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This paper proposes a novel invariant local descriptor, a combination of gradient histograms with contrast intensity (CGCI), 
for image matching and object recognition. Considering the different contributions of sub-regions inside a local interest region to 
an interest point, we divide the local interest region around the interest point into two main sub-regions: an inner region and a 
peripheral region. Then we describe the divided regions with gradient histogram information for the inner region and contrast 
intensity information for the peripheral region respectively. The contrast intensity information is defined as intensity difference 
between an interest point and other pixels in the local region. Our experimental results demonstrate that the proposed descriptor 
performs better than SIFT and its variants PCA-SIFT and SURF with various optical and geometric transformations. It also has 
better matching efficiency than SIFT and its variants PCA-SIFT and SURF, and has the potential to be used in a variety of real-
time applications.  
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1.  INTRODUCTION 

MAGE MATCHING is a primary technology in computer 
vision and image processing. Among the image matching 
algorithms, local descriptor algorithms [1] are more stable. 

Local descriptors are discriminative, and robust to partial 
occlusion. They do not require segmentation preprocessing, 
and are invariant under a variety of transformations. All 
these properties make local descriptor algorithms be widely 
applied in many fields, such as, content-based large-scale 
retrieval [2], video analysis, copy detection, object 
recognition, photo tourism, and 3D reconstruction [3]. 

A good local descriptor algorithm should have following 
characteristics: no necessity of pre-segmenting images [4], 
high repeatability of feature detector, low dimension of 
feature descriptor, robustness to partial occlusion, and 
invariance against image transformations, such as, 
illumination, rotation, scale, blur, and affine.  

Local descriptors have received considerable attention in 
recent years. Harris proposed the Harris corner detector [5], 
based on the eigenvalues of the second-moment matrix, but 
it is not scale-invariant. Lowe introduced a scale invariant 
feature transformation (SIFT) [1]. It is invariant under a 
variety of transformations, such as scale and viewpoint 
changes, rotation, and illumination transformations.  
Mikolajczyk and Schmid [6] showed that SIFT is one of the 
most effective image matching algorithms against viewpoint 
and scale transformations. However, the dimensionality of a 
SIFT descriptor is high. This results in inefficiency in real-
time applications. In order to improve the matching 
accuracy and reduce the matching time, various extensions 
of SIFT have been proposed. For example, Ke and 
Sukthankar proposed PCA–SIFT [8], which uses image 
gradient patch, and applies principal component analysis 
(PCA) to replace the smoothed weighted histograms in SIFT 
to reduce the size of a descriptor. It performs better on 
artificially generated data. E.N. Mortensen proposed GSIFT 

[9], which combines SIFT with global texture information. 
H. Bay proposed SURF [7], which has similar steps with 
SIFT. But SURF adopts a new processing method for each 
step. Its computing speed is faster. E. Tola proposed a 
descriptor DAISY [10], which computes dense depth and 
occlusion maps from wide-baseline image pairs on the basis 
of the EM algorithm. It is very efficient for intensive 
computing. Yang and Sluzek [11] proposed a low dimension 
descriptor combined with shape features and location 
information.  

Local descriptor algorithms consist of three primary steps. 
First, interest points are detected at distinctive locations in 
an image, such as corners. Second, the local region of the 
interest point is represented by a feature vector. The 
descriptor has to be distinctive, robust to noise and detection 
errors, and invariant against geometric and photometric 
transformations. Finally, vectors of descriptors are matched 
between different images. Many extensions of SIFT are 
mainly related to the construction of the SIFT descriptor. 
The algorithm proposed in this paper is also related to the 
improvement of the SIFT descriptor. 

In this paper, we propose a novel invariant local descriptor, 
a combination of gradient histograms with contrast intensity 
(CGCI), for image matching and object recognition. It 
exploits contrast intensity information by evaluating 
intensity difference between an interest point and other 
pixels in the local region. It is one of the extensions of a 
standard descriptor SIFT, called CGCI-SIFT in following 
paragraphs. It is more efficient than SIFT and its two 
variants (PCA-SIFT and SURF), since it can require less 
data to represent a local region. Our experimental results in 
Section 4 show that it not only achieves significantly better 
performance, but also uses less time in both feature 
extraction and image matching, comparing with SIFT and its 
two variants.  
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The remainder of this paper is organized as follows. 
Section 2 reviews the relevant aspects of the SIFT algorithm. 
Section 3 details the local feature construction of our CGCI-
SIFT descriptor. Section 4 presents our evaluation 
methodology, performance metrics, and experimental results. 
Finally, we conclude our work in Section 5. 

