Hopfield neural network based on dynamics is adopted. Its 
structure is shown in Fig.2, whose inputs are elements of 
vector I  in Eq.(5), the weights of the network keep 
invariable during the iteration, which are the elements of 
symmetric matrix A  in Eq.(5), and state variables 

)(1 tv , )(2 tv , L , )(11 tv  are elements of vector v  in Eq.(5). 
Thus, the pin-hole model of camera is transformed to the 
form of Hopfield network. As for the ith neuron, iu  is the 
input signal of ith neuron, which is composed of two groups: 

external input iI− , and ∑
=

11

1j
jijva , i.e., the feedback links 

with other neurons, where ija  is a corresponding element of 
matrix A  in Eq. (5); iR  and iC  are the input resistor and 
capacitor[12-14]. 

 

 
 

Fig.2.  Structure of Hopfield network 
 

According to Kirchhoff’s current law, the relation of ith 
neuron’s input and output is  
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The network’s activation function is the hyperbolic 

tangent function, that is 
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where iλ  is curve’s slope at the principle point. 

At the same time, we define energy function as follows 
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where )(1
ivg −  is inverse function of )( iug , because A  is a 

symmetrical matrix, thus 
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Because 0>iC , =iv )( iug and its inverse function )(1

ivg −  
is monotonously ascending, so 0≤dtdEN  and the network 
will come to equilibrium along with iterations. Assuming 
that the iR  is infinite, thus the third term in right of Eq.(6) 
can be viewed as zero, so Eq.(6) can be viewed as Eq.(5) 
while 0)( =dtduC ii . If the point is the global optimum, the 
output signals 1121 ,,, vvv L  of Hopfield network are taken 
as elements of fitted projection matrix in Eq.(5).  

According to Eq.(6), its iteration algorithm is obtained as 
follows, 
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where t is the integral time.   
 
3.2.  Self-adaptive genetic algorithm 

Genetic algorithm is stochastic search mechanics, which 
consists of reproduction, cross-over and mutation. In the 
solving program, an individual consist of 11 variables, 
which are the output signals 1121 ,,, vvv L  of Hopfield 
network, and the real code is adopted to obtain the 
individuals at random [15]. If two individuals are denoted as 
vector )(ti  and )(tj  at tth generation, their distance is 

2)()()( ttH it jix −= , which is used to describe the non-
similarity among individuals, or the non-similarity of the 
individuals between parent generation and offspring 
generation. In the experiment, according to the knowledge 
of camera model’s intrinsic and extrinsic parameters, and 
the experiment circumstances, the search space of every 
individual is )20000,20000(− ; at the same time lets 
the colony size be M=80, and the iteration timer is 300. In 
the algorithm, cross-over probability and mutation 
probability are adjusted according to the characteristic in 
longitudinal direction and lateral direction. 

The operation of cross-over consists of taking two 
individuals among the current population and in partially 
exchanging their respective information, obtaining two 
individuals who replace them. We adopt the arithmetic 
cross-over that produces two complimentary linear 
combinations of the parents: 
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where r  is a random number between 1 and 0.  

Mutation operation serves for introducing a noise into the 
information of an individual to guarantee a certain variety of 

the population. The non-uniform mutation randomly selects 
one variable of the vector i , j , and sets it equal to a non-
uniform random number: 
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where )(txn , )1( −txn  are the nth variables of individual 
vector )(ti , ia  and ib  are the lower and upper bound of 

)(txn ; 
b

T
ttf ⎟
⎠
⎞

⎜
⎝
⎛ −= 1)( 2λ , t  denotes the current 

generation number, T  is the maximum number of 
generations, 1λ  and 2λ  are random numbers between 1 and 
0; 2=b , is a shape parameter and determines the non-
uniform degree of the operation. It is observed that 

)(tf monotonically tends to 0 as t approaches T [16]. 
1. Evolution speed factor  
In longitudinal direction, the evolution’s direction and 

degree of genetic algorithm are forecasted by the individual 
evolution speed factor. Assuming an individual is denoted as 
vector )(tix  and )1( −tix  at (t-1)th generation and tth 
generation, respectively, their distance is 

