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In this paper we address measurement problems involving several quantities that are interrelated by model equations. Available 

knowledge about some of these quantities is represented by probability density functions (PDFs), which are then propagated 
through the model in order to obtain the PDFs attributed to the quantities for which nothing is initially known. A formalism for 
analyzing such models is presented. It comprises the concept of a „base parameterization“, which is used in conjunction with the 
change-of-variables theorem. The calculation procedure that results from this formalism is described in very general terms. 
Guidance is given on how to employ it in practice by presenting both an elementary example and a much more involved one. 
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1.  INTRODUCTION 
N A PREVIOUS PAPER [1] we presented the main 
elements of a Bayesian procedure for assigning state of 
knowledge probability density functions (PDFs) to 

metrological quantities having essentially unique true 
values. In accordance with the prevalent view advocated in 
well-known international documents  [2], [3], the mean  and 
standard deviation of any such PDF are, respectively, taken 
as the best estimate and associated standard uncertainty of 
the quantity to which the distribution pertains, and the area 
under the PDF over a given interval is regarded as the 
probability of finding the true value of the quantity within 
that interval, given the available information. 

For some of the quantities appearing in the model of 
measurement this information may be in the form of 
measurement data, for others some type of knowledge may 
be at hand (e.g., that their true values are known to be 
contained within prescribed intervals) and for still others 
there may be no information at all. The assignment of PDFs 
to those quantities about which something is known follows 
in general from tools such as Bayes’ theorem [3, subclause 
6.2] and the „Principle of Maximum Entropy“ [3, subclause 
6.3], but expert’s judgment is also needed, e.g., to identify 
discordant observations [4]. These PDFs are then 
propagated through the measurement model that links the 
corresponding quantities with those for which there is no 
knowledge. In this way, the PDFs for the latter quantities are 
obtained. 

The procedure explained in [1] relies on the use of Dirac 
delta functions for effecting the propagation of probability 
distributions analytically [3, subclause 5.2]. Though the 
delta function is a very powerful concept, the rules for its 
manipulation may not be familiar to some metrologists. For 
this reason, in this paper we employ an alternative but 
entirely equivalent treatment based on the more widely 
known change-of-variables theorem [5]-[7]. To this end we 
provide a formal definition of the concept of 
„parameterization“, which is common in Bayesian statistics 

[8],[9] but which in metrology has hitherto been used rather 
intuitively [10]. Two examples illustrate the application of 
the formalism. 
 

2.  STATEMENT OF THE PROBLEM 
Consider a set of quantities X = {X1, K , Xm} interrelated 

through a consistent system of equations of the form 
 

Fi (Xi) = 0,  i =1, K , n < m,  (1) 
 
where the Xi are subsets of X, none of which is disjoint with 
all others, such that their union is equal to X. It is assumed 
that none of the quantities is perfectly known and that their 
true values are unique. The goal is to obtain the PDF for the 
quantities of interest (the measurands) taking into account 
the existing information I about some of the quantities in the 
system (1), which is hereafter symbolized by the letter M, 
for „model“. 
 

3.  ANALYSIS 
To analyze this problem it is useful to start from the 

concept of parameterization. In the present context, a 
parameterization is defined as a set Xp = {Xp1, K , Xpl}, 
where l = m − n, such that the model (1) allows all quantities 
in the complement of the parameterization to be expressed 
as explicit or implicit functions of some or all of the 
quantities it contains. There can be no more than m!/(n!×l!) 
parameterizations. For example, in the model   X1 = √X2, 
X3 = ln X4, X5 = X1X3, the set {X1, X3} is a parameterization 
but the set {X1, X2} is not, because it is not possible to 
express X3, X4 and X5 as functions of X1 and X2. 

Three situations arise depending on the number of 
quantities to which the information I refers. The first occurs 
when there exists no parameterization for which information 
on all its quantities is provided. It is then not possible to 
obtain the PDF for at least one of the quantities about which 
there is no knowledge. The proof is simple. Suppose that the 
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available information refers to less than l quantities and that 
it is precise, so that these quantities become known 
constants. The model (1) then turns into a „regular” under-
determined system of equations, from which no unique 
values of all unknowns can be found. This is true a fortiori 
if the information is imprecise (i.e., if for less than l 
quantities only probability distributions rather than their 
exact values are given). 