 
2.  REVIEW OF THE SIFT ALGORITHM 

SIFT consists of four major stages of computation used to 
generate a set of image features: (1) scale-space extreme 
detection; (2) keypoint localization; (3) orientation 
assignment; (4) keypoint descriptor. 

In the first stage, SIFT searches over all image locations 
and scales to find potential interest points as keypoints. It is 
implemented efficiently by constructing a Gaussian pyramid 
and searching for extreme in a series of difference-of-
Gaussian (DoG) [12] images. It is proved that under a series 
of reasonable hypotheses a Gaussian function is the only 
possible scale-space kernel [1].  

The scale-space of an image is defined as a 
function ( , , )L x y σ , which is the convolution of an original 
image ( , )I x y  with a variable-scale Gaussian ( , , )G x y σ . 
That is:  

 
( , , ) ( , , ) ( , )L x y G x y I x yσ σ= ∗               (1) 

 
where ∗  is the convolution operation in x  and y , and 

 
2 2 2( )/2

2

1( , , )
2

x yG x y e σσ
πσ

− +=       (2) 

 
where σ  is a scale-space factor. The size of σ  is the 
determiner of a smoothing degree of an image. Large scale 
represents its general information, and small scale for its 
detailed characteristics [13]. 

The SIFT algorithm detects stable interest point locations 
by a DOG (difference-of-Gaussian) function, which can be 
computed from the difference of two nearby scales: 

 
( , , ) ( ( , , ) ( , , )) ( , )

               ( , , ) ( , , )

D x y G x y k G x y I x y

L x y k L x y

σ σ σ

σ σ

= − ×

= −    
(3) 

 
where k  is a constant multiplicative factor.  

In the second stage, interest point candidates are localized 
to sub-pixel accuracy and eliminated if found to be low-
contrast keypoints and not robust to small amounts of noise.  

In the third step, each keypoint is assigned one or two 
dominant orientations based on its local region. This step 
makes SIFT invariant to rotation. The Gaussian-smoothed 
image ( , , )L x y σ  at the scale σ  of an interest point is taken, 
so that all computation is performed in a scale-invariant 
manner. For an image sample ( , )L x y  at a scale σ , its 
gradient magnitude ( , )m x y  and gradient orientation ( , )x yθ  
are computed using pixel differences. Their mathematical 
definitions are: 

 
2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y L x y L x y L x y L x y= + − − + + − −     (4) 

( , 1) ( , 1)( , ) arctan
( 1, ) ( 1, )

L x y L x yx y
L x y L x y

θ + − −
=

+ − −
              (5) 

 
The final stage of SIFT constructs a representation for 

each keypoint based on a patch of pixels in its local region. 
A 4×4 array of orientation histograms with 8 bins are 
computed in a 16×16 region around a keypoint. These 
histograms are computed from magnitude and orientation 
values of samples in the local region. Each histogram 
contains samples from 4×4 = 16 sub-regions divided from 
an original local region. There are 4×4 = 16 histograms and 
each with 8 bins, so the vector has 128 elements. The 128-
dimension vector is then normalized to a unit length in order 
to reduce the impact of non-linear illumination. 

The construction of the SIFT keypoint descriptor is 
complicated, and the dimension of the SIFT descriptor is 
high. Our initial motivation is to explore simpler alternatives, 
which are faster for computation, more distinctive and 
compact. 
 

3.  THE CGCI-SIFT DESCRIPTOR 
The main idea of all invariant local descriptors is on how 

to divide the region of the neighborhood of a keypoint and 
represent the region effectively and discriminatively. In this 
section, we first discuss our fundamental ideas, and then 
explain the description of a keypoint of our CGCI-SIFT.  

 
3.1.  Fundamental Ideas 

The first step of establishing local invariant descriptor is to 
effectively choose a patch of pixels as a region in the local 
neighborhood of a keypoint. SIFT chooses an adjacent 
16×16 region, using the keypoint as the center. After the 
region is chosen, SIFT divides this region into 4×4 sub-
regions, and calculate the gradient histogram in each sub-
region. Our CGCI-SIFT follows this approach to choose a 
16×16 local region for each keypoint.   

