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Roundness is one of the most common features in machining. The minimum zone tolerance (MZT) approach provides the 

minimum roundness error, i.e. the minimum distance between the two concentric reference circles containing the acquired profile; 
more accurate form error estimation results in less false part rejections. MZT is still an open problem and is approached here by a 
Genetic Algorithm. Only few authors have addressed the definition of the search space center and size and its relationship with the 
dataset size, which greatly influence the inspection time for the profile measurement and the convergence speed of the roundness 
estimation algorithm for a given target accuracy. Experimental tests on certified roundness profiles, using the profile centroid as 
the search space center, have shown that the search space size is related to the number of dataset points and an optimum exists, 
which provides a computation time reduction up to an order of magnitude. 
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1.  INTRODUCTION 

HE GROWING demand for efficiency and productivity, 
the increasing complexity of manufactured parts and 
assembly tasks require high-speed inspection.  

Form errors play a major role in quality control and 
product conformance to the designed tolerances. 

Common one and three dimensional form tolerances are 
respectively straightness and cylindricity, sphericity, and 
flatness. Roundness (also known as circularity) is a typical 
two dimensional feature to be inspected. Form tolerance is 
evaluated from a set of measured points on the product 
profile, with reference to an ideal geometric feature, i.e. a 
circle in the examined case. The most used criteria to 
establish the reference circle are: the Least Squares method 
(LSQ), the Maximum Inscribed Circle (MIC), the Minimum 
Circumscribed Circle (MCC) and the Minimum Zone 
Tolerance (MZT). The use of a particular data fitting 
method depends on the application, e.g. MIC (peg) and 
MCC (hole) can be used when mating (peg-in-hole) is 
involved. LSQ is one of the methods used by Coordinate 
Measuring Machines (CMM). It is efficient in computation 
and is fast also with a high number of measured points, but 
the roundness error is higher than that determined by the 
other mentioned methods. Therefore, potentially good parts 
can be rejected resulting in an economic loss. In this regard, 
as expressed by its name, the minimum zone (MZ) approach 
can be considered the best estimation of the roundness error 
and it meets the definition of roundness error according to 
international standards [1] [2]. 

The MZT determines two concentric circles that contain 
the measured profile and such that the difference in radii is 
the least possible value. As shown in Fig.1, C1(x1,y1) and 
C2(x2,y2) are two possible centers of two concentric circles 
that include the measured points and Δ r1(x1,y1) < Δ r2(x2,y2) 
are their difference in radii. By finding the features in Fig.1, 
the MZ error and the related MZ center are determined. 
However,  the  MZT is  a  non  linear  problem  and  several  

 
methods to solve this problem have been proposed in the 
literature: (i) computational geometry techniques and (ii) the 
solution of a non linear optimization problem. The first 
approach is, in general, very computationally expensive, 
especially, when the number of data points is high. One of 
these methods is based on the Voronoi diagram [3]. 
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Fig.1. MZ error. C1 and C2 are possible locations of the centers of 
the two concentric circles. Δ r1 and Δ r2 are the difference in radii. 
If the minimal difference in radii is Δ r1, that is the MZ error and 
C1 is the MZ center. The dotted square search space ),,( iyxrS θ  with 

side 2 E is centered on the centroid of the acquired profile. 
 
Considering the trend towards higher number of acquired 

data points, in the order of thousands, made possible by 
optical methods or CMM scanning, this work addresses the 
latter approach: non-linear optimization. Among 

T 
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optimization techniques are Chebyshev approximation [4] 
and simplex search [5]. Metaheuristics approaches are also 
available in the literature, such as particle swarm 
optimization (PSO) [6], linear approximation [7], and 
genetic algorithms (GAs) [3], [8], [9], [10] and [11]. 
Performance of methods has been reviewed in [12]. 

Genetic algorithms are widely used in research for non-
linear problems. They are powerful and can be easily 
implemented being a general-purpose optimization tool. 
Possible solutions are processed concurrently (in the order 
of hundreds) and converge to a local optimum, which is very 
close or coincident to the problem optimum solution, by 
user selectable rules, such as elitist and random selection. 

This paper explores two major aspects of the inspection 
strategy: selecting the number of acquired datapoints and the 
search space size for the minimum zone center, whose 
coordinates represent the genes of the GA. 