2)()1()( ttxH iiit xx −−= . If we let the interval of two 

generations as the sample unit time, the distance )( it xH  
can be taken as evolution speed for an individual. In general, 
the distance of past two generations is larger than the next 
two generations’. In the paper, let )(xH t  be the average 

distance, that is ∑
=

=
M

i
itt xH

M
xH

1
)(1)( , at the same time 

drawing on the experience of the normalization method, the 
evolution speed factor is written as 
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Thus 10 ≤< te , the larger the te , the faster the evolution 

speed; while te  approximate 0, the algorithm stagnates or 
the optimal solution is achieved. 

2. Aggregation degree factor   
In lateral direction, if the individual’s diversity decreases 

too soon during the iteration, the algorithm may not find the 
global optimization solution for the system. In order to 
represent the individual’s diversity, the aggregation degree 
factor is introduced. Assuming all individuals‘ central 
position coordinate vector is x in the tth generation, the sum 

distance of all individuals between x is ∑
=

−=
M

i
itd

1
2

xx , 

so the aggregation degree factor is given by the following 
equation:  
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It is obvious that 10 ≤< tσ . The bigger the tσ  is, the 
more diverse the individual is, and the individuals’ 
disturbance is more dispersed.  

 
3.3.  Self-adaptive algorithm of cross-over probability and 
mutation probability       

If the evolution speed of individuals is high, the algorithm 
can search optimization solution at a large scope. On the 
other hand, if the aggregation degree factor of individuals is 
small, the algorithm will trap into local optimization easily 

[17-18], so we propose an innovative approach to obtain the 
global optimization solution. According to the characteristic 
of the individual’s motion trajectory from the lateral 
direction and longitudinal direction, at the beginning, cross-
over probability pc and mutation probability pm should 
increase along with the increasing of gathering of 
individuals, and increase with decreasing of individual 
evolution speed accordingly. On the other hand, to 
guarantee convergence of algorithm, the cross-over 
probability pc and mutation probability pm should adopt a 
smaller value for individuals with higher fitness degree. The 
pc and pm are modified dynamically as follows, 

 
22

ini )25.0()25.0( −×−−×−= tcteccc epp σωω σ      (15) 
 

22
ini )45.0()4.0( −×−−×−= tmtemmm epp σωω σ    (16) 

 
where ecω , emω , cσω  and mσω  are the coefficients of 
evolution speed factor and aggregation degree factor; their 
ranges are defined as 1,0 << emec ωω , 1,0 << mc σσ ωω . In 
the experiment, let 7.0ini =cp , 1.0ini =mp , which are initial 
values, and keep invariant in iteration. And let 4.0=ecω , 

2.0=emω , 1.0=cσω  and 75.0=mσω . Self-adaptive 
tunings of cross-over probability pc and mutation probability 
pm are shown in Fig.3, where AD factor denotes aggregation 
degree factor, and ES factor denotes evolution speed factor. 

 
 

 
 

Fig.3.  Self-adaptive tuning of pc and pm 

3.4.  Flowchart of THE calibration program 
The flow chart of the program is illustrated in Fig.4. In the 

calibration program, let 100000=R , 1=C , 0001.0=t , 
1=s , 001.0=λ . Because the energy function is negative, 

as can be seen from Eq.(8), so in the iteration algorithm, in 
order to made the motion trajectory come to the least 
Lyapunov function, let  
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The Hopfield neural network is trained 5 times for each 

individual in every generation. )101(1 12−×−E is taken as 
fitting function of genetic algorithm, where E is the 
performance index of the Hopfield network, and the 
constant 12101 −×  is taken as offset value to avoid the 
performance index of the Hopfield network to approach 0. 
According to the evolution speed factor and aggregation 
degree factor we judge whether the system comes to the 
neighborhood of global optimization state (abbr. as NGOS). 
If not, the next vector, which is row vector of matrix A , is 
put into the system; and if all  vectors are over, next round is 
restarted again; else the program only runs Hopfield to 
obtain the precision solution. When the system comes to 
global equilibrium state, the outputs of the networks 
converge to stable values, which can be taken as the 
elements of camera’s projection matrix, thus the camera 
calibration is finished.  