After a local region is chosen for a keypoint, one of the 
main issues is how to represent the local region effectively 
and discriminatively. As we know, the intensity of each 
pixel in the local region is different. With in-depth 
investigations and analyses, we conjecture that the intensity 
of the pixels near to the keypoint is similar to that of the 
keypoint. The intensity of the pixels far away from the 
keypoint could be significantly different from that of the 
keypoint.  For example, Fig.1. shows a typical gray-scale 
intensity distribution of its neighborhood pixels of an 
interest point kp . kp  is the keypoint in its local region. As 
we can see from the figure, the intensity of each pixel is 
different. The intensity difference between each pixel and 
the keypoint is varied. The intensity difference between each 
pixel (indicated by white dots in the figure) and kp is small, 
and these pixels are closest to the keypoint. However, the 
intensity difference between each pixel (indicated by black 
dots or stars) and kp is great, and these pixels are far away 
from the keypoint. This observation motives us to divide the 
16×16 local region into two non-overlapping sub-regions: an 
inner region 

innerR  and a peripheral region 
peripheralR , as shown 

in Fig.1. 
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The log-polar coordinate division system has been proved 
that pixels near the interest point are more susceptive than 
pixels far away [15]. It is also proved that the log-polar 
coordinate division system is more effective [6], and is used 
by many algorithms. For example, GLOH [6] changes a 
rectangular grid division system of SIFT into a log-polar 
location grid [14]. Thus, in this paper, we use a log-polar 
coordinate grid with three bins in the radial direction and 
eight bins in the angular direction. (Details are explained in 
next subsection.) The direction of 0 degrees in the log-polar 
coordinate system is set to coincide with the dominant 
orientations of the interest point based on its local region. 

 

 
 

Fig.1.  A typical gray-scale intensity distribution of neighboring 
pixels. 

 
3.2.  Description of Local Feature Points 

Our algorithm CGCI-SIFT is one of local descriptors. It 
receives the same input as the standard SIFT descriptor: the 
scale, location, and dominant orientations of an interest 
point. As we said before, it extracts a 16×16 region around 
the keypoint at the scale, and rotates to its dominant 
orientation, in the same manner as SIFT does, shown in 
Fig.1. Each interest point kp  is in the center of a 16×16 
local region R .  

Considering different effects of the pixels in the local 
region of an interest point, CGCI-SIFT makes use of two 
known methods to construct its descriptor, instead of storing 
the gradient orientations of all pixels in a local region like 
the SIFT approach. Besides, in contrast to classical 
approaches like SIFT (PCA-SIFT and SURF) that exploit 
the rectangular grid as a division system, CGCI-SIFT 
applies a log-polar coordinate system to divide the local 
region. It uses a log-polar coordinate grid with three bins in 
the radial direction (the radiuses of the three bins are set to 2, 
5, and 8 respectively). It divides the 16×16 local region 
R into two non-overlapping sub-regions: an inner region, 

innerR  and a peripheral region 
peripheralR . The region within 

radius 2 is the inner region. Both the region (outside the 
circle with radius 2 and inside the circle with radius 5) and 
the region (outside the circle with radius 5 and inside the 

circle with radius 8) are the two components of the 
peripheral region. The following paragraph provides the 
details of how the log-polar coordinate system is used in our 
CGCI-SIFT. 

CGCI-SIFT further uses a log-polar coordinate system 
( , )r θ  to divide 

innerR  into η +1 non-overlapping sub-regions, 
denoted as: 

0 1, ...R R Rη
 with 2=r , and to divide

peripheralR into 

t -η  non-overlapping sub-regions, denoted as:
1, 2 t...R R Rη η+ +

. 

Note that η  and t are the two parameters of our CGCI-
SIFT, which determines the number of sub-regions of the 
inner region 

innerR  and the number of sub-regions of the 
peripheral region 

peripheralR of a keypoint. Thus, the two 

parameters directly impact the dimensions of a keypoint 
description.  

For innerR , we adopt the gradient weighted histograms,  
which are defined in (4) and (5), to construct descriptors. 
We calculate the magnitudes and orientations of an image 
gradient in a sub-region iR  which is belong to the innerR , and 
build smoothed orientation histograms to catch the 
representative information. The gradient orientations are 
quantized in 8 bins. Each bin of a sub-region iR  in innerR can 
be represented as ( {0,1, 2, }, {0,1, 2,3 ... 7})

iR jG d i jη∈ ∈ .  

For 
peripheralR , we consider a technique that represents the 

contrast values of pixels within a region with respect to a 
keypoint. A contrast value is defined as the intensity 
difference between a pixel and the keypoint [16]. In the 
following, we introduce how to compute contrast values. 