The second situation is frequently encountered in 
metrological practice. It occurs when there is information on 
just the l quantities of a certain parameterization Xb = {Xb1, 
K , Xbl}, henceforth called the base parameterization, such 
that their joint PDF, denoted by fb (ξb | I ), is either given or 
can be constructed by duly processing the available 
information (as explained, e.g., in section 3 of [1]). Here, the 
symbol ξb designates the set of variables that represent the 
possible values of the quantities Xb. In this case, the PDF for 
the quantities in any other parameterization Xp can be 
obtained from the change-of-variables theorem 
 

fp(ξp | I, M ) = | Jpb |×fb [Gb(ξp )| I ],  (2) 
 
where the l functions Gb are defined by 
 

Xbk = Gbk(Xp), k =1,K ,l  (3) 
and 

p

pb
pb ξ

ξG
∂

∂
=

)(
J  (4) 

 
is the determinant of the Jacobian matrix of the 
transformation. The symbols standing for „given I” and 
„given I and M” in the arguments of the PDFs have been 
added for clarity; they may be dropped in practice, as in 
section 5 below. The functions Gb (which need not be 
explicit) are obtained from the model (1); they are assumed 
to be differentiable at least once within the domains of 
interest of the quantities in the base parameterization. 
Equation (2) needs to be modified if the mapping 
Xb = Gb(Xp) is not one-to-one in all quantities, but this 
brings about only a formal complication that is of no interest 
to our exposition. Note that the intersection of Xb and Xp 
may or may not be empty. 

In this second situation the l quantities forming the base 
parameterization are frequently called input quantities. 
Similarly, the n quantities completely unknown originally 
are called output quantities, some or all of which may be the 
measurands. Their joint PDF may be obtained by including 
the output quantities in the above-mentioned 
parameterization Xp. Provided the latter also contains 
quantities that are not measurands, subsequent integration of 
the PDF fp(ξp | I, M) over these quantities is required. 

Finally, in the third situation information exists on more 
than l quantities. It is easily seen that in this case one can 
use the change-of-variables theorem with different choices 
of Xb, leading to different PDFs fp(ξp | I, M) for any fixed 
parameterization Xp. This means that there is more than 
enough information. Either some of it must be discarded in 
order to keep just a single base parameterization (and 
consequently, a single PDF for any parameterization Xp) or 

some compromise must be reached if all information is to be 
retained. (The same may happen in case information is 
provided on all quantities of a set of size l that is not a 
parameterization. For example, in the model X1 = √X2, 
X3 = ln X4, X5 = X1X3, providing information on both X1 and 
X2 would be more than enough with respect to these two 
quantities, but still not sufficient to establish the PDFs for 
X3, X4 and X5. So this would, in fact, represent a situation of 
the first type.) The case of more than enough information is 
of interest in metrology, but it will not be addressed in the 
examples below. 
 

4.  ONE OUTPUT QUANTITY 
The GUM [2] and its Supplement 1 [3] address explicit 

measurement models of the form 
 

Xm = F (Xb),             (5) 
 
where the single measurand Xm is initially completely 
unknown and the information I pertains only to the input 
quantities in the base parameterization Xb = {X1,K , Xm−1}. 
These models are easily handled with the present formalism. 
Indeed, by setting, e.g., Xp = {X1,K , Xm−2, Xm}, (5) may be 
(partially) inverted according to 
 

Xi = Gi (Xi),  i = 1, K  , m−2,  (6) 
 

Xm−1 = Gm−1 (X1, K , Xm−2, Xm).   (7) 
 
Then (2) yields 
 

( ) ( )IG,,,fGM,Iξf 1m2m1b
m

1m
pp −−

− ξξ×
ξ∂

∂
= K . (8) 

 
Similar equations are obtained by choosing other 
parameterizations Xp that contain Xm. 
 