In industrial inspection, the measurement accuracy is 
fixed, because it depends on the manufacturing process (e.g. 
CNC machining, forming) and on the measuring instrument 
(e.g. CMM, dial gage, optical scanner, vision system). The 
accuracy range explored in this paper is that commonly 
available in traditional manufacturing, between 0.01 and 0.2 
mm. 

It will be shown experimentally that a lower minimum 
zone error MZE (higher accuracy) is achieved by a higher 
number of data points. However this causes an increase of 
acquisition time and cost and consequently the optimal 
number of data points needs to be properly selected.  

The influence of sampled data point number and search 
space size on processing time and accuracy will also be 
discussed, and a method to select their optimal values for a 
given target accuracy in the estimation of the MZ center will 
be provided. 

One inconvenience of the minimum zone approach is the 
presence of local minima, for this reason the search space, 
which should be defined when using genetic algorithms, 
should be carefully selected in order to reduce the 
computation time. 
 

2.  STATE OF THE ART ON SAMPLING DATA POINTS AND 
SEARCH SPACE SIZE 

Only few contributions are available in the literature 
regarding the optimal selection of the number of sample 
points and the search space size and position, particularly 
with genetic algorithms. 

Moroni and Petro [12] propose a technique to speed up 
the exhaustive generation of solutions (brute force 
algorithm) which starts with a single point and increases one 
sample point at each step in order to generate all the possible 
subsets of points, until the tolerance zone of a subset covers 
the whole dataset (essential subset). 

In [13], the increase of data points shows to be effective 
only up to a given limit. Recommended dataset sizes are 
given for different data fitting methods (LSQ, MIC, MCC, 
MZT) and for three different out-of-roundness types (oval, 
3-lobing and 4-lobing). In particular, for the MZT the 
recommended numbers are 48, 42, 38 points, for the three 
out-of-roundness types respectively. However, no 

indications are provided about the adopted algorithms. 
Similar approaches are in [14] and [15]. 

The strategy to equally spaced points sampled on the 
roundness profile is generally adopted in the literature. 
Conversely, in previous works, the authors developed a 
cross-validation method for small samples to assess the kind 
of manufacturing signature on the roundness profile in order 
to detect critical points such as peaks and valleys [16] [17]. 
They use a pre-sampling strategy to locate peaks and valleys 
where the sampling density is increased. Weckenmann et al. 
simulated the impact of the number and distribution of 
sampled points (sampling strategy) for the clamping 
strategy, functional assessment and operator influence [18] 
and their use by the data fitting algorithm [19]. 

In a genetic algorithm for roundness evaluation, the center 
candidates are usually the individuals of the population 
(chromosomes). The search space is an area enclosed by the 
roundness profile where the center candidates of the initial 
population are selected for the data-fitting algorithm. The 
area is rectangular because the crossover operator changes 
the xi and yi coordinates of the parents to generate offspring 
[3]. After crossover, according to Lemma 1 in [11] the xi and 
yi coordinates of next generation are located at the rectangle 
circumscribed to ),,( iyxrS θ . 

In order to find the MZ error, the search space must 
include the global optimum solution i.e. the MZ center. The 
center of the rectangular area is an estimation of the MZ 
center evaluated as the mean value of the xi and yi 
coordinates of the sampled points [3], [8], [9], [10] and [11].  
In [8] the search space is a square of fixed 0.2 mm side, in 
[11] it is 5% of the circle diameter. In [3], it is determined 
by the distance of the farthest point and the nearest point 
from the centroid. In [9] it is the rectangle circumscribed to 
the sample points. The authors [20] proposed a search space 
size given by the theoretical upper bound for the centroid to 
minimum zone center distance. This upper bound is based 
on a worst-case geometrical feature formed by two 
concentric-opposite arcs. The search space size is π-1 EC, 
where EC is the roundness error related to the centroid (the 
search space center) and it can be evaluated in closed form. 

From this analysis, further investigation is required for the 
optimum dataset size and search space for minimum zone 
roundness evaluation by a genetic algorithm. In addition, to 
the best of our knowledge, no previous works are available 
about testing genetic algorithms for the roundness error 
evaluation with combined tests between different dataset 
and different search space sizes, particularly with large 
datasets. 
 