For a pixel p in the local region around the interest 
point kp , we compute the intensity difference ( )D p  defined 
as ( ) ( ) ( )kD p I p I p= − , where ( )I p and ( )kI p  represent the 
intensity value of p  and kp  respectively. For each p  in a 
sub-region iR , we define the positive intensity information 
(6) and negative intensity information (7) [16] with respect 
to kp  respectively: 

 
{( ( ) ( )) | ( ) 0}I p I p p R and D pikH PRi NumRi

Σ − ∈ ≥
=

+
          (6) 

 
{( ( ) ( )) | ( ) 0}I p I p p R and D pikH NRi NumRi

Σ − ∈ <
=

−
          (7) 

 
where iNumR + represents the number of pixels whose 
intensity is greater than the interest point in the sub-region 

iR  . In contrast, iNumR −
  represents the number of pixels 

whose intensity is smaller than that of the interest point.  
Next, we normalize the descriptor to a unit vector to deal 

with illumination changes. Finally, we combine the all 
histogram entries from all the sub-regions into a single 
vector. Thus, the CGCI-SIFT descriptor of kp  with its local 
region R can be defined as: 
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( , ..., ... , ..., ,
0 7 0 70 0

, ... , )
( 1) ( 1)

N

CGCI G d G d G d G d
R R R R

H P H H P H N
R R R Rt t

η η

η η

=

+ +         

(8) 

 
From the above explanation, the number of dimensions of 

a descriptor provided by our CGCI-SIFT can be calculated 
using: 
 

8 ( 1) 2 (t )Dimen η η= × + + × − .                   (9) 
 

Our CGCI-SIFT is a general framework. It could have 
many different versions by setting its two parameters η  and 
t . Each version has a certain dimension, which can be 
calculated by (9). 

As we know, the dimension of the descriptor has a direct 
impact on its computation time. The dimension of CGCI-
SIFT can be much lower than that of SIFT with proper 
parameter settings. Thus, CGCI-SIFT would also be more 
efficient than SIFT. 

In our experiments, we set the radius of the log-polar 
coordinate to 2, 5, and 8 respectively for both the 64-
dimension CGCI-SIFT (CGCI-64) and the 40-dimension 
CGCI-SIFT (CGCI-40). Please note that the parameters are 
set as 3, 19tη = =  in CGCI-64. For CGCI-40, its parameters 
are set as 0, 16tη = = . 

The structures of the CGCI-64 descriptor and the CGCI-40 
are shown in Fig.2. From the left sub-figure of Fig.2., we 
can see that its inner region is separated into four non-
overlapping sub-regions 0 1 2 3, , ,R R R R , and its peripheral 
region is separated into sixteen non-overlapping sub-
regions 4 5 6 19, , ...R R R R . Hence, there are 4×8=32 entries in 
the inner descriptor, and 2×16=32 entries in the peripheral 
descriptor. We combine the two parts together. Thus, the 
dimension of the CGCI-64 descriptor is 32+32 = 64.  

It is easy to follow the above explanation to find out the 
dimension of the CGCI-40 descriptor is 32+8 = 40. We do 
not repeat the explanation here. 
 

 
 

Fig.2.  The region structures of CGCI-64 (left) and CGCI-40 
(right). 

 
4.  EXPERIMENTS 

In this section, we conduct experiments to investigate the 
performance of our CGCI-SIFT, and make comparisons 
with SIFT and its two variants (PCA-SIFT and SURF) under 
different situations: scale and rotation change, blur change, 

illumination change, JPEG compression, and affine change. 
We also investigate its time consumption, by comparing 
with SIFT and its two variants.   

 
4.1.  Data Sets 

We evaluate our CGCI-SIFT on five image data sets used 
in [6] and [17]. These data sets consist of real images with 
different geometric and photometric transformations and for 
different scene types. Within the data sets, a set of boat 
images are used to evaluate the scale and rotation invariance 
of CGCI-SIFT, a set of bike images used to evaluate the blur 
invariance of CGCI-SIFT, a set of Leuven images used to 
evaluate the illumination invariance of CGCI-SIFT, a set of 
house images used to evaluate the JPEG compression 
invariance of CGCI-SIFT, and a set of graffiti images used 
to evaluate the affine invariance of CGCI-SIFT. 

 
4.2.  Evaluation Measures 

We use two measures, the number of correct matches and 
false matches obtained from an image pair, to evaluate the 
performance of our CGCI-SIFT. The adopted matching 
strategy is the nearest neighbor distance ratio matching. The 
nearest neighbor distance ratio matching can be explained as 
follows. 

Considering a pair of images (a reference image and a test 
image), ap  denotes a keypoint in the reference image, and 

bp  and cp  denote two keypoints in the test image, where 

bp  and cp  are the nearest point and second nearest point, 
respectively. We define that the keypoints ap  and bp  match 
if ( , ) ( , )a b a cdist p p dist p pβ< × , where ()dist  is a Euclidean 
distance between the descriptors of two keypoints, and β  is 
a threshold. Otherwise, we define that the keypoints ap  and 

bp  mismatch. Every keypoint descriptor in the reference 
image is compared with every keypoint descriptor in the test 
image.  

