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Pelletizing as a complicated compaction process is under continuous improvement. One of the problems – determination of 
optimal technological parameters to attain a sufficiently high density of pellets - is solved in this paper. The statistical model of 
density depending on four technological factors is built based on data obtained through a central composite design. Canonical 
analysis is used to find the stationary point, and as the received point is a saddle point, the optimal setting is determined by means 
of ridge analysis. Special attention is paid to the uncertainty associated with the indirect measurement of the pellet density. 
Substantial differences in the density exist between pellets created under the same conditions, and especially the type-A 
uncertainty must be taken into consideration 
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1.  INTRODUCTION 

IGH compaction pressing of material is a common 
feature of all pressing technologies (pelleting, 
compacting, briquetting). A large number of pressing 

machines exists, namely for processing biomass into 
different lengths and shapes. Many factors affect the quality 
of the resulting product. They can be divided into influences 
that can be avoided before pressing (e.g., environmental 
influences, human factor, technological condition of the 
machine used) and the influences that can be changed or 
controlled during the pressing process (type of the pressed 
material, size and humidity of the fraction, internal 
conditions on the machine). 

No technical standards describing or defining precisely 
products pressed out of organic materials exist in Slovakia. 
Standards for pressed products (namely pellets) are available 
only in several European countries like Germany, Austria, 
or Sweden. Austrian standards ÖNORM M 7135, ÖNORM 
M 7136 and ÖNORM M 7137, as well as German standards 
DIN 51731 [1] and DIN PLUS: 2002 [2] related to pellets 
are generally accepted in Europe. To define the quality of 
products, those standards describe both mechanical 
parameters (density, powder density, mechanical resistance) 
and chemical-thermal parameters (heating capacity, amount 
of water, ashes and other materials). Beside those 
parameters, the standards also set shapes and dimensions of 
pressed products as well as procedures for their testing. But 
they do not specify limits (tolerances) of technological 
parameters that should be kept during the production. 

Setting of technological parameters affects the resulting 
properties of pellets. Several papers have been published 
that introduce simple mathematical models describing the 
behavior of pressed products made out of different organic 
materials, e.g., hay [3], or biomass [4]. Optimal setting of 
technological parameters during the pressing process is 
continuously researched at the Faculty of Mechanical Engi- 

 
 
neering, Slovak University of Technology in Bratislava as 
well. Here the pressing machine with adjustable parameters 
is employed. A number of experiments have been carried 
out using different varieties of wood. For example, data 
from runs with pine and oak wood were used in [5, 6, 7] to 
study effects of some technological parameters on pellet 
quality. 

The density of the resulting product is a decisive aspect of 
its quality. The density should reach 1.0 to 1.4 kg/dm3 (as 
given by the standard). The statistical model of the 
dependence of density on some technological parameters 
enables to predict the density of pellets for different 
technological conditions.  

Our work is a follow-up to the research mentioned above. 
Data come from [5], where effects of pressure, temperature, 
moisture content, and particle size fraction on the density 
were examined by means of an experiment for response 
surface modeling using the central composite design (CCD).  

In our paper, the optimal conditions for achieving 
maximum density of pine wood pellets are found using 
canonical and ridge analysis. Considering the large variation 
of density values calculated on different pieces of pellets 
produced under the same experimental conditions, 
measurement uncertainty was included in the density 
prediction. Measurement uncertainties were dealt with in 
some previous issues of Measurement Science Review, 
lately in [8] or [9].  Especially the former work contains 
some basic principles used in our paper, too. 
 

2.  MEASUREMENT  
Experiments were carried out in laboratory conditions at 

room temperature, using the pressing machine. The fraction 
size had been determined and the humidity of the input 
material had been measured before the pressing process 
started. Maximum fraction size of the material was achieved 
by the use of laboratory sieves. The size of sieve openings 
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limited the fraction size of the material. The required 
humidity was ensured in the laboratory drying chamber 
BINDER. Digital humidity meter GMH 3830 with 
maximum permissible error of ± 0.2 % was used. 

The pressing chamber was filled by input material after 
achieving the desired process temperature (the thermometer 
with maximum permissible error of 0.5 °C was used). The 
required pressure was adjusted and the material was pressed 
(pressure gauge with maximum permissible error of 0.4 
MPa was used). Seven pieces of pellets were produced at 
each setting of controlled technological parameters. 