3.  PROBLEM FORMULATION 
The MZ error is the solution of the following optimization 

problem [11]: 
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points of the roundness profile r(x,y,θi) of the reference 
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circle of center (x,y) and radius R; ),,( iyxrS θ  is the search 
space, which is function of the sampled points θi and their 
dataset size n. 
The center of the search space is computed as an average 
value of the measuring points coordinates from the literature 
(centroid of the roundness profile): 

 nC
r

 = ( ∑ =

n

i ix
n 1

1 , ∑=

n

i iy
n 1

1 ) (2) 

 
Also 

 
 MZE = min(x,y)∈E OC(x,y) – IC(x,y) (3) 
 

where: (x,y) are the coordinates of the center of the two 
concentric circles included in the square of side E, also 
termed the search space (where the possible solution may be 
within); OC(x,y) and IC(x,y) are respectively the maximum 
and the minimum distance of the center (x,y) from the data 
points. So, the algorithm has to find the optimum center 
(x,y) in order to minimize that loss function leading to the 
MZE, i.e. a sufficiently accurate estimate of the roundness 
error. For every point of the circular profile acquired by a 
CMM, the distance from the center (x,y) is computed. 
 

4.  THE PROPOSED GENETIC ALGORITHM APPLIED TO THE 
MZT PROBLEM 

Genetic algorithms constitute a class of search methods 
especially suited for solving complex optimization 
problems. Genetic algorithms maintain a population of 
individuals, which represent possible solutions of the given 
problem. The individuals are represented by their 
chromosomes, which are made of genes, the inheritable 
properties of individuals. Genetic algorithms operate on 
genes by means of genetic operators. At each generation, 

genetic operators are applied to selected individuals of 
current population in order to create a new generation of 
individuals. The selection of individuals is obtained 
according to a fitness function, which reflects how well a 
solution fulfills the requirements of the given problem, e.g. 
the loss function to be optimized. 

The genetic algorithm used to solve the MZT problem has 
been designed as in [11] where it has been shown that a 
careful selection of the genetic parameters, may lead to a 
reduction of the processing time by up to one order of 
magnitude allowing real-time operation. By analyzing the 
available literature, the proposed genetic parameters, also 
reported in this paper, are valid for the roundness problem 
over a wide range of numbers of data points. The parameter 
meaning, use and value is listed in Table 1. 

This algorithm has a starting population of 70 elements 
(Ps), randomly chosen in a square search space, centered in 
the centroid, with variable side 2 E. The population elements 
are the possible centers of the MZ circles. Therefore 70 
possible centers with their OC(x,y), IC(x,y) and MZ error are 
simultaneously evaluated at each iteration of the algorithm. 
The evaluation of expression (3) for every center 
corresponds to its fitness value, chosen to estimate the 
circular profile roundness. 
 

5.  COMPUTATION EXPERIMENTS 
Datasets used in computation experiments are generated 

with NPL Chebyshev best-fit circle certified software [21]. 
The use of artificially generated datasets versus datasets 
obtained from real parts has the following benefits: 
- the circle center is known; 
- errors are randomly distributed, so results are more 

general, e.g. not manufacturing signature specific. 
Datasets generated have maximum residual deviation 

from 0.01 to 0.09 mm, and sizes up to 10,000 points. The 
maximum residual deviation is equal to half of the exact MZ 

Table 1. Algorithm parameters and type (G for geometric, A for algorithmic) from [10]. 

Parameters Type Symbol Value Description 

dataset size G n 10-10,000 number of sample points on the circumference 

search space G E 0.1-10 initial population randomly selected within a square of side 2 E [mm] 

population 
size 

A Ps 70 set of chromosomes used in evolving epoch 

selection A  elitist 
selection 

individuals sorted based on their fitness function. The best individuals produce offspring. The 
next generation will be composed of the best chromosomes chosen between the set of 
offspring and the previous population 

crossover A Pc 0.7  one point crossover: new individuals created as component-wise linear combination from two 
among the pc×pop parents’ genes (i.e. coordinates) with high fitness at each generation 

mutation A Pm 0.07  mutation is a source of variability, prevents the search to be trapped in local minima and is 
applied in addition to selection and crossover. A new individual is created by making 
modifications to one selected individual, based on the mutation probability. pm×pop 
individuals are modified by changing one gene (i.e. coordinate) with a random value 

chromosome A x, y float center coordinates 

stop criterion A Nstop 100 the algorithm has an iterative behavior and needs a stop condition to end the computation. 
Possible criteria include: overcoming a predefined threshold for the fitness function or 
iteration number or their combinations. The algorithm computes Nstop iterations (generations) 
after the last best roundness error evaluated rounded off to the fourth decimal digit (0.1 μm) 
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error. Without loss of generality, datasets have fixed center 
in the axis’s origin (0,0) and radius R equal to 20 mm. The 
algorithm is executed 30 times for each test, and the average 
MZ error, with its standard deviation and the average 
computation time with 1.2 GHz Pentium M based PC are 
evaluated. 