The thresholdβ  is varied to obtain the curves to present 
our experimental results (recall versus 1-precision, which is 
used in [6], [7] and [17]) in Section 4.3. Recall is defined as 
the number of correct matches with respect to the number of 
corresponding matches between two images of the same 
scene: 

 
#

#
correctMatchesrecall

correspondences
=

                  
(10) 

 
We determine the number of correct matches and 

correspondences using an overlap error ε . The overlap error 
measures how well the regions correspond under a particular 
transformation, and that is a homography in our case. It is 
defined by the ratio of the intersection over the union of the 
regions: 

BHHA
BHHA

T

T

∪
∩

= -1ε                               (11) 

 
where A and B are the regions and H is the homography 
between the two images. Details can be found in [17]. The 
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correct match that we define is satisfied with the condition 
5.0<ε , which means the overlap error in the image region 

covered by two corresponding regions is less than 0.5 of the 
region union. 

The 1-precision represents the number of false matches 
relative to the total number of matches, defined as: 

 
#

1
# +#

falseMatches
precision

correctMatches falseMatches
− =

        
(12) 

 
The recall and 1-precision are independent terms. The 

results in recall versus 1-precision show the performance of 
an algorithm on only a pair of images. We need to display 
the performance of an algorithm on between an image and a 
sequence of its transformations. Thus, we add another 
evaluation measure, correct match rate (CMR). Correct 
match rate is defined as follows. 
 

#
# #

correctMatchsCMR
correctMatchs falseMatchs

=
+

            (13) 

 
where #correctMatchs  represents the number of correct 
matches, and # falseMatchs  represents the number of false 
matches. In our experiments of evaluating the performance 
of each algorithm in term of correct matching rate (CMR), 
we set the threshold β =0.49 as the matching condition. 

 
4.3.  Experiment Results 

In the experiments of this paper, we use CGCI-64 (η =3 
and t=19) and CGCI-40 ( η =0 and t=16) as the two 
representatives of our CGCI-SIFT, and compare their 
experimental results with SIFT, SURF and PCA-SIFT. 
Again, CGCI-64 denotes the CGCI-SIFT descriptor with 64 
dimensions, while CGCI-40 denotes the CGCI-SIFT 
descriptor with 40 dimensions. Thus, we can see the 
performance of CGCI-SIFT under different dimensions. 
Note that CGCI-SIFT is a general framework. It could have 
many different versions by setting its two parameters η  and 
t . Each version has a certain dimension, which can be 
calculated by (9). SURF and PCA-SIFT are extensions of 
SIFT. Both of them have reduced the dimension of SIFT, so 
we choose them to make comparisons.  

All methods are implemented in Matlab 2010a and 
executed on a Dell PC computer. It has a Pentium(R) Dual-
Core CPU E5300@2.60 GHz, and 4G RAM, running 
Windows 7.  

Image Rotation and Scale. We conduct the first set of 
experiments on a set of boat images [17] to evaluate the 
robustness of our CGCI-SIFT against image rotation and 
scale change. The set of images is shown in Fig.3. This set 
has six images in total. Each represents different scale and 
rotation respectively. Note that the range of rotations of the 
images is from 30 to 50 degrees, and the range of their 
scales is from 2 to 2.5.  We also compare our CGCI-SIFT 
with SIFT and its two variants (PCA-SIFT and SURF). Our 
experiments match the image A1 with others (A2-A6) 
respectively. The experimental results are shown in Fig.4.  

 
A1                                     A2 

 
A3                                      A4 

 
A5                                       A6 

Fig.3.  Images used for evaluation under rotation and scale 
changes. 
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(b)  Recall versus 1-precision 

Fig.4.  Evaluation under rotation and scale changes. 
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Fig.4.(a). shows the matching correct rate of each 
algorithm between the image A1 and the others (A2-A6) 
respectively. Note that we also compare the performance of 
the two versions of CGCI-SIFT (CGCI-64 and CGCI-40). 
Fig.4.(a). clearly shows the relationships among the 
compared algorithms. From Fig.4.(a)., we can see that 
CGCI-64 has the highest matching correct rate under all 
comparing pairs. It is followed by SIFT. CGCI-40 performs 
the third, which is better than both PCA-SIFT and SURF. 
Between PCA-SIFT and SURF, SURF has the lowest 
matching correct rate under all image pairs.  

Fig.4.(b). shows the specific experimental results for 
matching the image A1 with A6 for our CGCI-SIFT (CGCI-
64 and CGCI-40), SIFT and its variants (PCA-SIFT and 
SURF). First, we can see that the recall of every algorithm 
increase with the increment of 1-precision, as expected.  
Among these algorithms, the recall of SIFT increases 
quickly when 1-precision is small. Our CGCI-64 increases 
more quickly than SIFT does when 1-precision is greater 
than 0.3. Thus, after 1-precision is greater than 0.7, our 
CGCI-64 has higher recall than SIFT. Except SIFT, both 
CGCI-64 and CGCI-40 always have higher recall than 
SURF and PCA-SIFT. Compared with CGCI-40, CGCI-64 
is better.  

