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Multiple instrument stations, based on spherical coordinate measurements, are often used in the measurement of large objects. A 
data fusion method is proposed to derive optimal estimations of the positions of the object features, measured by more than one 
device. First, each device has a dedicated coordinate system that is linked together through the measurement of common points. 
Second, the weighted mean coordinates are derived. The covariance matrix of the sensory, covering of the radial distance and the 
angles, is propagated to get a weight matrix. Third, a nonlinear function is minimized to determine the optimized coordinate of the 
points. Monte Carlo error propagation is utilized to estimate the uncertainty of the fusion points. Simulation of the fusion 
algorithms is performed using laser tracking and laser radar. The fusion algorithm experiments are performed using two laser 
tracking stations. Simulation and experiments prove that the fusion method improves the precision of the measurements of an 
object’s location, due to incorporating the degree of uncertainty for each measurement point. 
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1.  INTRODUCTION 

ARGE VOLUME metrology is increasingly required in 
fields such as commercial airplane production and 
shipbuilding. Commonly used instruments include laser 

trackers, electronic theodolites, photogrammetry systems 
and laser radar. Industrial applications necessitate either a 
combination of various measurement devices or the 
relocation of a single instrument throughout the 
measurement process in order to acquire complete data [1]. 
The foremost reason for using a combination of 
measurement systems is to overcome physical constraints. 
Moreover, in a large field of targets rich with obstructions, 
line of sight is often necessary. Given a limited 
measurement range, it is not always possible to measure the 
entire object using a single measurement system. The 
diversity in individual measurement system properties offers 
further reason to use a combination of measurement 
systems. Systems have varying degrees of accuracy, 
working volume, measurement speed, setup time and cost. 
In order to achieve the highest degree of efficiency, these 
limitations and features must be considered when designing 
a measurement process.  
   The combination of full coordinate measurement systems 
may also be used to achieve greater accuracy than what 
could be achieved by the use of a single sensor alone. Users 
often combine measurement systems by linking individual 
measurement systems together based on common reference 
points. When given multiple sets of measurements for the 
same set of targets, a combined estimate of the target 
locations should be obtained. The topic of multi-sensor data 
fusion has received a lot of attention from the scientific 
community, for both industrial and non-industrial 
applications. In applying those techniques,  one would  
expect  to  achieve  benefits  such  as extending the system’s 
spatial/temporal coverage, improved  detection  performance  
and  enhanced  resolution  (spatial/temporal) [2-3]. 

 
 
Llinas described an application where a moving aircraft is 

observed by both a pulsed radar system and an infrared 
imaging sensor [4]. El-Hakim combines models created 
from multiple images and range sensors [5]. He also uses 
known shapes, CAD drawings, existing maps, survey data, 
and GPS data. It has been shown that the use of intensity 
data produced by a range camera can improve the accuracy 
of vision-based 3-D measurements. Wendt et al. presented 
an approach for data fusion and simultaneous adjustment of 
inhomogeneous data intended to increase the accuracy and 
reliability of surface reconstruction. Their study is based on 
3-D data obtained from fringe projections and 
photogrammetry-based systems [6]. Johnson et al. described 
a technique for adaptive resolution surface generation from 
multiple distributed sensors. They demonstrated the 
technique using 3-D data generated by a scanning lidar and 
a structure from a motion system [7]. J. Angelo Beraldin et 
al. discussed the integration of laser scanning and close-
range photogrammetry with a multi-sensor and information 
fusion point of view. They presented the key features of 
different laser scanner technologies and photogrammetry-
based systems that should be considered in order to realize 
the benefits expected from a multi-sensor platform [8-9]. 
Joseph M. Calkins used five total stations in conjunction 
with three laser trackers for a measurement job of a 
submarine [10]. Considering the low distance uncertainty in 
laser trackers, multi-path laser tracker measurement systems 
have been studied by several researchers such as Zhang GX, 
Zhuang Hanqi, Zhang Defen [11-12]. Forbes AB combined 
measurements from the laser tracker and the theodolite [13]. 
C. Read Predmore studied a Bundle adjustment technology 
of multi-position measurements using the Mahalanobis 
distance [14]. A Weckenmann reviewed multi-sensor data 
fusion in dimensional metrology [15]. 