A.  Example 

As an example, suppose the model is 
 

1

2
3 X

XX =            (9) 

 
and let the base parameterization be Xb = {X1, X2}. We then 
have, with Xp = {X1, X3}, 
 

( ) ( )IfMIf 3112,11313,1 ,,, ξξξξξξ =   (10) 
 
or, with Xp = {X2, X3}, 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= IfMIf 2

3

2
2,12

3

2
323,2 ,,, ξ

ξ
ξ

ξ
ξ

ξξ . (11) 

 
The PDF for the measurand X3 can now be obtained by 

marginalizing either of these two equations. Seemingly 
different but mathematically identical expressions for 

( )MIf ,33 ξ  are obtained.  
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Incidentally, it is easily shown that by integrating (10) and 
(11) with respect to ξ3 one gets ( ) ( )IfMIf 1111 , ξξ =  and 

( ) ( )IfMIf 2222 , ξξ = , meaning that the model does not 
increase the state of knowledge about those quantities 
belonging to the base parameterization. 

 
B.  Numerical illustration 

To illustrate, suppose (as in [10]) that X3 is the length of a 
gauge block at a reference temperature T0, that X2 is its 
length at temperature T and that X1 is equal to 1+ α(T−T0), 
where α is the linear thermal expansion coefficient. The 
information I consists of knowing that α is contained within 
an interval of width w centered at the value a, and that the 
mean of N direct measurements of X2 is x2 with standard 
deviation s2. For simplicity, assume that T is measured with 
negligible uncertainty, so that it becomes perfectly known. 

Since the information about X1 is independent from that 
about X2, the joint PDF for these two quantities is equal to 
the product of their individual PDFs, f1(ξ1 | I ) and f2(ξ2 | I ). 
The former is a rectangular distribution of width w(T−T0) 
centered at 1+a(T−T0) [3, paragraph 6.4.2] while the latter 
may be taken as a t-distribution with location parameter x2, 
scale parameter s2 /√N and N−1 degrees of freedom [3, 
paragraph 6.4.9]. Fig.1. shows the PDF for X3 that results 
from the numerical integration of f1,3(ξ1,ξ3 | I,M ) over ξ1, or 
of f2,3(ξ2,ξ3 | I,M ) over ξ2, when T−T0 = 5 K, a = 12×10−6 K−1, 
w = 10−6 K−1, N = 5, x2 = 50.0030 mm and s2 = 0.0016 mm. 
The mean and standard deviation of this PDF are 
x3 = 50.0000 mm and u3 = 0.0010 mm, respectively. 

It is worth mentioning that the recommendation in [3] 
about the use of a t-distribution follows from Bayes’ 
theorem and the assumption that the data are generated in 
accordance with a Gaussian random process of unknown 
mean and variance. The latter then becomes a further 
quantity that does not enter into any parameterization 
because it does not appear in the measurement model. This 
is in contrast to the concept of parameterization as used in 
[10]. 

 
 

 
 

Fig.1.  Probability density function for the length of a gauge block 
X3 = X2/X1 given information about X2 and X1. 

 

5.  EXAMPLE: MEASUREMENT OF FLOW RATE 
An analytically more complicated example, but 

conceptually just as simple, is similar to the one considered 
in subsection 4.3 of [1]. The model consists of the Darcy-
Weisbach and Colebrook-White equations, which are 
commonly used for determining pipe-flow resistance in fully 
developed, steady state and incompressible flow within a 
pipe running full, see e.g., [11]. Consider a straight segment 
of a circular pipe of length L and diameter D inside which a 
fluid moves with average (bulk) velocity V. The pressure 
drop between the two ends of the segment is given by 

 

D
LV

p
2

2ρ
λ=Δ ,   (12) 

 
where λ is the dimensionless Darcy-Weisbach friction factor 
and ρ is the density of the fluid. The friction factor depends 
on the flow regime and on the material of the pipe through 
its internal roughness ε. In case the Reynolds number 
Re = VDρ /μ is greater than about 4000, where μ is the 
dynamic viscosity of the fluid, the flow is turbulent. One 
then obtains the friction factor from the (implicit) 
Colebrook-White equation 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

D7.3Re
51.2log21

10
ε

λλ
.  (13) 