Image Blur: The second set of experiments is conducted 
on a set of bike images to evaluate the performance of our 
CGCI-SIFT against blur invariance. The set of images is 
shown in Fig.5. It has six images in total. The image B1 is 
an original one from the image set [17].  We use it to 
produce 10 different blur images with different fuzzy 
radiuses (from 1 to 10, refer to the horizontal axis in 
Fig.6.(a).), which represent different degrees of blur. Fig.5. 
shows the original image and five produced images with 
their corresponding blur radius. The experimental results are 
shown in Fig.6. 

Fig.6.(a). shows the matching correct rate of each 
algorithm between the original image B1 and the 10 
generated images respectively. Note that we also compare 
the performance of the two versions of CGCI-SIFT (CGCI-
64 and CGCI-40). Fig.6.(a). clearly shows the relationships 
among the compared algorithms. From Fig.6.(a)., we can see 
that both versions of our CGCI-SIFT (CGCI-64 and CGCI-
40) perform significantly better than all others (SIFT, PCA-
SIFT, and SURF). Between two versions themselves, CGCI-
64 performs slightly better when the bur degree is greater 
than 6.  Among the rest three algorithms, SIFT performs 
better than PCA-SIFT. SURF performs the worst.  

Fig.6.(b). shows the specific experimental results for 
matching the original image B1 and the most blurring image 
B6 shown in Fig.5. for our CGCI-SIFT (CGCI-64 and 
CGCI-40), SIFT and its variants (PCA-SIFT and SURF).  
First, we can see that the recall of every algorithm increase 
with the increment of 1-precision, as expected.  Among 
these algorithms, the recall of our CGCI-SIFT increases 
quickly when 1-precision is small. Both versions of our 
CGCI-SIFT always dominates all other algorithms (SIFT, 
PCA-SIFT, and SURF). Between the two versions of our 
CGCI-SIFT, CGCI-64 performs slightly better than CGCI-
40. Among the three other algorithms (SIFT, PCA-SIFT, 
and SURF), the recall of SIFT is higher than that of SURF. 
The recall of SURF is higher than that of PCA-SIFT. 

 
B1                                             B2 

  
B3                                              B4 

  
B5                                             B6 

Fig.5.  Images used for evaluation under image blurring. 
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(b)  Recall versus 1-precision 

Fig.6.  Evaluation under blur change. 
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Illumination Changes. The third set of experiments is 
conducted on a set of Leuven images to evaluate the 
performance of our CGCI-SIFT against illumination 
invariance. The set of images are shown in Fig.7. Please 
note that the image C3 is the original image [17]. We use the 
original image C3 to produce 10 different illumination 
images by decreasing and increasing brightness intensity 
(from -150 to 150, refer to the horizontal axis in Fig.8.(a)). 
The brightness intensity represents a degree of illumination. 
Fig.7. shows the original image C3 and five produced 
images (C1-C2, and C4-C5). Note that we order the images 
according their brightness. Images C1 and C2 are darker 
than the original one C3. The images C4-C5 are brighter 
than the original one. The experimental results are shown in 
Fig.8. 

 

 
C1                                         C2 

 
C3                                        C4 

 
C5                                          C6 

Fig.7.  Images used for evaluation under Illumination changes. 
 

Fig.8.(a). shows the matching correct rate of each 
algorithm between the original image C3 and the 10 
generated images respectively. From Fig.8.(a)., we can see 
that our CGCI-SIFT performs consistently well under 
different brightness intensities. When the brightness 
intensity is very high (greater than 100 in the horizontal axis 
in Fig.8.(a).), our CGCI-SIFT performs the best, although it 
performs a little worse than SIFT (the best one among all 
algorithms) when the brightness intensity is negative. From 
Fig.8.(a)., we can also see that PCA-SIFT performs well, 
and SURF performs the worst.  

Fig.8.(b). shows the specific experimental results for 
matching the original image C3 and the brightest image C6 
among the images shown in Fig.7.  First, we can see that the 
recall of every algorithm increase with the increment of 1-
precision, as expected. Among these algorithms, the recall 
of our CGCI-SIFT increases quickly when 1-precision is 
less than 0.4. Both versions of our CGCI-SIFT have better 

performance when the value 1-precision is less than 0.4. 
When the value 1-precision is greater than 0.4, SIFT 
performs the best, followed by CGCI-64 and CGCI-40. Both 
CGCI-64 and CGCI-40 perform better than SURF and PCA-
SIFT. Between SURF and PCA-SIFT, PCA-SIFT performs 
better when 1-precision is smaller than 0.4, while it 
performs worse when 1-precision is greater. 
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(b)  Recall versus 1-precision 

Fig.8.  Evaluation under illumination changes. 
 