The produced pellets were allowed 24 hours for 
stabilization. Subsequently the length L and diameter D of 
each produced pellet were measured, using the Mitutoyo CD 
– 15D caliper (permissible error of 0.02 mm). This allowed 
the calculation of the volume V of the pellet. The digital 
balance KERN EW 4200 – 2NM (permissible error 0.02 g) 
was used to determine the mass m of pellet, enabling to 
calculate the density. 
 

3. EXPERIMENTAL VARIABLES 
Pressure (factor A), temperature (factor B), moisture 

content (factor C), and particle size fraction (factor D) 
represent quantitative factors, effect of which is examined 
by the experiment. In comparison with the range of 
parameter values being used so far, the distance of factor 
levels (except for fraction size) was widened. 

The model relating density to these quantitative factors can 
be described by an equation using either the variables 1z  to 

4z  with natural levels or the coded variables 1x  to 4x . Based 
on the factorial part of the CCD from [5], the natural 
variables and the coded variables are related by equations 
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Experimental data are shown in Table 1. 

Columns 1z to 4z contain actual settings of factors given in 
their natural units, while columns 1x to 4x show the same 
settings after centering and scaling. Response values in the 
right column represent averages computed from densities of 
seven pellets. 

The first 16 rows of Table 1 show treatments of the 24 
factorial part of the CCD, the 17th row represents the 
approximate center point of the spherical experimental 
region and remaining rows should correspond to the star 
points of the CCD. As the natural factor levels at treatments 
no. 17 to 25 had not been chosen properly in the experiment 
reported in [5], coded levels of x2 to x4 in these rows differ 
from the standard design described in the fundamental 
books [10, 11, 12] or in papers [13, 14, 15, 16, 17]. This fact 
may have some minor effect to the precision of predictions.  

 
4.  ANALYSIS OF EXPERIMENTAL DATA  

Our analysis consists of several steps. At first the factorial 
part of the experiment is evaluated and most important 
effects are found (A). After fitting a second-order response 
surface model based on CCD (B), the stationary point and 

its nature are determined by canonical analysis (C). As the 
stationary point is a saddle point, suitable operation 
conditions are revealed by means of ridge analysis (D). To 
predict the density at the optimal conditions, measurement 
uncertainty is calculated (E) and included in the construction 
of confidence intervals (F). 
 
Table 1.  Experimental data 
 

 A B C D A B C D Response
row z1 z2 z3 z4 x1 x2 x3 x4 y  

1 95 85 8 1 -1 -1 -1 -1 1.135 
2 159 85 8 1 1 -1 -1 -1 1.157 
3 95 115 8 1 -1 1 -1 -1 1.191 
4 159 115 8 1 1 1 -1 -1 1.236 
5 95 85 12 1 -1 -1 1 -1 0.800 
6 159 85 12 1 1 -1 1 -1 1.007 
7 95 115 12 1 -1 1 1 -1 1.174 
8 159 115 12 1 1 1 1 -1 1.236 
9 95 85 8 4 -1 -1 -1 1 1.089 

10 159 85 8 4 1 -1 -1 1 1.081 
11 95 115 8 4 -1 1 -1 1 1.167 
12 159 115 8 4 1 1 -1 1 1.206 
13 95 85 12 4 -1 -1 1 1 0.755 
14 159 85 12 4 1 -1 1 1 0.960 
15 95 115 12 4 -1 1 1 1 1.128 
16 159 115 12 4 1 1 1 1 1.135 
17 127 100 10 2 0 0 0 -0.3 1.016 
18 63 100 10 2 -2 0 0 -0.3 1.023 
19 191 100 10 2 2 0 0 -0.3 1.101 
20 127 55 10 2 0 -3 0 -0.3 0.972 
21 127 130 10 2 0 2 0 -0.3 1.146 
22 127 100 5 2 0 0 -2.5 -0.3 1.186 
23 127 100 15 2 0 0 2.5 -0.3 1.053 
24 127 100 10 0.5 0 0 0 -1.3 1.024 
25 127 100 10 4 0 0 0 1 1.012 

 

A. Analysis of the factorial part of the experiment 
The factorial part 24 of the CCD experiment enables to 

build a model with interactions. Only two-factor interactions 
were considered in response surface modeling. The model 
using coded variables has the form 

 
    0 1 1 2 2 12 1 2 34 3 4... ...y x x x x x xβ β β β β ε= + + + + + + +   (2) 

 
where 0β , 1β  etc. are unknown parameters. Besides, 1β  
represents, at the same time, one half of the main effect of 
factor A, 12β  equals to one half of the interaction AB effect, 
etc. in the coding used.  

