Decoupling Analysis of a Sliding Structure Six-axis Force/Torque Sensor

Bo Wu, Ping Cai

Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China, wb_9941@163.com

This paper analyzes the decoupling of a sliding structure six-axis force/torque sensor, which is used to measure the interactive force between surgical tools and soft tissue for the establishment of soft-tissue force model. Because this decoupling structure requires accurate sliding clearance and symmetric grooves, the influence of contact force between the elastic body and the groove sidewall on decoupling is analyzed. The analysis results indicate that the contact force will produce additional coupling error. The robust design method of elastic body size optimization is used to eliminate the influence of contact force. In the calibration test, the expanded uncertainty of the calibration device is evaluated and the calibration results validate the good decoupling.

Keywords: Tool-tissue interactive force, force/torque sensor, sliding structure, decoupling, robust design, uncertainty.

1. INTRODUCTION

To improve the operators’ immersion sense in virtual surgery, the haptic information acquisition is carried out to measure the tool-tissue interactive force for the establishment of the soft tissue force model. Many acquisition approaches are based on tensile or compressive test of non-destruction tissue samples [1] [2], which cannot reveal the variation of tool-tissue interactive force for tissue fracture comprehensively [3]-[6]. Many kinds of sensors can be used to measure the force or torque [7]-[10]. Typical surgical operations such as clamping, cutting, puncture and suture feature motion and application of force in a multi-degree of freedom, so multi-axis force/torque sensors are used.

Dimensional coupling elimination is a key issue for multi-axis force/torque sensors. A. Gaillet [11] developed a multi-axis force/torque sensor based on the Stewart parallel structure. But owing to the coupling signal output of the sensor, the calculation of decoupling is complex. For a more direct acquisition of the force signal, the design of some sensors is based on mechanical structure decoupling of the elastic body. Float beam structure and sliding structure are typical mechanical decoupling approaches. A. G. Song [15] developed a kind of float beam structure based multidimensional force sensor. When force is applied, the non-sensing beams of the sensor become floating because of the compliance of non-sensing beams. The dimensional coupling is therefore eliminated. Due to the contradiction between compliance of non-sensing beams and sensor overall stiffness, the decoupling is limited. In the sliding structure based multidimensional force sensor, the non-sensing beams become floating via sliding along the guiding groove, then the decoupling can be more effective. However, this decoupling structure requires accurate sliding clearance and symmetric grooves, especially for the sensor with small measurement range. Otherwise, contact force between the elastic body and the groove sidewall will influence the decoupling.

This research analyzed the mechanical decoupling mechanism of a designed sliding structure six-axis force/torque sensor and the influence of contact force between elastic body and groove on decoupling. The contact force determined by structure size, machining error and assembly error will produce additional coupling error. Owing to the fact that the relationship between contact force and structure size and machining error is non-linear, higher machining and assembly accuracy may not be able to achieve the desired target. Thus, a robust design method [17] of sliding structure for structure size optimization is adopted to eliminate the influence of contact force on decoupling.

2. DECOUPLING ANALYSIS OF THE SLIDING STRUCTURE SIX-AXIS FORCE/TORQUE SENSOR

Fig.1. Structure components. (1) elastic body 1, (2) elastic body 2, (3) top cover, (4) outer shell, (5) bottom cover.

The structure components of the six-axis force/torque sensor are shown in Fig.1. Two elastic bodies are composed of four identical parallel beams with double holes, respectively. Elastic body 1 is designed to measure force \(F_x \), \(F_y \) and torque \(M_z \), and elastic body 2 is designed to measure force \(F_z \), torque \(M_x \) and \(M_y \). The clearance fit between the elastic body and the groove of the outer shell makes the elastic body slide when the force is applied. The measurement range of the sensor for force is 0–20 N and for torque is 0–800 Nmm. The resolution of the sensor is 20 mN. The dimension parameters of the sensor are shown in Table 1.
Table 1. Dimension parameters of the sensor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of the sensor</td>
<td>(h = 28 \text{ mm})</td>
</tr>
<tr>
<td>Diameter of the sensor</td>
<td>(D = 52 \text{ mm})</td>
</tr>
<tr>
<td>Height of elastic body 1</td>
<td>(a = 4 \text{ mm})</td>
</tr>
<tr>
<td>Height of elastic body 2</td>
<td>(b = 8 \text{ mm})</td>
</tr>
<tr>
<td>Thickness of the thin wall</td>
<td>(d = 0.5 \text{ mm})</td>
</tr>
<tr>
<td>Distance between the two holes</td>
<td>(l = 8 \text{ mm})</td>
</tr>
</tbody>
</table>