In the first set of experiments the described genetic 
algorithm is tested with large datasets (between 500 and 
10,000 acquired datapoints) in order to evaluate how the MZ 
error changes and whether any improvements occur. 

The average and standard deviation of the minimum zone 
error found with the genetic algorithm versus the number of 
points increase for datasets with different roundness errors 
are displayed in Fig.2, (and detailed from Fig.10 to Fig.13 in 
Appendix). Similarly, the computation time is displayed 
versus the dataset size in Fig.3. 

No significant improvement occurs, when the dataset size 
is large, whilst the computation time has a linear rising 
trend. 

In the next set of computation experiments, the upper  

limit for the dataset size is kept at 500 points, because no 
benefit is found beyond that, and the roundness error is fixed 
at 0.06 mm. 

From Fig.4, the average minimum zone error shows a 
minimum with dataset size of about 35 datapoints and no 
further significant decrease beyond that. 

In the next set of computation experiments, the dataset 
size is fixed at 35 datapoints and the minimum zone error is 
evaluated versus the search space size E: a square of side 2 
E from 1 to 0.02 mm. 

From Fig.5, the average error obtained from 30 runs 
decreases from 0.06082 to 0.06002 mm, and particularly the 
standard deviation suffers a sharp decrease from 0.00256 to 
0.00001 mm, so that errors in the various repetitions are 
better gathered around the average error. 

This result is not surprising, because in this computation 
experiment the search space is centered about the minimum 
zone center (0,0), which is known; however this is not the 
case in general. In center-based minimum zone algorithms, a 
first raw estimation of the circular profile center is necessary 
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Fig.2. Average MZ error with error bars from 30 repetitions versus 
dataset size (500 < datapoints < 10,000) for different roundness 
errors. Individual trends are available in Appendix. 
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Fig.3. Average computation time from 30 repetitions versus dataset 
size (500 < datapoints < 10,000) for different roundness errors. 
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Fig.5. Average MZ error with error bars from 30 repetitions versus 
search space size, with dataset size 35 datapoints, for roundness 
error of 0.06 mm. 
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Fig.4. Average MZ error with error bars from 30 repetitions versus 
dataset size (datapoints < 500) for roundness error of 0.06 mm. 
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as the starting point for a more accurate roundness 
evaluation; usually the centroid or the least squares center 
are considered. In Fig.6 the centroid position is shown for 
different dataset sizes and it can be noticed that its distance 
from the MZ can be as high as 4 mm and over, yielding an 
MZ error double than that. 

In the final set of experiments the MZE is evaluated by 
the genetic algorithm as a function of the dataset size (from 
10 to 500 datapoints) and of the search space (from 0.1 to 10 
mm or from 0.5 to 50% of the nominal radius R). 3D plots 
are available from Fig.7 to Fig.9 (and detailed results are 
reported from Table 2 to Table 4 of Appendix). 

In Fig.7 and in Fig.8 an area with minimum MZE and 
minimum standard deviation respectively are present. Other 
homogeneous regions can be identified and are discussed in 
the next chapter. 

The computation time in Fig.9 increases approximately 
with the search space size and for a given search space it 
increases linearly with the dataset size as previously shown. 
 

6.  RESULTS 
Small datasets (10 to 35 points) and small search spaces 

(0.1 to 1 mm) produce high MZE on average. In fact, the 
centroid is far enough from the MZ center and the search 
space is too small to include it. With small datasets and 
larger search spaces (2 to 4 mm), the average MZ error 
decreases as the search space gets larger, in a first range, 
bringing to better results, but then it increases because of 
higher probability of being trapped in local minima. With 
larger datasets (50 to 500 points) better results are achieved 
for small search spaces and the MZ error decreases as the 
search space increases up to 2 mm. However, results get 
worse for larger search spaces. Larger datasets yield a more 
precise estimation of the center but too large search spaces 
are dangerous because it is easier to be trapped in local 
minima. It is speculated that the population size (pop) 
should be increased accordingly. 