 

 
 

Fig.4.  Flowchart of calibration program 
 

4.  CALIBRATION EXPERIMENT AND ANALYSIS OF PRECISION 
4.1.  Calibration experiment 

The eye-hand system of the robot consists of 4 free degree 
manipulators, camera, target block, servo control system and 
so on, which is shown in Fig.5. In the camera calibration 
experiment, firstly the 3D coordinates of the feature points 
are measured relative to a selected world coordinate system. 
Then the images of target block are taken with the camera, 
and the feature extraction is carried out, so the edge 
information of blind holes is obtained using a technique 
based on edge-detection, which is shown in Fig.6. Finally, 
the 2D coordinates of blind holes’ center in the image planes 
are estimated with sub-pixel accuracy [19-20].  
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Fig.5.  Vision system and manipulator 

 

 
 

Fig.6.  Sampled calibration block image 
 
In the camera calibration program, the improved genetic 

algorithm drives the individuals to come to the 
neighborhood of the global optimization state, when the 
Hopfield network comes to the global equilibrium state and 
the stable output vector is obtained, from which the 
projection  matrix of camera is estimated and shown in 
Table 1. 

 
Table 1.  Camera projection matrix obtained from the outputs of 

Hopfield network 
 

 
 

4.2.  Analysis of precision 
There is no unified precision index standard for a machine 

vision system, in the precision analysis experiment, let 
image residual errors be taken as calibration precision. First, 
the projected points’ coordinates in the image plane are 
estimated according to the projection matrix and 3D 
coordinates of sampled points in world frame, then image 
errors between estimated coordinates and actual tested 
coordinates are taken as calibration precision of camera, 
which can be expressed as follows. 

 
22 )()( vvuu iiu −+−=δ                   (17) 

 
If the coordinates of projected points in the image plane 

are estimated according to the projection matrix and 3D 
coordinates, we have  

 
)()( 3433323114131211 mZmYmXmmZmYmXmu wiwiwiwiwiwii ++++++=

 (18) 
 
)()( 3433323124232221 mZmYmXmmZmYmXmv wiwiwiwiwiwii ++++++=

 (19) 
 

So the coordinates of projected points ( iu , iv ) in the 
image plane are obtained.   

While the calibration precision of camera is carried out, 
we move the manipulator to have the target block at some 
integral number positions, such as 450.000 mm and 410.00 
mm in Z axis. 6 feature points are chosen at random, and the 
coordinates of their center in the world frame are measured, 
which are shown in Table 2. Then the actual tested 2D 
coordinates of blind hole center are obtained from the image 
of the target block, which are shown in the 1st  line of Table 
3. Then according to the results of camera calibration with 
the proposed approach, the coordinates of feature points 
projected in image planes are estimated according to Eqs.(18) 
and (19), which are obtained and shown in the 2nd line of 
Table 3. 

Finally, according to equation (17), the precision indices 
for  the proposed technique are shown in the 3rd line of 
Table 3. 

If the camera calibration method, such as the Faugeras 
approach, is adopted, where the least square method (abbr. 
as LSM) is used to carry out data processing, so the 
projection matrix  of  camera  is obtained and shown in 
Table 4.  

 

 
Table 2.  3D coordinates of sampled points (/mm)   

 

No. 1 No. 2 No. 3 

(46.0005, 25.0068, 450.0000) (126.0098, 65.0108, 450.0000) (66.0047, 105.0050, 450.0000) 

No. 4 No. 5 No. 6 

(46.0109, 45.0090, 410.0000) (126.0073, 85.0081, 410.0000) (126.0084, 105.0063, 410.0000) 

 
 

2.3147 110×  -1.0659 8.2205 -2.0448 210×
8.8249 110−×  2.3592 110×  9.6617 5.9399 210×
-9.5297 410−×  5.0855 410−×  2.7898 210−×  1 
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Table 3.  Coordinates of actual and solved, and precision index (/pixel) 
 