Four strain gauges bonded to the thin wall of each parallel beam of the elastic body compose a full Wheatstone bridge, thus 32 strain gauges and eight full Wheatstone bridges are needed in total. Each parallel beam can measure a single dimensional force, so two or four beams can be combined to measure the same force/torque for increased sensor sensitivity.

When bending deformation occurs on beams, there are symmetrical tensile strain and compressive strain on two thin walls on both sides of the beam, respectively. The sensitivity of output voltage can be increased 4 times with the Wheatstone bridge.

When lateral bending deformation occurs on beams, the overall strain of the strain gauge is zero due to the equal tension and compression on both sides of the strain gauge neutral layer, so beams will not sense lateral bending deformation.

When torsional deformation occurs on beams, both normal stress and shear stress are produced in the cross section simultaneously. Because of the great torsional stiffness of beams, the normal strain is very small and can be neglected. The strain gauges do not sense shear deformation, thus beams will not sense torsional deformation.

Thus, beams of the elastic body can sense bending deformation but are insensitive to lateral bending deformation and torsional deformation. The deformation of each beam under a single dimensional force or torque is listed in Table 2.

Table 2. shows that beam 11 and beam 13 sense the deformation under the force \(F_x \); beam 12 and beam 14 sense the deformation under the force \(F_y \); beam 11, beam 12, beam 13 and beam 14 sense the deformation under the torque \(M_z \); beam 21 and beam 23 sense the deformation under the torque \(M_x \); beam 22 and beam 24 sense the deformation under the torque \(M_y \); beam 21, beam 22, beam 23 and beam 24 sense the deformation under the force \(F_z \).

The output can be calculated by

\[
\frac{\vec{U}_o}{U_i} = \frac{K}{4} \vec{\varepsilon}
\]

where \(\vec{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6, \varepsilon_7, \varepsilon_8) \) and \(\vec{U}_o = (U_{o1}, U_{o2}, U_{o3}, U_{o4}, U_{o5}, U_{o6}, U_{o7}, U_{o8}) \) are the strain and the bridge output voltage of beam 11, beam 12, beam 13, beam 14, beam 21, beam 22, beam 23 and beam 24, respectively, \(K \) is the gauge factor, and \(U_i \) is the input voltage of the Wheatstone bridge.

Considering the equal deformation of some beams under a single dimensional force or torque,

\[
\vec{U}_F = (U_{Fx}, U_{Fy}, U_{Fz}, U_{Mx}, U_{My}, U_{Mz})
\]

can be obtained as

\[
\vec{U}_F = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(2) indicates that the sensor is structure decoupling and the sensor sensitivity is doubled or quadrupled.
Table 2. Deformation under a single dimensional force or torque

Deformation mode ("B", "-B", "LB", "T" denote tensile bending deformation, compressive bending deformation, lateral bending deformation and torsional deformation and "0" means no deformation)

<table>
<thead>
<tr>
<th></th>
<th>beam 11</th>
<th>beam 12</th>
<th>beam 13</th>
<th>beam 14</th>
<th>beam 21</th>
<th>beam 22</th>
<th>beam 23</th>
<th>beam 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_x)</td>
<td>B</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>LB</td>
<td>0</td>
<td>LB</td>
<td>0</td>
</tr>
<tr>
<td>(F_y)</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>LB</td>
<td>0</td>
<td>LB</td>
</tr>
<tr>
<td>(F_z)</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>(M_x)</td>
<td>LB</td>
<td>T</td>
<td>LB</td>
<td>T</td>
<td>B</td>
<td>0</td>
<td>-B</td>
<td>0</td>
</tr>
<tr>
<td>(M_y)</td>
<td>T</td>
<td>LB</td>
<td>T</td>
<td>LB</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>-B</td>
</tr>
<tr>
<td>(M_z)</td>
<td>B</td>
<td>-B</td>
<td>-B</td>
<td>-B</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
</tr>
</tbody>
</table>