Good performance are achieved with medium sized 
search spaces (1 to 2 mm) corresponding to datasets from 
100 to 500 points: the average MZ error is about 0.062-

0.063 mm, a pretty good approximation of the real 
roundness error of 0.06 mm, and the standard deviation is 
about 0.036 to 0.04 mm. With larger datasets (datapoints > 
500) with search space centered in the centroid of size 1 to 2 
mm, the average MZ error is similar to that achieved in the 
preliminary analysis considering the ideal search space 
centered in the known MZ center with size 0.5 mm: 0.06310 
mm (1,000 points), 0.06262 mm (2,500 points), 0.06332 
mm (5,000 points), 0.06170 mm (10,000 points). 

The optimum dataset size and search space are 

0,10,20,30,40,50,60,70,80,91
2

3
4

5
6

7
8

9
10

10
25

35
50

75

100

150
200

250

350

500

0

1

2

3

4

5

6

av
er

ag
e 

M
ZE

 [
m

m
]

search space size E [mm]dataset size n

Fig.7. MZ error versus dataset size (10 to 500 datapoints) and 
search space size (0.1 to 10 [mm]). Each experimental datum is the 
result of 30 runs and is detailed in Table 2 of Appendix. 
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Fig.6. Centroids (x,y) in [mm] for different dataset with size 
from 10 to 10,000 datapoints. 
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respectively 100 and 2 mm, and the average MZ error 
obtained is 0.06209 mm with standard deviation of 0.03564 
mm. 

From Fig.8, the standard deviation is generally small for 
small search spaces, and it increases with the search space 
size. 
 

7.  DISCUSSION 
The initial intent of current work was to focus on very 

large datasets, which can be obtained by scanning 
techniques or optical methods. It was expected that by a 
higher amount of data the MZ estimation would be more 
accurate, which is not confirmed experimentally on 
artificially generated datasets. The MZ error decreases with 
the dataset size only up to a given value. Unexpectedly with 
large dataset sizes (from 500 to 10,000 acquired points) the 
MZ error does not improve significantly, with a linear 
increase in computation time, independently on the MZ 
error. Whereas, with small datasets (from 75 to 500 points) 
improvements are clearly visible, both in term of mean and 
standard deviation of MZ errors from 30 trials in each 
experimental condition tested. 

The search space size has been defined as a square 
centered in the centroid of the sampled profile. Error maps 
as a function of dataset size and search space show a typical 
pattern, with a minimum. 

The high MZ error can be explained in a different way for 
small and large search spaces. With small search spaces, the 
algorithm stops after few runs because the MZ center is not 
included and the algorithm is easily trapped in local minima. 
Whereas with high search space solutions are sparse and the 
algorithm requires more iterations until it is trapped again in 
a local minimum. 

Taking into account the processing time by comparing 
Fig.7 and Fig.9, it can be noticed that with a 75 points 
dataset and a search space of 2 mm the average MZ error 

(0.06398 mm) is close to the value for a 100 points dataset 
and the same search space (0.06209 mm, the minimum 
value achieved), but with the 75 points dataset the 
computation time is reduced from 2.2973 to 0.83605 s. 

Being sensitive to small geometrical parameters changes, 
the computation time should also be put into consideration 
in the two parameters selection for overall performance 
improvement. 

More generally, this pattern is helpful to take out 
indications on the right number of points and search space 
conjugation in a roundness evaluation problem. 

The industrial relapse from this analysis is to upper limit 
the number of acquired datapoints for the tolerance 
estimation in the process setup phase: unnecessary 
datapoints may have a strong impact on processing time, 
without accuracy improvement. 

 
8.  CONCLUSIONS 

In this work, a genetic algorithm for the roundness 
evaluation of circular profiles using the MZT method has 
been optimized. In particular, two geometric parameters 
have been considered: the dataset and the search space sizes. 
These parameters are fundamental to make the algorithm 
properly work in an automated production environment, 
because of their strong influence on performance in terms of 
estimation error and computation time (0.1 to more than 2 
seconds with the experimental datasets tested). A previously 
optimized genetic algorithm with certified datasets has been 
used in computation experiments. 

From a cross analysis, by varying both the geometric 
parameters, indications for the choice of optimal values are 
provided. Eventually, considerations about the computation 
times lead to a better choice of the geometric parameters 
that improves the overall algorithm performance. 

The extensive experimental results and the optimization 
approach presented provide a strong base for both future 
theoretical investigations and for direct industrial 
application of the proposed GA parameters as well. 