The analysis of variance was performed with the statistical 
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packet SAS. Only effects A, B, C, and the interaction BC 
were significant with p-value less than 0.05 (details are not 
shown). The importance of different factors can be 
evaluated through partition of the total sum of squares by 
the factors (Table 2). At this stage of knowledge, excluding 
factor D from the next experimentation would seem 
reasonable, but in spite of it, all four factors were comprised 
in the augmented experiment in [5].  

 
Table 2. Partition sum of squares by factors, 24 factorial, PROC 
RSREG  
 
Factor DF Sum of Squares Mean Square F Value Pr > F

A 4 0.035319 0.008830 3.66 0.0936
B 4 0.184549 0.046137 19.13 0.0031
C 4 0.121882 0.030471 12.64 0.0080
D 4 0.011563 0.002891 1.20 0.4140

 
B. Analysis of the Central Composite Experiment 
Considering four factors, the central composite design 

arises by combining the original 24 factorial design with 8 
star points at the distance α± from the center (0,0,0,0) (in 
coded units) of  the experimental region. Moreover, two or 
more runs at (0,0,0,0) are commonly replicated. To achieve 
the same accuracy of predictions at the same distance from 
the center, 4 42 2α = =  is chosen (Table 3), see [10, 11, 
12]. 

 
Table 3. Star points in coded units 

 
A B C D 
x1 x2 x3 x4 
-2 0 0 0 
2 0 0 0 
0 -2 0 0 
0 2 0 0 
0 0 -2 0 
0 0 2 0 
0 0 0 -2 
0 0 0 2 

 
Comparing Table 3 with the corresponding rows of Table 1 
implies that some star points and the center point were not 
chosen properly. In spite of this, the second-order model 
corresponding to model (2) with added second-order terms 
can be constructed 

 
2 2

0 1 1 12 1 2 11 1 44 4... ... ...y x x x x xβ β β β β ε= + + + + + + + +  (3) 
 
Again, results in Table 4 clearly confirm uselessness of 
factor D. After excluding D and relating interactions, a new 
model was fitted. Details are given in Table 5. As can be 
seen, particularly the effects of B and C and their interaction 
are important. The mean square error of the fitted response 
surface read from the output of PROC RSREG (not 

displayed) which will be needed for interval estimation, was 
 

/ ( ) 0.057099 / (25 10) 0.003807ESS n p− = − = , 
where ESS  denotes the residual sum of squares, n the 
number of observations and p the number of model 
parameters (rows in Table 5). 
 
Table 4. Partition sum of squares by factors, CCD, PROC RSREG  
 
Factor DF Sum of Squares Mean Square F Value Pr > F

A 5 0.045557 0.009111 2.30 0.1228
B 5 0.194773 0.038955 9.83 0.0013
C 5 0.141049 0.028210 7.12 0.0044
D 5 0.017490 0.003498 0.88 0.5264

 
Table 5. Estimated parameters, PROC RSREG  

 
Parameter DF Estimate Standard Error t Value Pr > |t|
Intercept 1 1.031108 0.028078 36.72 <.0001

A 1 0.030625 0.012594 2.43 0.0280
B 1 0.076036 0.012453 6.11 <.0001
C 1 -0.049105 0.011557 -4.25 0.0007

A*B 1 -0.017062 0.015424 -1.11 0.2861
A*C 1 0.023938 0.015424 1.55 0.1415
B*C 1 0.050812 0.015424 3.29 0.0049
A*A 1 0.014125 0.013923 1.01 0.3264
B*B 1 0.016259 0.008312 1.96 0.0693
C*C 1 0.016765 0.008807 1.90 0.0763

 
C. Canonical Analysis  
After fitting the response surface, the location and nature 

of the stationary point were determined. In matrix notation, 
the fitted model has the form 
 
 0

ˆˆ T Ty b= + +x b x Bx , (4) 
where 
 

2 2
1 2 3 1 2 2 3 1 3(1 ... ... )T x x x x x x x x x=x , 

0 1.031108b = ,     
0.030625
0.076036
0.049105

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

b , 

0.014125 0.008531 0.011969
ˆ 0.008531 0.016259 0.025406

0.011969 0.025406 0.016765

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

B , see Table 5. 