3. Influence of Contact Force on Decoupling

Contact force between the elastic body and the groove sidewall will emerge as a coupling force during the operation. Considering the small measurement range (0~20 N and 0~800 Nmm) of the sensor, it is necessary to analyze the influence of the clearance and the asymmetric groove.

Fig.3.(a) shows the ideal contact mode between the elastic body and the groove. Fig.3.(b) shows the contact mode with angle \(\theta\) and deviation distance \(h\) of groove, where the deviation distance of the groove is \(h = a \sin \theta\). In Fig.3.(b), the branch force might deform the non-sensing beam to bring additional coupling.

The structure of Fig.3.(b) can be equivalent to a first-order hyperstatic structure of sliding structure in order to calculate the bending moment distribution of each beam, which can produce the bending deformation, as depicted in Fig.4.
As shown in Fig. 4.(a), four unknown restraint reaction forces and a horizontal force F are applied on the elastic body 1. A redundant vertical reaction force F_B emerges after removing the restraint at endpoint B. The force deformation compatibility condition can be given as

$$\delta_{1F} B F + \delta_{1F} = 0 \quad (3)$$

where δ_{1F} and δ_{1F} denote the deformation value of the endpoint B in F_B direction when force F_B and F are applied to the statically determinate base, respectively. δ_{1F} and δ_{1F} can be obtained according to Mohr’s theorem, and the vertical reaction force F_B is derived from (3)

$$F_B = K F = \frac{M \sin 2\theta}{N \sin(2\theta + \alpha) + 2(a^2 + b^2) / 3 + a^3 b + ab^2 / 2} F \quad (4)$$

where

$$M = \sqrt{((a^3 - b^3) / 6 + a^2 b + ab^2)^2 + b^6 / 4},$$

$$\tan \alpha = ((a^2 - ab^2) / 2 - b^3 / 12) / (a^2 b + ab^2 / 2),$$

$$N = \sqrt{(a^2 b + ab^2 / 2)^2 + ((a^2 - ab^2)^2 / 2 - b^3 / 12)^2}.$$

For $M > N$, it is clear that K_F and F_B increase with the increase of θ. The bending moment of all beams, which is produced by the horizontal force F and the vertical reaction force F_B, can be obtained based on the superposition principle. The strain of elastic body 1 is given as

$$\varepsilon_5 = \varepsilon_7 = \frac{F L}{2 E W} (\cos \theta + K_F \sin \theta) \quad (5a)$$

$$\varepsilon_6 = \varepsilon_8 = \frac{F L}{2 E W} (\sin \theta + K_F \cos \theta) \quad (5b)$$

$$\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \varepsilon_4 = 0 \quad (5c)$$

Assuming F is applied in x direction, \bar{U}_F can be calculated in accordance with (1) and (2)

$$\bar{U}_F = \frac{F L K U_i}{4 E W} \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \\ (\cos \theta + K_F \sin \theta) \\ (\sin \theta + K_F \cos \theta) \end{vmatrix} \quad (6)$$

It follows that force F_x and F_y emerge when force F is applied in x direction, and force F_x is considered as a coupling force. The coupling error $E_r(F_x)$ can be given as

$$E_r(F_x) = \frac{\sin \theta + K_1 \cos \theta}{\cos \theta + K_1 \sin \theta} \quad (7)$$