This paper is organized as follows: Section 2 presents the 
weight mean and nonlinear fusion method from multi-
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station measurements, Section 3 proposes the uncertainty of 
each measurement point for fusion, using the Monte Carlo 
method, Section 4 gives an introduction to the simulation 
test evaluation procedure, using laser trackers and laser 
radar, Section 5 details the analysis of the experiment results 
using two laser tracker stations, and finally conclusions are 
given in Section 6. 
 

2.  FUSION METHODS 

It is assumed that point [ ] 3*** ,, ℜ∈=
T

zyxD  represents 3-
D true coordinates of the location of a large sized object. 
However, the true values are unknown and our aim is to 

derive estimators [ ]T*** ˆ,ˆ,ˆˆ zyx=D  of D , from available 
multiple devices or stations of one device Di i=1,…,n. It is 
assumed that p

i ℜ∈θ  denotes the data collected by the i-th 
station, and p is the number of sensors in one station. 

3=p  is considered in this paper. The mathematical model 
f of each measurement station is used to convert sensor data 
θ  to coordinate D. In general, f is nonlinear. In particular, a 
spherical coordinate measurement instrument is considered 
in this paper. Let Tl ),,( **** βα=θ  be the point D  expressed 
spherically, where l is the radial distance from the 
coordinate system origin, α is the horizontal angle, and β  is 
the vertical angle. The output of device Di is a random 
variable, T

iiii l ),,( βα=θ . Then a simple model of the 
random and systematic effects associated with the 
measurements θ  is given by: 
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 Independent, random effects T
l ),,( βα εεε=ε are varied 

from point to point, while systematic effect d0 represents 
fixed offsets associated with the laser dead path of the laser 
interferometer. The systematic effect can be corrected with 
the procedures provided by the manufacturer. 

The data in the spherical coordinates is converted to 
Cartesian 3-D coordinates with the f as (2) to obtain from the 
i-th station: 
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The task is to derive good estimators D̂ from 
T

iiii l ),,( βα=θ , i=1,…,n. 
Firstly, all measuring data points from the multiple 

stations should be unified to the same reference coordinate 
system from their respective coordinate systems, using the 
rigidity coordinate transform. This problem is a classic task 

that could be called absolute orientation. The transformation 
between two Cartesian coordinate systems can be thought of 
as the result of a rigid-body motion. Therefore, the 
transformation parameters can be decomposed into a 

33× rotation matrix R and a 13×  translation vector T. There 
are three degrees of freedom to translation vector T. 
Rotation matrix R has another three degrees of freedom 
(direction of the axis about which the rotation takes place 
plus the angle of rotation about this axis). Singular Value 
Decomposition (SVD) presents a mature closed-form 
solution to the least-squares problem of absolute orientation 
[16]. The process sets a reference coordinate system with 
any single station, while transforming the others. Typically, 
this would be the system with the lowest uncertainties, the 
most recently calibrated, or the most centrally located 
system with respect to the object being measured. 

The weighted average of the coordinates from n stations is 
obtained using (3) 

∑
=

=
n

i
ii

1

ˆ DWD                                (3) 

where 33×ℜ∈iW  is the i-th station weighted matrix that can 
be determined by assigning less weight to coordinates with 
higher uncertainties. For example, because uncertainty of 
the measurements taken using a laser tracker is considerably 
better for range than it is for angle, the distance-derived 
measurements are assigned greater weight than the angle-
derived measurements [17]. The uncertainty associated with 
a measured coordinate iD  can be represented in terms of 
covariance matrix Vi, that is a 33×  symmetric, positive 
(semi)-definite matrix. The diagonal elements of Vi are the 
variances associated with the coordinates, and the off-
diagonal elements are the covariances. The standard 
uncertainty associated with a single coordinate is the square 
root of the corresponding diagonal element. Often, Vi can be 
derived from sensor covariances iVε  , that is a diagonal 

variance matrix of the noise iε . If the square deviation is 

independent, the covariance matrix iVε  associated with 
sensors in each station can be written as: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

σ
σ

σ
=

β

αε
2

2

2
l

V                           (4) 

 

The uncertainties associated with these effects are 
propagated through to those associated with the Cartesian 
coordinates as in (5). 