 
Normally, these two equations are used for establishing 

the power needed by the prime mover to overcome the 
pressure loss in the design stage of a piping system. In this 
application, if the properties of the fluid are regarded as 
perfectly known, the base parameterization is the set 
{V, D, ε} and the measurand is the pressure drop along a 
unit length of pipe. But if the system is already in place, the 
same equations provide a means for measuring the 
volumetric flow rate Q through the duct. Thus, the mass 
flow rate Qm ρ=& can be obtained in an alternative manner 
to direct measurement, e.g., by a vortex mass flowmeter 
[12]. The volumetric flow rate is given by 
 

Q = V A,          (14) 
 

where A = π D2/4 is the pipe’s cross-section. In this situation 
the base parameterization is the set {L, D, Δp, ε}. 
 

Table 1.  Equivalence of symbols for the quantities  
in the flow rate example. 

 
Quantity New symbol 

L X1 
D X2 
V X3 
λ X4 

Δp X5 
ε X6 
Q X7 

 

ξ3 / mm

f3 (ξ3) / mm−1 
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Let us analyze this second scenario where, for simplicity, 
the symbols for the relevant quantities are redefined as 
shown in Table 1. The model then becomes 
 

2

4
2
31

5 X
XXX

aX = ,     (15) 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

2

6

432
10

4

log21
Xc

X
XXX

b
X

,  (16) 

and 
3

2
27 XXdX = ,             (17) 

 
where a = ρ /2, b = 2.51μ /ρ, c = 3.7 and d = π/4. (The fluid’s 
properties are regarded as perfectly known.) 

Let the base parameterization be Xb = {X1, X2, X5, X6}. 
Several parameterizations can now be chosen, as long as 
they contain the measurand X7. For example, choosing Xp = 
{X1, X2, X4, X7} gives 
 

( ) ( )65216,5,2,174217,4,2,1 ,,,,,, GGfJf ξξξξξξ ×= , (18) 
 

where 

5
2

2
741

25 ξ
ξξξ

d
aG = ,   (19) 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= −

74

2)2/(1
26

410
ξξ
ξξ ξ dbcG , (20) 

and 
 

)2/(1

4
4
2

71
2

4

6

7

5

7

6

4

5 410
2

10ln ξ

ξξ
ξξ

ξξξξ
−=

∂
∂

∂
∂

−
∂
∂

∂
∂

=
d

caGGGG
J . (21) 

 
A.  Available information 

Suppose estimates x2 for the diameter and x6 for the 
roughness of a pipe are available, with associated standard 
uncertainties u2 and u6, respectively. Inside the pipe flows a 
liquid whose density and viscosity are known with 
negligible uncertainty. The pressure drop along a straight 
part of the duct is measured, giving the estimate x5 with 
standard uncertainty u5. Finally, the distance x1 between the 
pressure gauges is also measured with standard uncertainty 
u1. All these estimates are obtained independently of one 
another. According to the „Principle of Maximum Entropy“, 
it is then reasonable to assign univariate Gaussian PDFs to 
X1, X2, X5 and X6. We restrict the calculation to the case 
where the ratios xi /ui are reasonably large, say greater than 
three. This enables us to formally extend the support of all 
four quantities to the whole real line [13]. We then have 

 
( ) ( ) ( ) ( ) ( )6655221174217,4,2,1 ,,, GfGfffJf ξξξξξξ ×= ,   (22) 

 
where 

( ) ,2,1,
2
1exp

2
1)( 2

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= i

u
x

u
f

i

ii

i
ii

ξ
π

ξ        (23) 

( ) 6,5,
2
1exp

2
1)( 2

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= i

u
xG

u
Gf

i

ii

i
ii π

        (24) 

 
and where J, G5 and G6 are as above. 

In these circumstances, integration over ξ1 can be 
performed analytically. The result is 

 
( ) ( ) ( )66227427,4,2 ,, GffKHf ξξξξ ××= , (25) 

 
where 

4
4
2

)2/(1
7

2

410
2

10ln
ξξ

ξ ξ−

×=
d

caH ,         (26) 

 
( )

( ) 2/32
5

2
1

2
5

2
11

2
5

2
5

2
1

2

2
51

22
1exp

uuk

xukxu
uuk

xxkK
+

+
×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−=
π

,       (27) 

 
and 

5
2

2
74

2 ξ
ξξ

d
ak = .            (28) 

 
However, the integrations over ξ2 and ξ4 to obtain the 
marginal PDF f7(ξ7) for the measurand X7 have to be carried 
out numerically. If desired, the PDF f4(ξ4) for the friction 
factor X4 can be obtained likewise. 
 