From (4) $0 \leq K_F < 1$ is obtained, then $\Delta \sin(\theta) > K_1 \Delta \sin(\theta)$ and $\Delta \cos(\theta) > K_1 \Delta \cos(\theta)$ is derived. (6) and (7) indicate that the contact angle produces additional coupling. The coupling error $E_r(F_x)$ increases with the increase of θ. When moment M is applied on elastic body 2, the mechanical model is shown in Fig. 4.(b). Similar method to that of elastic body 1 can be used to obtain the bending moment distribution. Assuming M is applied in x direction, \bar{U}_F can be obtained as

$$\bar{U}_F = \frac{F L K U_i}{4 E W} \begin{vmatrix} 0 \\ 0 \\ (\sin \theta + K_2 \sin \theta) \\ (\sin \theta + K_2 \cos \theta) \\ 0 \end{vmatrix} \quad (8)$$

where $K_2 = \frac{27 ab \sin \theta}{21 ab + 10 a^2}$. The coupling error $E_r(M_x)$ produced by ε_{M_b} can be given as

$$E_r(M_x) = \frac{\sin \theta + K_2 \sin \theta}{\cos \theta + K_2 \sin \theta} \quad (9)$$

(9) shows that the coupling error $E_r(M_x)$ increases with the increase of θ.

4. ROBUST OPTIMIZATION DESIGN OF SENSOR SLIDING STRUCTURE

Robust optimization design approach is used to ensure good quality performance when controllable factors and uncontrollable factors deviate from the design value. This approach aims to minimize the performance sensitivity to noise by selecting the appropriate design parameters instead of eliminating the noise factor.

If the coupling error change caused by controllable factors and uncontrollable factors is allowed, the decoupling of sliding structure is robust. For sliding structure of the sensor, the size of the elastic body a, b and the groove width r are given as undetermined random variables and feature Gaussian distribution. The design variables (controllable factors) are shown as
\[\mathbf{x} = (a, b, r)^T = (x_1, x_2, x_3)^T. \]

\[\Delta a, \Delta b \text{ and } \Delta r \text{ are machining errors, and noise factors (uncontrollable factors) are shown as } \]
\[\mathbf{z} = (\Delta a, \Delta b, \Delta r)^T = (z_1, z_2, z_3)^T. \]

\[\mathbf{x} \oplus (\mu_x, (\Delta x / 3)^2) \] can be obtained, where \(\mu_x \) is expectation of \(x \).

The coupling error \(y \) is determined by both controllable factors and uncontrollable factors and can be obtained as
\[y = E_y(F_y) = y(x, z) \quad (10) \]

\(y \) is design target function and the ideal value is 0. The statistical mean \(y \) can approach the target value via expectation \(\mu_y \rightarrow \min \) and \(\Delta y \) can be minimized via variance \(\sigma_y \rightarrow \min \). The target function with smaller-the-better can be established as
\[\min F(x, z) = \mu_y + \beta \sigma_y \quad (11) \]

where \(\beta \) is weighted coefficient for coordination of expectation and variance. Adding constraint function \(g(x) \), the robust optimization model can be given as
\[\begin{align*}
\mathbf{x} &= (x_1, x_2, x_3)^T \\
\min F(x, z) &= \mu_y + \beta \sigma_y \\
\text{s.t. } g(x) &= x_1^2 + x_2^2 - x_3^2 \geq 0 \\
x_1 &\in (45, 55), x_2, x_3 \in (3, 5)
\end{align*} \]

The initial value, discrete increments and upper and lower bounds of design variables are listed in Table 3. \(\beta = 0.97 \) and \((\Delta x_1, \Delta x_2, \Delta x_3) = (0.046, 0.022, 0.022) \) (GB/T 1800.3-1998 IT8) are given. \(\mu_y \) and \(\sigma_y \) can be calculated based on best square approximation method after sampling. When \(y = E_y(M_x) = y(x, z) \), the same method can be used.

The robust optimization design solution can be obtained by using one-dimensional traversal optimization. The optimized sizes of elastic body are shown in Table 4., and the corresponding mean and variance of random function \(E_r(F) \) and \(E_r(M) \) is 0.34 % and 0.48 % for elastic body 1, and 0.65 % and 0.72 % for elastic body 2, respectively.