 
APPENDIX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10. Average MZE with error bars from 30 repetitions versus 
dataset size, for roundness error of 0.02 mm. 
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Fig.9. Computation time versus dataset size (10 to 500 datapoints) 
and search space size (0.1 to 10 [mm]). Each experimental datum 
is the result of 30 runs and is detailed in Table 4 of Appendix. 
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Fig.11. Average MZE with error bars from 30 repetitions versus 
dataset size, for roundness error of 0.06 mm. 
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Fig.12. Average MZE with error bars from 30 repetitions versus 
dataset size, for roundness error of 0.12 mm. 
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Fig.13. Average MZE with error bars from 30 repetitions versus 
dataset size, for roundness error of 0.18 mm. 

 
Table 2. Average MZ error versus dataset size (10 to 500 data-
points) and search space size (0.1 to 10 [mm]). Each experimental 
datum is the result of 30 runs. Color codes for MZ errors [mm]: 
0.060-0.063, 0.064-0.07, 0.08-0.10, 0.11-0.50. 
 

 10 25 35 50 75 100 150 200 250 350 500 
0,1 4,67 5,04 5,51 2,31 2,47 1,19 1,14 1,62 1,40 1,49 1,31 
0,2 4,57 4,93 5,43 2,18 2,29 1,00 0,98 1,45 1,19 1,30 1,09 
0,3 4,31 4,68 5,16 1,98 2,00 0,79 0,79 1,21 0,93 1,04 0,82 
0,4 3,97 4,46 4,86 1,76 1,71 0,59 0,57 0,96 0,65 0,74 0,54 
0,5 3,69 4,25 4,55 1,56 1,44 0,39 0,37 0,75 0,43 0,48 0,30 
0,6 3,39 4,02 4,32 1,34 1,15 0,19 0,18 0,57 0,22 0,32 0,12 
0,7 3,11 3,80 3,99 1,14 0,88 0,08 0,08 0,36 0,10 0,11 0,08 
0,8 2,86 3,58 3,64 0,93 0,56 0,065 0,064 0,16 0,07 0,068 0,065 
0,9 2,50 3,33 3,36 0,73 0,27 0,063 0,063 0,069 0,064 0,063 0,064 
1 2,24 3,09 3,07 0,53 0,12 0,063 0,063 0,068 0,063 0,064 0,063 
2 0,14 1,08 0,42 0,08 0,064 0,062 0,062 0,062 0,062 0,062 0,062 
3 0,10 0,18 0,08 0,12 0,09 0,09 0,09 0,08 0,19 0,10 0,12 
4 0,79 0,68 0,67 0,78 0,60 0,76 0,78 0,78 0,64 0,67 0,78 
5 1,08 1,08 1,02 0,86 0,92 0,96 1,05 1,05 1,08 0,98 1,02 
6 1,39 1,38 1,25 1,20 1,31 1,01 1,17 1,18 1,40 1,15 1,29 
7 1,21 1,57 1,31 1,67 1,58 1,56 1,63 1,52 1,56 1,52 1,43 
8 1,15 1,66 1,97 1,81 1,50 1,78 2,04 1,50 1,79 1,95 1,82 
9 1,48 2,02 2,21 2,33 1,95 1,94 1,96 1,99 1,87 2,07 2,23 
10 2,27 2,26 2,23 2,15 2,01 2,49 2,18 2,35 2,90 2,46 1,85 

 
 

Table 3. Standard deviation of the MZ error versus dataset size (10 
to 500 datapoints) and search space size (0.1 to 10 [mm]). Each 
experimental datum is the result of 30 runs. Color codes for error 
[mm]: 0.010-0.023, 0.024-0.040, 0.041-0.050, 0.051-1.000, 1.001-
1.500. 