 

JPEG Compression. JPEG compression is widely used to 
reduce the size of images in real-time applications with 
specific purposes, such as network traffic reduction. 
Matching descriptors with JPEG images indicate whether 
the descriptors can still represent image regions under 
compressions.  

The forth set of experiments is conducted on a set of house 
images to evaluate the performance of our CGCI-SIFT 
against JPEG invariance. The set of images are shown in 
Fig.9. Please note that the image D1 is the original image [6]. 
We use the original image D1 to produce 5 different JPEG 
compression images by increasing the compression 
percentage (from 60 to 100, refer to the horizontal axis in 
Fig.10.(a).). The experimental results are shown in Fig.10. 
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D1                                        D2 

 
D3                                       D4 

 
D5                                      D6 

Fig.9.  Images used for evaluation under JPEG compression. 
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(b)  Recall versus 1-precision 

Fig.10.  Evaluation under JPEG Compression. 

Fig.10.(a). shows the matching correct rate of each 
algorithm between the original image D1 and the five 
generated images respectively. From Fig.10.(a)., we can see 
that our CGCI-SIFT performs well under different JPEG 
compression. When the compression rate is greater than 80 
in the horizontal axis in Fig.10.(a).), our CGCI-64 performs 
the best, although it performs a little worse than SIFT (the 
best one among all algorithms) when the compression rate is 
less than 80. From Fig.10.(a)., we can also see that our 
CGCI-40 performs better than PCA-SIFT and SURF. 
Between PCA-SIFT and SURF, PCA-SIFT performs better.  

Fig.10.(b). shows the specific experimental results for 
matching the image D1 with D6 for our CGCI-SIFT (CGCI-
64 and CGCI-40), SIFT and its variants (PCA-SIFT and 
SURF).  First, we can see that the recall of every algorithm 
increase with the increment of 1-precision, as expected.  
Among these algorithms, the recall of our CGCI-64 
increases quickly when 1-precision is smaller than 0.6, 
although SIFT performs better after that. Our CGCI-40 
performs the best among the rest algorithms (PCA-SIFT and 
SURF), although it performs worse than CGCI-64 and SIFT. 
Between PCA-SIFT and SURF, SURF performs better.   

Affine Transformation. The fifth set of experiments is 
conducted on the set of Graffiti images [17] to evaluate the 
performance of our CGCI-SIFT against affine invariance. 
This set has six images in total, shown in Fig.11. Each 
image has a different viewpoint (from 20 to 60 degrees, 
refer to the horizontal axis in Fig.12.(a).). The experimental 
results are shown in Fig.12. 

 

  
E1                                               E2 

   
E3                                             E4 

   
E5                                            E6 

Fig.11.  Images used for evaluation under viewpoint changes. 
 

Fig.12.(a). shows the matching correct rate of each 
algorithm between the image E1 and the others (E2-E6) 
respectively. Note that we also compare the performance of 
the two versions of CGCI-SIFT (CGCI-64 and CGCI-40). 
From Fig.12.(a)., we can also see that the correct matching 



 
MEASUREMENT SCIENCE REVIEW, Volume 13, No. 3, 2013 

 140

rate of every algorithm decreases when the viewpoint angle 
increases. Fig.12.(a). also clearly shows the relationships 
among the compared algorithms. From Fig.12.(a)., we can 
see that both versions of our CGCI-SIFT (CGCI-64 and 
CGCI-40) perform significantly better than all others (SIFT, 
PCA-SIFT, and SURF) under different angles of viewpoints. 
Between two versions themselves, CGCI-64 always 
performs much better than CGCI-40 under different 
viewpoints. It also maintains a very high matching correct 
rate. Among the rest three algorithms, SIFT performs better 
than PCA-SIFT and SURF. PCA-SIFT performs better than 
SURF when the angle of the viewpoint is smaller than 30 
degrees. Otherwise, SURF performs slightly better than 
PCA-SIFT. 
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Fig.12.  Evaluation under viewpoint changes. 
 