 
The stationary point is  
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Fig. 1. Fitted quadratic response surfaces 
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sz  (in the natural units, as follows from (1)). 

 
The eigenvalues of the matrix B̂  are 1 0.262823λ = , 

2 0.091287λ = , 3 0.091207λ = − . Mixed signs of the 
eigenvalues imply that the stationary point is a saddle point, 
see [11, 12]. The predicted response at the saddle point, i.e. 
at 1z = 176 MPa, 2z  = 123 °C, and 3z  = 6 %  is 1.162 
kg/dm3. 

Three-dimensional surfaces plotted against different pairs 
of factors are displayed in Fig.1. The third factor is always 
set to its level at the center point. 

 
D. Ridge Analysis  
To get a better idea about behaviour of the response in the 

neighbourhood of the saddle point, ridge analysis was 
performed using PROC RSREG. It consists in maximization 
of the predicted response given by (4) subject to the 
constraint 2T

p p R=x x , where 1 2 3 4( )T
p x x x x=x  and R is the 

radius in coded units (details see [11]).  
The computed ridge of maximum response for 0,1R ∈< >  

is displayed in Fig. 2. It starts at the center point (the value 
92.5 of B instead of 100 follows from the improper plan) 
and goes through points at specified radii corresponding to 
factor settings that maximize the predicted response at this 
radius. The predicted response values are displayed on the 
top, corresponding factor settings can be read on the plot 
below or in Table 6. This table indicates that the maximum 
predicted response at a distance of one coded unit from the 
center is ˆ 1.329y =  with the estimated standard error 

ˆ 0.072ys =  and that this constrained maximum can be 
achieved approximately at pressure 127 MPa, temperature 
77 °C, and moisture 5 %.  

 
Table 6. Ridge analysis, PROC RSREG, uncoded factor values 

 
Estimated Ridge of Maximum Response for Variable y 

Uncoded Factor Values Coded
Radius

Estimated
Response

Standard
Error A B C 

0.0 0.99716 0.02859 127.00000 92.50000 10.00000
0.1 1.02146 0.02848 128.83724 94.64026 9.61534
0.2 1.04426 0.02795 130.20616 96.35116 9.17928
0.3 1.06625 0.02720 130.71395 96.51392 8.62909
0.4 1.08970 0.02711 130.37388 94.25291 8.03127
0.5 1.11706 0.02881 129.86267 91.32654 7.51494
0.6 1.14919 0.03289 129.36111 88.41579 7.05561
0.7 1.18636 0.03946 128.87812 85.57279 6.62726
0.8 1.22866 0.04830 128.40909 82.78418 6.21718
0.9 1.27614 0.05914 127.95002 80.03534 5.81880
1.0 1.32883 0.07174 127.49814 77.31567 5.42839
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Fig. 2. Maximum response and constrained maximum conditions 

plotted against radius, PROC RSREG 
 
E. Measurement uncertainty at the center point 
The uncertainty of the estimate of pellet density was 

calculated for the center point (pressure 127 MPa, 
temperature 100 °C, humidity 10 %, fraction size 2 mm).  
Seven pellets were produced (see Table 7). 

 
Table 7. Measured and calculated values at the center point, s 
denotes the sample standard deviation  

 

Specimen Diameter Length Mass Volume Density 
No. (dm) (dm) (kg) (dm3)  (kg/dm3) 
1 0.2003 0.3509 0.01161 0.01105 1.05055
2 0.2003 0.2464 0.00659 0.00776 0.84921
3 0.2008 0.2280 0.00576 0.00722 0.79816
4 0.2002 0.3371 0.01200 0.01061 1.13142
5 0.2006 0.2622 0.00877 0.00828 1.05885
6 0.2003 0.4229 0.01434 0.01332 1.07666
7 0.2003 0.4055 0.01464 0.01277 1.14635

Average  0.2004 0.32186 0.01053 0.01014 1.01589
s 0.00022 0.07783 0.00356 0.00244 0.13681

 
The following equation was used for calculating the 

pressed pellet density ρ =V/m. 
An estimate of the density is represented by the arithmetic 

mean obtained out of r = 7 calculated densities of the 
individual pressed pellets, i.e. ρ  = 1.015887 kg/dm3. 