10 25 35 50 75 100 150 200 250 350 500
0,1 0,017 0,020 0,023 0,010 0,028 0,014 0,011 0,015 0,023 0,014 0,014
0,2 0,162 0,175 0,193 0,082 0,095 0,049 0,048 0,069 0,062 0,064 0,064
0,3 0,180 0,193 0,205 0,097 0,102 0,057 0,060 0,084 0,076 0,080 0,080
0,4 0,169 0,186 0,201 0,090 0,109 0,063 0,060 0,072 0,077 0,086 0,086
0,5 0,161 0,179 0,190 0,089 0,116 0,065 0,058 0,069 0,088 0,077 0,077
0,6 0,153 0,173 0,204 0,079 0,115 0,060 0,055 0,082 0,080 0,119 0,119
0,7 0,144 0,176 0,187 0,075 0,119 0,052 0,054 0,096 0,086 0,086 0,086
0,8 0,188 0,158 0,158 0,066 0,115 0,043 0,043 0,076 0,061 0,056 0,056
0,9 0,126 0,146 0,147 0,064 0,094 0,039 0,039 0,052 0,046 0,044 0,044
1 0,119 0,136 0,141 0,067 0,114 0,037 0,037 0,048 0,040 0,039 0,039
2 0,099 0,125 0,125 0,051 0,063 0,036 0,036 0,041 0,037 0,037 0,037
3 0,074 0,137 0,072 0,139 0,094 0,099 0,061 0,061 0,237 0,110 0,110
4 0,634 0,322 0,394 0,380 0,251 0,370 0,391 0,458 0,411 0,453 0,453
5 0,473 0,419 0,480 0,507 0,554 0,506 0,647 0,526 0,585 0,529 0,529
6 0,437 0,556 0,651 0,661 0,815 0,557 0,700 0,645 0,676 0,524 0,524
7 0,675 0,664 0,703 0,776 0,844 0,724 0,898 0,698 0,874 0,781 0,781
8 0,757 0,610 0,856 1,045 0,811 0,966 0,947 0,686 0,759 0,857 0,857
9 0,873 1,222 0,905 1,404 1,007 1,111 0,992 0,905 1,217 1,102 1,102
10 1,053 1,286 0,916 1,065 1,064 1,266 0,790 1,144 1,336 1,121 1,121

 
 

Table 4. Computation time [s] versus dataset size (10 to 500 
datapoints) and search space size (0.1 to 10 [mm]). Each 
experimental datum is the result of 30 runs. Color codes for times 
[s]: 0.13-0.50, 0.51-1.00, 1.01-1.50, 1.51-2.00, 2.01-2.50, 2.51-
3.50. 
 10 25 35 50 75 100 150 200 250 350 500 
0,1 0.14 0.41 0.39 0.51 0.39 1.02 1.56 1.99 2.48 1.81 2.61 
0,2 0.14 0.40 0.41 0.58 0.45 1.07 1.60 2.11 2.65 2.03 2.79 
0,3 0.14 0.33 0.41 0.59 0.48 1.18 1.68 2.37 2.97 2.18 3.05 
0,4 0.20 0.34 0.47 0.66 0.52 1.24 1.90 2.45 3.16 2.41 4.02 
0,5 0.19 0.45 0.50 0.68 0.52 1.32 1.85 2.69 3.31 2.69 4.31 
0,6 0.20 0.41 0.45 0.72 0.55 1.30 1.95 2.52 2.97 2.44 3.41 
0,7 0.19 0.48 0.51 0.65 0.53 1.27 1.80 2.73 2.98 2.32 3.42 
0,8 0.20 0.49 0.60 0.71 0.58 1.34 1.85 2.54 3.02 2.41 3.81 
0,9 0.23 0.48 0.55 0.65 0.55 1.44 1.85 2.48 3.01 2.39 4.97 
1 0.23 0.54 0.53 0.75 0.58 1.43 1.98 2.42 3.05 2.47 4.48 
2 0.23 0.50 0.54 0.94 0.84 2.30 3.10 3.16 4.09 3.93 5.86 
3 0.35 0.79 0.97 1.37 1.22 3.21 4.22 6.25 6.26 5.67 7.90 
4 0.29 0.72 0.79 1.06 0.83 1.79 2.85 3.94 4.75 3.97 4.99 
5 0.30 0.63 0.70 1.07 0.85 1.89 2.80 3.71 5.07 3.28 4.32 
6 0.32 0.70 0.65 1.05 0.89 1.92 2.62 3.55 4.66 3.55 5.24 
7 0.51 0.84 0.93 1.07 0.78 1.99 3.05 3.69 4.66 3.57 4.56 
8 0.48 0.96 0.82 1.21 0.87 2.30 2.90 3.79 4.94 3.58 4.81 
9 0.56 0.97 0.99 1.27 0.98 3.09 2.76 4.03 4.05 3.48 5.16 
10 0.80 1.03 1.17 1.42 1.05 3.06 2.99 3.99 4.58 3.83 4.88 
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