T
iiii JVJV δθ=                                 (5) 

 

Where J is the Jacobian matrix of f with respect to θ . 
Taylor’s expansion is calculated for (1) as: 
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The Jacobian matrix can be solved by: 
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Therefore the weight matrix can be determined as (8): 
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Using derived weighted matrix and (3), the initial 

estimation of the fusion coordinate D̂  is derived.  
Although uncertainty is considered in the weighted matrix, 

this approach also disregards another uncertainty. For 
example, the SVD method explained above ignores that the 
uncertainties associated with the measured coordinates for 
each data point are anisotropic in the presence of errors ε . 
In addition, most uncertainties of the systematic effect are 
not considered. Even if some systematic effect can be 
corrected, remaining error also has uncertainty. Therefore, 
the fused estimate D̂  and the parameters of the 
transformation matrices are optimized by solving nonlinear 
function (9) 

∑
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−−
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T
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                   (9) 

 
As explained above, using Wi also represents individual 

weight relative to all effects. Therefore residual error 
between multiple iD  can be minimized by this function. 
This problem can be posed as a nonlinear, least-squares 
problem that can be solved by the Levenberg-Marquardt 
minimization algorithm.  

 
3.  ESTIMATION OF MEASURING UNCERTAINTIES BASED ON 

MONTE CARLO SIMULATIONS 
Uncertainty evaluation is a critical part of multi-sensor 

data fusion techniques. These include not only the 
uncertainty of the individual instruments’ measurements, but 
the uncertainty of their registration and fusion to the other 
instruments. The covariance matrix of optimized coordinates 
can be computed as: 
 

1)( −= JJV T                                 (10) 
 

However, it is difficult to obtain the Jacobian matrix in a 
nonlinear function optimization process [18]. Therefore, the 
GUM appendix gives a framework for the expression of the 
measurement uncertainty based on the Monte Carlo (MC) 
method [19-20]. The fundamentals of this technique are that 
the uncertainty of a particular coordinate measurement is 
simulated using knowledge of the position of the 
measurement instrument and the uncertainty of sensors in 
the instrument. The MC method repeats simulated 

measurements, each consisting of the nominal measurement 
value with random noise of the sensor added to it. Therefore, 
the MC method can propagate the probability density 
function (PDF) of each input quantity, from each coordinate 
acquisition station, directly to the total measurement set 
through the measurement model [21-23]. 

Each series of measurements for all the points from a 
single measurement station represents one point group 
around the nominal point, which is illustrated as scatter. The 
uncertainty scatter is a graphical representation of the 
uncertainty of each measurement, and additionally allows 
the uncertainty of the measurement to be estimated by 
directly measuring the dispersion of these points. A 
graphical representation of the uncertainty is helpful for 
properly representing the uncertainty interactions of 
nonlinear fusion from multiple stations [24]. 

The steps of the uncertainty estimation of the fusion value 
from MC can be summarized as follows: 

 
(1)  Select a number N of trials. 
(2) Generate a random draw i1θ for i-th station input 

quantity *θ  from its assigned PDF. 
(3) Propagate the random value  i1θ  to obtain the output 

quantity value )( 11 ii f θD = . For each station except 
the first, all associated measurements are transformed 
to fusion 1D̂ . 

(4) By repeating the process N times, the repeated 
transformation and fusion generate a composite 
scatter jD̂ j=1,…,N.  

(5) Take the mean of these values of jD̂  as the 

measurement result D̂ . 
(6) Take the standard deviation of the jD̂  as the standard 

uncertainty Du  of the fusion measurements D̂  from 
multiple stations. 

 

The large number N and heavy density of the scatter 
diagram will take much operational time, while a few points 
could not reflect the uncertainty accurately [25]. To 
determine the adequate number of trials N to produce stable 
results, different numbers of trials can be selected. The 
relation between the uncertainty analysis and scatter 
diagram density by simulation is shown in Fig.1. Therefore, 
we should choose an appropriate value, but not many times 
over. In the framework of this study, approximately 500 
trials were found to be sufficiently stable.  
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Fig.1.  Simulation analysis of scatter diagram density. 
 
 

4.  SIMULATION 
In order to test the fusion method, simulated data from 

laser radar and laser trackers was generated. The actual 
position of the measurement instrumentation in the 
simulated measurement configuration is placed at (0,0,0)T. 
Typically, laser radar and laser trackers make measurements 
of the target coordinates in spherical coordinates, with 
uncertainties of the range and two angles that vary as a 
function of the range. The nominal position of the measured 
point coordinate is set as 

 
TTl )45,45,1000(),,( *** oo−=βα . 