The standard uncertainty of the estimate ρ , calculated by 
the type A method, can be expressed as  

 

A
0.136808( ) 0.051709

7

s
u

n
ρρ = = =  kg/dm3. 

 
When calculating the standard uncertainty determined by 

the type B method, only the effect of permissible errors of 
the individual measuring instruments was assumed. As the 
same measuring instrument was used for measurement of 
both the length and diameter of the pellet, covariances were 
included as well. For model ρ =V/m we get 

 

 )()()()()( 2
B
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where C(m) and C(V) are sensitivity coefficients  
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The uniform probability distribution is assumed for the 

digital balance KERN EW 4200 – 2NM, while the 
maximum permissible error Δper, stated in certificate, 
reaches 0.02 g. Then uB(m) = Δper/√ 3= 1.1547·10-5 kg. 

When determining uB(V) , we employ the model of volume 
V measurement in the form V =  π D2 L / 4. 

Then [18]
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The length L and the diameter D of the pressed products 
were measured by the same instrument Mitutoyo CD – 15D, 
then uB(D) = uB(L) and they can be evaluated according to 
the measuring instrument certificate which reads maximum 
permissible error of 0.02 mm. Based on a large number of 
experiments carried out on the digital caliper, it has shown 
that errors of calipers behave according to normal 
distribution regardless of the manufacturer and the 
calibration point [19]. Then for the containment probability 
95 %, uB(D) = uB(L) = Δper/2 =1·10-4 dm. 

As both the pressed product diameter and length were 
measured by the same instrument, the data are correlated 
and the correlation is calculated as 
 

)()(),( BB,B LuDurLDu DL ⋅=   
 

While the error of measuring instrument is considered as 
the only uncertainty source, we assume rL,D = 1. Then 
uB(D,L) = 1· uB(D) uB(L) = 1·10-8 dm2. 

After substituting to (6) we get 
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and subsequently to the equation (5) 
 

62
B

22
B

22
B 101425.3)()()()()( −⋅=⋅+⋅= VuVCmumCu ρ

 kg2/dm6.
 The combined standard uncertainty uC of the pressed 

product density is calculated as 
 

2 2
C A B( ) ( ) ( ) 0.051709 0.052u u uρ ρ ρ= + = ≈  kg/dm3.

   
It seems obvious that uncertainty of measurement at the 

center point is caused only by variation of measured data, 
thus )()( AC ρρ uu ≈ . Type-A uncertainty at the other 
experimental points can be determined accordingly, with the 
use of sample variances given in Table 8. As the Levene’s 
test for assessing variance homogeneity is not significant (p-
value as high as 0.0570), the sample variances at all 25 
experimental points can be pooled by taking the average 
variance of 0.006638. Then the overall measurement 
uncertainty )(A ρu can be set to 0.006638/7  0.030795= . 
This uncertainty is considered in construction of prediction 
limits. 

 
F. Prediction interval   
100(1 α− ) % prediction interval  for ρ  at the optimal 

operational conditions is constructed according to the 
formula known from regression analysis 

 
 1

1 / 2ˆ ˆ( ) 1 ( )T T
o ef o oy t α ν σ −

−± + x X X x , (7) 
 
where ˆoy denotes the estimated optimal density 1.328825, X 
is the design matrix of type 25×10, T

ox is the row vector 
(1 127.498 77.316 5.428 ….), σ̂ is the estimated standard 
deviation of the random component ε  in model (3) and 

1 /2 ( )t α ν− denotes the upper percentile of the Student 
distribution with ν  degrees of freedom that correspond to 
the way of σ  estimation. Unlike in common CCD 
applications, the measurement uncertainty cannot be 
neglected and is added to the experimental error estimated 
by means of 2ˆ / ( )E ESS n pσ = − (see paragraph B), i.e.  
 
 2

A
22 ˆˆ uE +=σσ  (8) 

 
The effective degrees of freedom are given by Welch-

Satterthwaite equation [20], i.e.  
 

 ( )2
4
A1

44 //ˆ/ˆ ννσσν uEef +≈ ,  (9) 
 

where 1 25 10 15n pν = − = − = , 2 25( 1) 150rν = − = . Ac-
cordingly, 2ˆ 0.003807 0.000948 0.004755σ = + = , 23efν ≈ , 

0.975 (23) 2.069t = , and the 95 % prediction interval is 
(1.110; 1.548). As can be seen, the lower prediction limit is 
higher than 1kg/dm3 and so the requirement on the 
sufficiently high density is met. 
 