Fig.12.(b). shows the specific experimental results for 
matching the image E1 with E6 for our CGCI-SIFT (CGCI-
64 and CGCI-40), SIFT and its variants (PCA-SIFT and 
SURF).  First, we can see that the recall of every algorithm 
increase with the increment of 1-precision, as expected.  
Among these algorithms, the recall of our CGCI-64 
increases quickly when 1-precision is small, although SIFT 
performs better when 1-precision is greater or equal than 
0.3. Overall, SIFT and our CGCI-64 perform better than the 
rest algorithms (CGCI-40, PCA-SIFT, and SURF). Among 
the three algorithms, PCA-SIFT performs the best, followed 
by our CGCI-40. SURF performs the worst. 

4.4.  Time Consumption Evaluation  
Many real-world applications of image matching are real-

time. It is import to investigate the time consumption of 
each algorithm. In this section, we investigate the time 
consumption of our CGCI-SIFT, by comparing with SIFT 
and its two variants (PCA-SIFT and SURF). We have 
conducted experiments to investigate the time consumption 
of each algorithm under different situations (i.e., scale and 
rotation change, blur change, illumination change, JPEG 
compression, and affine change), on the whole data sets (six 
images for scale and rotation change, 11 images for image 
blur change and illumination change respectively, six 
images for JPEG impression and affine change respectively, 
40 images in total) [17]. 

Table 1. shows the time consumption of each algorithm 
running on the 40 images. In order to see the details of the 
time consumed by each algorithm, we also show feature 
extraction time and matching time separately in the table. 
The feature extraction time is the total time of interest point 
selection and descriptor construction for all the 40 images. 
The matching time is the total time required to find the 
corresponding pairs between the image A1 and other five 
images in its group (A2-A6) for scale and rotation 
invariance, between the original image B1 and other 10 
generated images for blur invariance, between the original 
image C3 and other 10 generated images for illumination 
invariance, between the image D1 and other five images in 
its group (D2-D6) for JPEG impression, and between the 
image E1 and other five images in its group (E2-E6). We 
also provide the summation of the time consumption of 
stages in the last column of Table 1. 

As we can see from Table 1., the running time of CGCI-
SIFT is shorter than SIFT. For PCA-SIFT, the matching 
time is the shortest, however, mapping the 3024-
dimensional vector to the 36-dimensional vector still 
requires much time. Therefore, the descriptor construction 
of PCA-SIFT is the most time consuming. The SURF has 
more advantages on detection and description parts, but the 
detected points of SURF are more than others. Therefore, 
the matching time is longer than CGCI-SIFT. The descriptor 
generating time of CGCI-SIFT is much less than that of 
SIFT because only a simple operation is required to 
construct CGCI-SIFT. In contrast, SIFT needs to compute 
the magnitudes and orientations of all the pixels in a local 
region. The matching time of CGCI-SIFT is also shorter 
because the dimensions of CGCI-SIFT are smaller than 
those of SIFT. 
 
 

Table.1.  Total computation time for each algorithm on all 40 
images (in Seconds). 

 
Name Feature extraction(s) Matching (s) Total(s) 

CGCI-64 1.375 1.080 2.458 
CGCI-40 1.187 0.854 2.042 

SIFT 2.132 1.846 3.913 
PCA-SIFT 3.141 0.729 3.875 

SURF 1.390 1.187 2.580 
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5.  CONCLUSION 
This paper proposed a novel invariant local descriptor 

CGCI-SIFT, an extension of the standard local descriptor 
SIFT. Considering different effects of different sub-regions 
inside the local region of an interest point, CGCI-SIFT 
divides the local interest region around the interest point into 
two main sub-regions: an inner region and a peripheral 
region. Then, it makes use of two known methods to 
construct its descriptor. It uses the gradient histogram 
information for the inner region, and the contrast intensity 
information for the peripheral region, instead of only storing 
the gradient orientations of all pixels in a local region (the 
SIFT approach). Besides, in contrast to classical approaches 
like SIFT (PCA-SIFT and SURF) that exploit the 
rectangular grid as division systems, CGCI-SIFT applies a 
log-polar coordinate system to divide the local region, which 
is more sensitive to the pixels that are near to the interest 
point than those farther away. 

Our experimental results demonstrate that the proposed 
descriptor CGCI-SIFT performs better than SIFT and its 
variants PCA-SIFT and SURF with various optical and 
geometric transformations, such as scale and rotation 
change, blur change, and viewpoint change. It is competitive 
under illumination change and JPEG compression. Most 
importantly, it also has better matching efficiency than SIFT 
and its variants PCA-SIFT and SURF. Because of its high 
matching accuracy and efficient computation, CGCI-SIFT 
can to be used in a variety of real-time applications.     

In the future, we will continue to improve the detector of 
CGCI-SIFT. At the same time, we will transform the gray-
value-based CGCI-SIFT to a color-based version, so that 
more discriminative descriptors can be applied to color 
images. 
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