 No. 1 No. 2 No. 3 

Tested coordinates (335.1021, 411.9745) (470.8410, 489.0109) (362.4592, 551.9580) 

Coordinates estimated by 
HNNAGA (335.1915, 412.0574) (470.9315, 489.0908) (362.5461, 552.0439) 

Image errors by 
HNNAGA 0.1219 0.1208 0.1222 

Coordinates estimated by 
LSM (335.2093, 412.0735) (470.9493, 489.1098) (362.5644, 552.0618) 

Image errors by LSM 0.1459 0.1467 0.1478 

 No. 4 No. 5 No. 6 

Tested coordinates (336.7771, 455.5485) (484.6368, 539.6602) (482.5184, 577.3503) 

Coordinates estimated by
HNNAGA (336.8623, 455.6319) (484.7281, 539.7426) (482.6087, 577.4348) 

Image errors by 
HNNAGA 0.1192 0.1229 0.1237 

Coordinates estimated by 
LSM (336.8810, 455.6483) (484.7445, 539.7585) (482.6259, 577.4490) 

Image errors by LSM 0.1441 0.1458 0.1460 

 
 

Table 4.  Projective matrix of camera obtained by LSM 
 

2.3103 110×  -1.0654 8.2013 -2.0316 210×

8.8619 110−×  2.3540 110×  9.6391 5.9373 210×

-9.4046 410−×  5.0298 410−×  2.7834 210−×  1 

 

 
 

Fig.7.  Residual errors of image with two approaches 
 
At the same time, in order to obtain the precision indices 

for the least square method, the 2D coordinates of space 
points projected on the image plane are estimated according 
to Eqs.(18) and (19) and shown in the 4th line of Table 3; so 
the precision indices of calibration, i.e. the image residual 
errors are obtained and shown in the 5th line of Table 3. 

On the other hand, when the target block is located at two 
positions, such as 450.00mm and 410mm, the other 56 
feature point coordinates besides the above 6 points are 
obtained too; and the precision indices are obtained for two 
calibration approaches, then all the precision indices, i.e. 
image residual errors, are plotted in one figure and shown in 
Fig.7.  

 
As can be seen from Fig.7, the residual errors between the 

tested image coordinates and estimated coordinates are 
demonstrated and composed with two approaches. The 
maximum error and minimum image error are 0.1297 (pixel) 
and 0.1192 (pixel) with the proposed approach, respectively; 
and the maximum and minimum of the image residual errors 
are 0.1554 (pixel) and 0.1426 (pixel) with Faugeras’s; and 
the average residual errors of the proposed approach and the 
least square method are 0.1254 (pixel) and 0.1504 (pixel), 
respectively. 

 
5.  CONCLUSIONS AND FURTHER WORK 

A novel approach for camera calibration based on hybrid 
Hopfield network and self-adaptive genetic algorithm is 
proposed in this paper. As opposed to other techniques, our 
main contributions are [3-7]: 

Firstly, the Hopfield neural network is structured 
according to the normal equation derived from experiment 
data and physical model of camera, so the fitting algorithm 
of camera calibration is transformed into dynamic neural 
network. The energy function of Hopfield network always 
decreases along with its iteration. The projection matrix of 
camera is obtained from stable output vectors of the 
Hopfield network in the experiment when the global 
optimization solution is obtained. Second, an innovative 
genetic algorithm is proposed to get the global optimization 
solution, where the trajectory of individual and aggregation 
degree of colony are described with evolution speed factor 
and aggregation degree factor from longitudinal direction 
and lateral direction, respectively, so the cross-over 
probability pc and mutation probability pm are tuned 
dynamically according to the evolution speed factor and the 
aggregation degree factor. 
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The proposed approach possesses merits of simple 
computation and high accuracy, which makes the system 
meet the precise requirement for intelligent test and 
precision manufacture.  

The future work will focus to achieve the measurement of 
micro-drill’s defects, such as rounded corner, main lips’ 
chips, long-short edge, overlap(or gap), non-concentricity 
and so on with machine vision system and the proposed 
technique.  
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