Table 8. Characteristics of density at experimental points 
 

 A B C D   
row z1 z2 z3 z4 y  2s  

1 95 85 8 1 1.135 0.001258
2 159 85 8 1 1.157 0.001384
3 95 115 8 1 1.191 0.002513
4 159 115 8 1 1.236 0.001332
5 95 85 12 1 0.800 0.00727 
6 159 85 12 1 1.007 0.009572
7 95 115 12 1 1.174 0.007584
8 159 115 12 1 1.236 0.006393
9 95 85 8 4 1.089 0.001384

10 159 85 8 4 1.081 0.002974
11 95 115 8 4 1.167 0.003207
12 159 115 8 4 1.206 0.001062
13 95 85 12 4 0.755 0.006349
14 159 85 12 4 0.960 0.006146
15 95 115 12 4 1.128 0.004268
16 159 115 12 4 1.135 0.001377
17 127 100 10 2 1.016 0.018716
18 63 100 10 2 1.023 0.008629
19 191 100 10 2 1.101 0.020944
20 127 55 10 2 0.972 0.006323
21 127 130 10 2 1.146 0.003376
22 127 100 5 2 1.186 0.002007
23 127 100 15 2 1.053 0.017137
24 127 100 10 0.5 1.024 0.014276
25 127 100 10 4 1.012 0.010476

 
 

5.  DISCUSSION 
As was already mentioned, the design of the experiment in 

[5] slightly differred from the CCD recommended in 
literature. Natural factor levels in the augmented part of the 
CCD experiment were not in agreement with 2α = and 
replicated measurements at the center point were not 
conducted. This fact may affect more the accuracy of 
estimates than the result in terms of optimal conditions.  It 
should be also noted that the spherical CCD used in [5] is 
not the only possible design; the cuboidal CCD can be used 
where the factor levels from the factorial part cannot be 
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exceeded (see [11]). A special remark should be made about 
the particle size fraction; the particle size fraction cannot be 
controlled entirely in the experiment because only its upper 
limit is guaranteed and so different factor levels are 
overlapping. 

As for the evaluation of experimental data, it needs to be 
emphasised that seven measurements at each experimental 
point are not true replications because they are obtained by a 
single experimental setting. This situation is usually handled 
as was shown in this paper, i.e. averages from samples of 
size seven are evaluated instead of individual response 
values. Then a negligible measurement uncertainty is 
assumed, though. It is not the case here and so we 
contemplated two approaches. The first consists in treating 
individual measurements as replications and neglecting 
measurement uncertainties, the other in treating averages 
and taking measurement uncertainties into consideration. 
The former approach is not recommended for the reason that 
a great number of pseudoreplications imply that many tested 
effects may falsely appear significant. 

In the latter approach, determination of the measurement 
uncertainty is required. In the analysis of CCD experiments 
the experimental error is estimated by means of runs 
replicated at the center point. We mimicked this approach 
and calculated the combined measurement uncertainty at 
this point. As the type-B uncertainty was negligible in 
comparison with the type-A, only A-uncertainties were 
taken into account and averaged over all twenty five 
experimental points.  

To decrease the type-A uncertainty of density (and so a 
more precise prediction based on the model), causes of the 
large variation should be found. One of them might be the 
not truly cylindrical shape of pellets and in such case a more 
sophisticated measurement of their dimensions should be 
designed.   

Determination of the stationary point is realizable by 
means of most statistical software products. Application of 
ridge analysis assumes either suitable statistical software 
(SAS, R etc.) or a macro for constrained optimization. 
Modification of the formula for the prediction interval 
follows from basic statistical principles. 

 
6.  CONCLUSIONS 

At present, the trial and error method is often used when 
technological parameters in compaction processes are set. 
The paper shows how data from the suitably designed 
experiment can be used to find the operational conditions 
that ensure the optimal density of pellets, and represents 
a significant contribution to the research in this field. 

With the present method of density indirect measurement, 
the type-A measurement uncertainty, beside the 
experimental error, must be considered for prediction based 
on the response surface model. To verify whether the 
predicted density is high enough, the lower prediction limit 
is used. It guarantees (at the considered confidence level) 
that the real density at the given setting measured in the 
same way, i.e. expressed as the average from the sample of 
the same size as was used in the experiment, will not be 
lower than the limit. 
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