 
The actual point was randomly deviated from the ideal 

point with a random error that has a standard deviation of 
σ . 

The laser tracker provides an accurate estimate of the 
range with relative uncertainties of μm/m8.0m10 ⋅+μ=σ ll , 
but with poor angular direction estimates and with 
uncertainty of ''1=σ=σ βα . Instead, the laser radar 
determines the angular direction with a higher than standard 
angular uncertainty of ''5.0=σ=σ βα , when compared to 
the laser tracker. The standard deviation for the uncertainty 
in the range was 0.3 mm plus 1 ppm. If these two 
observations are correctly associated, then the combination 
of the two sensors’ data provides an improved determination 
of location in comparison to results that could be obtained 
by either of the two independent instruments. 

The uncertainty scatter diagrams for the same measuring 
point using the laser radar measurements alone, laser tracker 
measurements alone and the combination of both, are shown 
in Fig.2, 3, and 4, respectively.  

Uncertainty scatters indicate directly the strength of the 
fusion analysis. The standard uncertainty of point from the 
laser tracker station is 02.01 =Du mm. Standard uncertainty 
of point from the laser radar station is 10.02 =Du mm. 
Standard uncertainty of point from fusion method is 

01.03 =Du mm. 
 

 
 

Fig.2.  Uncertainty scatter diagram of laser tracker. 
 

 

 
 

Fig.3.  Uncertainty scatter diagram of laser radar. 
 
 

 
 

Fig.4.  Uncertainty scatter diagram of fusion coordinate. 
 

 
5.  PRACTICAL EXPERIMENTS 

An experiment was conducted with the FARO Xi laser 
tracker, which was placed in two positions to measure 5 
points that covered a mmm 255 ××  metrology volume. 

The data was analyzed using techniques based on the 
covariance matrix to get result 1s , and using the MC 

method to get 2s , as shown in Table1. 

Results show that the difference between 1s  and 2s is 
small enough, therefore the MC method is an accurate 
covariance matrix. In addition, uncertainty of fusion 
coordinates is lower than with any single station. 
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Table 1.  Results of two station fusion using covariance matrix 
 and MC (μm) 

 
 Number s1  s2  s1-s2 

1 4.04 3.99 0.05
2 1.75 1.75 0.00
3 10.59 10.86 -0.27
4 7.02 6.83 0.18

Station 1 

5 17.94 17.94 0.00
1 1.33 1.30 0.03
2 1.79 1.83 -0.05
3 3.14 3.24 -0.10
4 61.77 61.68 0.09

Station 2 

5 17.71 17.94 -0.23
1 1.22 1.17 0.05
2 1.16 1.20 -0.04
3 2.95 3.07 -0.11
4 6.92 6.79 0.14

Fusion 

5 12.55 12.68 -0.13
 
 

6.  CONCLUSIONS 
This paper describes the methodology for deriving the 

optimal estimation of the point sets from several spherical 
coordinate instrument locations. All data in each station was 
transformed into a common coordinate system based on the 
SVD method. The measuring model was established. The 
individual variance matrix associated with a spherical 
coordinate measurement system is propagated to the 
covariance matrix associated with measured point 
coordinates, to get its weighted matrix for averaging the data 
that was initially measured. Furthermore, a nonlinear 
optimized mean is used for deriving optimized coordinates 
to minimize residual error. By statistically processing each 
observation, the MC method can be used to estimate the 
overall uncertainty, to avoid the complex Jacobian Matrix. 
We illustrate the method to simulate measurements using 
laser trackers and laser radar. Results show that standard 
uncertainty of point from 02.0 mm and 10.0 mm with the 
laser tracker station and the laser radar station, respectively, 
was reduced to 01.0  mm with the fusion method.  Two laser 
tracker stations were used in this experiment. We can 
conclude that the fusion method provides an improved 
degree of precision over simply averaging measured values. 
The MC method is easily applicable for evaluating the 
uncertainty of weighted combined coordinates.  

Future research will concentrate on extending the fusion 
method to handle other non-spherical coordinate 
measurement instruments, such as vision metrology. 
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