Table 3. The initial value, discrete increments, upper and lower bounds of design variables

<table>
<thead>
<tr>
<th>Variables (mm)</th>
<th>Discrete increments</th>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1(a))</td>
<td>0.010</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>(x_2(b))</td>
<td>0.001</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>(x_3(r))</td>
<td>0.001</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4. Robust result of optimized design variables

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(r)</th>
<th>(\Delta a)</th>
<th>(\Delta b)</th>
<th>(\Delta r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic body 1 (mm)</td>
<td>52.041</td>
<td>4.732</td>
<td>4.758</td>
<td>0.046</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>elastic body 2 (mm)</td>
<td>51.386</td>
<td>4.260</td>
<td>4.309</td>
<td>0.046</td>
<td>0.022</td>
<td>0.022</td>
</tr>
</tbody>
</table>

5. CALIBRATION TEST

Fig.5. Calibration device of sensor (torque \(M_x \) calibration)

The uncertainty is a parameter that reasonably shows the dissolution characteristic of a measurement value [23]. Fig.5. shows the calibration test of the fabricated six-axis force/torque sensor. In the calibration of the six-axis force/torque sensor, the combined standard uncertainty is obtained by combining the A type standard uncertainty due to lack of reproducibility, the B type standard uncertainty from the calibration device. The B type standard uncertainty due to the resolution of the data acquisition card.

In order to calculate the uncertainty due to lack of reproducibility, the force \(F_x, F_y \) and \(F_z \) from 1 N to 20 N at 1 N steps, and torque \(M_x, M_y \) and \(M_z \) from 40 Nmm to 800 Nmm at 40 Nmm steps is measured, respectively, five times. The full-scale output voltage is 10 V. The average measured values at each step are obtained and the standard
deviation S of the force F_x, F_y and F_z, and torque M_x, M_y and M_z can be calculated with the maximum average measured value from Bessel formula. The uncertainty u_r can be expressed as

$$u_r = \frac{S}{\sqrt{5}} \quad \text{(13)}$$

The calculated uncertainty u_r of the force F_x, F_y and F_z, and torque M_x, M_y and M_z is 0.0037 V, 0.0035 V, 0.0029 V, 0.0046 V, 0.0047 V and 0.0052 V, respectively. The freedom $v_r = 5-1 = 4$.

The uncertainty from the calibration device means the uncertainty due to the transmission of force and torque. The maximum force direction deviation angle α during the calibration can be measured. Multiplying the coverage factor $k = \sqrt{3}$, the uncertainty u_f from the calibration device can be expressed as

$$u_f = U_a(1 - \cos \alpha) \sqrt{3} \quad \text{(14)}$$

Where U_a is the measured output voltage of F_x, F_y, F_z, M_x, M_y, or M_z.

The calculated uncertainty u_f of the force F_x, F_y and F_z, and torque M_x, M_y and M_z is 0.0013 V, 0.0012 V, 0.0009 V, 0.0013 V, 0.0015 V and 0.0018 V. The freedom $v_f = \infty$.

The revolution of the data acquisition card is 0.0003 V. Multiplying the coverage factor $k = \sqrt{3}$, the uncertainty u_d due to the resolution of data acquisition card can be calculated as 0.0003 V/\sqrt{3} = 0.00018 V. The freedom $v_d = \infty$.

The combined standard uncertainty u_c can be written as

$$u_c = \sqrt{u_r^2 + u_f^2 + u_d^2} \quad \text{(15)}$$

The calculated uncertainty u_c of the force F_x, F_y, F_z, and torque M_x, M_y and M_z is 0.0039 V, 0.0037 V, 0.0030 V, 0.0048 V, 0.0049 V and 0.0055 V. The freedoms of F_x, F_y, F_z, M_x, M_y and M_z are 4.

The expanded uncertainty U is calculated by multiplying the combined uncertainty u_c by the coverage factor $k = 1.9$ (confidence level 95%, $t_{0.05}(4) = 1.9$). The equation for it can be written as

$$U = ku_c \quad \text{(16)}$$

The calculated expanded uncertainty U of F_x, F_y, F_z, M_x, M_y and M_z is 0.0074 V, 0.0070 V, 0.0057 V, 0.0091 V, 0.0093 V and 0.01 V, respectively.