 
 
Fig.2.  The solid line is the PDF for the volumetric flow rate X7 of 
water in a pipe. The histogram is its numerical approximation 
computed by Monte Carlo integration. The dashed line is a 
Gaussian PDF with the same mean and standard deviation. 
 
B.  Results 

As an illustration, suppose the fluid is water at 22 oC, for 
which ρ = 998 kg/m3 and μ = 959×10−6 Pa s, flowing inside 
a pipe of diameter x2 = 10 cm and roughness x6 = 150 μm. 
The pressure drop over the distance x1 = 10 m is found to be 
x5 = 1180 Pa. Assume that the associated standard 
uncertainties are equal to one tenth of the corresponding 
estimates. The PDF f7(ξ7) is depicted by the solid line in 
Fig.2. Its mean is x7 = 0.0080 m3/s and its standard deviation 
is u7 = 0.0022 m3/s. Its skewness reflects the strong 
nonlinearity of the model (15)-(17). For comparison, the 
dashed line in Fig.2. shows a Gaussian PDF with the same 
mean and standard deviation. 
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The estimate x7 allows calculating the velocity as 
x3 = 4 x7/(π x2

2) = 1.02 m/s, giving a Reynolds number 
greater than 105. Therefore, the flow is fully turbulent, so the 
use of (16) is justified. 

 
C.  Integration by Monte Carlo 
The Monte Carlo integration method proposed in 
Supplements 1 and 2 to the GUM [3],[14] can also be 
employed for finding a numerical approximation to f7(ξ7). 
This method is entirely equivalent to applying the change-
of-variables theorem. It is to be preferred, however, in 
instances that are too difficult to be addressed by analytical 
or numerical integration, e.g., if the number of variables is 
too large. In the present case the Monte Carlo method 
proceeds by sampling values ξ1, ξ2, ξ5 and ξ6 from the 
corresponding PDFs. The values 
 

2

2

6

522

1
104 log2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

ξ
ξ

ξξξ

ξ
ξ

c
ab ,                (29) 

 

2/1

41

52
3 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ξξ
ξξ

ξ
a

,   (30) 

 
and 

 
3

2
27 ξξξ d=           (31) 

 
 

are then computed and the process is repeated a large 
number of times. The relative frequency of the ξ7 values 
obtained after one million repetitions is shown by the 
histogram in Fig.2., confirming that it is an excellent 
numerical approximation to the PDF f7(ξ7). 

One advantage of the Monte Carlo method is that the 
numerical approximations to the PDFs for X3 and X4 are 
immediately available as a by-product. They allow 
computing the means, standard deviations and correlation 
coefficients shown in Table 2. 

 
Table 2.  Means, standard deviations and (dimensionless) correlation coefficients computed by Monte Carlo integration. 

 
Correlation coefficients Quantity Symbol Mean Standard 

deviation X3 X4 X7 
Velocity / m s−1 X3 1.01        0.10        1.0   − 0.71 0.83 
Friction factor X4 0.023 71 0.000 88 − 0.71     1.0 − 0.84    
Flow rate / m3 s−1 X7 0.008      0.002 2   0.83  − 0.84  1.0   

 
 

5.  CONCLUSION 
A formalism for expressing the PDFs for interrelated 

quantities has been presented in general terms. The aim has 
been to identify clearly the different situations that may arise 
and to provide guidance by way of examples on how to 
employ the technique in practice. It relies on the concept of  
„base parameterization“, defined as a set of quantities 
constituting a parameterization for which information is 
provided so that its joint PDF can be constructed. The size 
of this set is equal to the total number of quantities minus 
the number of equations through which they are related. If 
information on a greater number of quantities exists, the 
problem cannot be solved uniquely. In case there is 
information on fewer quantities, one remains ignorant about 
at least one of the quantities that were initially completely 
unknown. 
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