The following relationship between force and output voltage can be given

$$\hat{F} = [D]\hat{U}_f \quad \text{(17)}$$

where $\hat{F} = (F_x, F_y, F_z, M_x, M_y, F_z)$, $[D]$ is the static calibration matrix.

During the calibration procedure of the force/torque sensor, the force F_x, F_y and F_z are applied to the sensor from 1 N to 20 N at 1 N steps, respectively, and the torque M_x, M_y and M_z are applied to the sensor from 40 Nmm to 800 Nmm at 40 Nmm steps, respectively. In the meantime, the voltage output values of the bridge from eight beams are recorded and 480 calibration data are obtained in total. \hat{U}_f can be calculated from (2) and the static calibration matrix $[D]$ can be calculated from (17) with least squares fitting as

$$[D] = \begin{bmatrix}
370.15 & -0.01 & -1.99 & -1.88 & 1.71 & -1.79 \\
0.92 & 409.28 & -2.39 & -3.54 & -1.52 & -3.17 \\
-0.14 & -0.57 & 86.44 & -0.35 & -0.65 & -0.32 \\
-7.98 & -5.67 & -4.82 & 1082.8 & -2.98 & -4.78 \\
-8.91 & -9.34 & -5.42 & -2.62 & 1051.3 & -7.57 \\
-6.38 & -9.33 & 7.99 & -6.84 & -4.79 & 2708.2
\end{bmatrix} \quad \text{(18)}$$

The static calibration matrix indicates that the coupling errors of F_x are between 0.01 % and 0.54 %; the coupling errors of F_y are between 0.22 % and 0.86 %; the coupling errors of F_z are between 0.16 % and 0.75 %; the coupling errors of M_x are between 0.28 % and 0.74 %; the coupling errors of M_y are between 0.25 % and 0.89 %; the coupling errors of M_z are between 0.18 % and 0.34 %. The maximum coupling error of the developed six-axis force/torque sensor is 0.89 % and the minimum coupling error is 0.01 %. It can be said that the measurement sensitivity is 5.4 mV/N for F_x and F_y, 4.2 mV/N for M_x and M_y, 4.8 mV/Nmm for F_z and 5.3 mV/Nmm for M_z.

6. CONCLUSIONS

In this paper, the decoupling mechanism of a designed sliding structure six-axis force/torque sensor is analyzed. This sensor can decouple more thoroughly, for each beam of elastic body can only sense a single dimensional force/toque independently. Because of sliding clearance and asymmetric groove, elastic body will come into contact with the groove at a certain angle. Thus, contact force will be applied to the non-sensing beams of elastic body and produce additional coupling error. The contact angle is related to structure size of the sensor, machining error and assembly error. Robust optimization method was employed by optimizing the elastic body size a, b, and the groove width r to eliminate the coupling error but not decrease the machining error. The calculated values a, b and r are 52.041 mm, 4.732 mm and 4.785 mm for elastic body 1, and 51.386 mm, 4.260 mm and 4.309 mm for elastic body 2, respectively. For calibration device, the calculated expanded uncertainty of F_x, F_y, F_z, M_x, M_y and M_z is 0.0074 V, 0.0070 V, 0.0057 V, 0.0091 V, 0.0093 V and 0.01 V, respectively, with 10 V full-scale output voltage. The corresponding mean and variance of coupling error is 0.34 % and 0.65 % for elastic body 1, and 0.48 % and 0.72 % for elastic body 2, respectively. The calibration test was carried out and the results show that the coupling errors are between 0.01 % and 0.89 %.
7. ACKNOWLEDGEMENT

This work was supported by grant no. 2009AAZ313 from National High-tech R&D Program of China (863 Program) and by the project of the Basic theory and key technology research of surgical virtual simulation and surgical evaluation from the National Natural Science Foundation, project number: 61190124.

REFERENCES

Received December 6, 2012.
Accepted July 25, 2013.