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Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose 
a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images.  The 
suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local 
texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet 
transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate 
enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region 
segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as 
the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and 
accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the 
results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on 
recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%. 
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1.  INTRODUCTION 
OMPUTER-AIDED DIAGNOSIS (CAD) is widely 
discussed in recent years, and also has been developed 
to improve medical automation. In clinical applications, 

automatic segmentation of organs, soft tissues and even 
lesions in medical images is an important procedure, and 
several traditional image process methods were applied in 
previous researches on various medical images [1]. For 
example, Wong et al. [2] utilized snake algorithm for 
segmenting liver’s abdominal CT images, and Stawiaski et 
al. [3] and Seo et al. [4] proposed watershed algorithm and 
active contour method for segmenting tumor regions in 
liver. Hadjiiski et al. [5] also utilized run length statistic 
texture features for mammogram classification. Automatic 
segmentation of parotid glands in head and neck (H&N) CT 
images have also drawn a lot of attention in recent years, not 
only for assisting image-based diagnosis but also for modern 
radiation therapy planning [6]. For diagnosis, parotid glands 
need to be taken into consideration because lesions in 
parotids may be associated with diseases [7]. Besides, in 
order to minimize the dose on treatment to reduce the 
harmful radiation toxicity, modern therapies like IMRT also 
require computer-aided delineation for prior planning to 
prevent the patients from suffering side effects. However, 
due to low contrast on tissue boundaries, complexity of the 
tissues and organs and the variability of anatomy between 
patients, it is still a challenging task to automatically 
segment the soft tissues of parotid glands whether normal or 
lesions in 2D H&N CT slices which are still frequently used 
in practice. Although CT images are useful to see the 
anatomical detail, it needs well-trained techniques to sketch 
out the glands and suspected regions in complex anatomical 

structures for medical evaluation and diagnosis. As the 
amount of data grows with the progress of medical imaging 
techniques, medical automation is in much demand because 
the manual processes become tedious and exhausting. 

In previous researches about automatic segmentation of 
parotid tissues, several image processing methods, like 
active contours and gray level-based region growing, were 
mentioned. Active contour models (ACMs) are methods to 
generate continuous boundaries converging at the pixels of 
relatively high gradient magnitude [8]. Because ACMs can 
perform higher accuracy than statistical or texture feature-
based segmentation (FBS) on blurred edges between soft 
tissues, this kind of methods are often mentioned in 
segmentation of tissues, even tumors in CT images. 
However, active contours are easily attracted by the nearby 
points with high gradient, so initial contours appropriately 
located can improve computation efficiency and prevent 
false contouring. Therefore, some atlas-based active contour 
approaches have been proposed in recent years for manual 
or semi-automatic delineation of the parotid glands [9], [10]. 
Atlas-based methods applied the contour delineating of the 
parotid regions as templates to outline the parotids in other 
CT images, and the template contours were built by fusing 
numerous contours drawn by experts with statistical 
methods. However, preliminary evaluations were required to 
select a proper contour template because of the variation of 
the anatomical structures between patients. In [9], Ramus et 
al. performed an intensity-weighted majority vote that 
combined the segmentations based on the local sum of 
square distances between the registered atlas images and 
similar intensity distribution to the patient image for the 
registration. Yang et al. [10] evaluated the template atlas 
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based on the principle component analysis (PCA) method to 
decide the optimal candidates for active contour iterations.    
These works have been proposed to delineate the whole 
parotid gland regions, but the suspected lesions in parotids 
are still hard to be found automatically. Because suspected 
lesions may occur in various dimensions at unpredictable 
locations, it is hard to build templates for suspected lesions 
in images. 

In previous works on lesion detection, organs and lesions 
were generally considered to be figured out with their gray 
intensities, so gray level thresholding was a popular method 
that can discriminate the abnormal regions in liver and 
breast with obvious intensity inhomogeneity [11]-[13]. 
However, it was hard to determine adaptive and stable 
thresholds because of brightness variation and low contrast, 
and the non-lesion regions with similar gray intensities may 
also be incorrectly found. To automatically extract parotid 
lesions, besides gray intensities, region segmentation 
requires higher-order local features and the lesion regions 
need to be automatically identified and localized among the 
complex segmented tissue regions. In other researches, 
ACM-based methods were also mentioned to delineate 
suspected lesions [14], [15]. However, traditional gradient-
based ACMs encounter difficulties on blurred boundaries 
between normal and pathology tissues. In [15], Achuthan et 
al. proposed and improved the level set ACM to segment 
lesion tissues surrounded within a similar tissue region in 
CT images, but it was not sufficient for extracting lesions 
surrounded by various tissues. Besides, initial contours still 
need to be placed manually near the real boundaries 
preventing that the contour may be attracted by other strong 
edges. In [16], [17], the initial boundaries of organs in 
abdominal CT images were extracted by gray level 
thresholding based on statistical gray-intensity histogram of 
a region of interests (ROI), and the accurate tissue 
boundaries were outlined by adjusting the segmentation 
results with gradient maps and edge points. In [18], the 
initial contours for extracting tumors in brain MRI were 
obtained by clustering pixels of similar gray level. However, 
gray level distribution is not sufficient for segmenting the 
lesion tissues in parotids well. Besides, the weak boundaries 
of parotid lesions also cannot effectively attract the contours 
so that the initial contours for fine delineation need to be 
placed manually. 

In order to automatically extract the suspected parotid 
lesion regions and improve the automation and accuracy for 
clinical evaluation, we propose a method comprising two 
main stages: 

1. In lesion localization, the low contrast tissues in 
parotid regions are segmented with wavelet-based 
texture features and the lesion regions can be 
identified with geometric shape features (GSF) and 
localized. 

2. In fine delineation, modified ACM computation with 
the initial conditions derived from lesion extraction 
and the enhanced feature map can improve the 
computation efficiency and delineation accuracy of 
the parotid lesions 

 

Above all, stationary wavelet transform (SWT) is 
mentioned and utilized in both stages. The subject and the 
proposed methods are described in Sec. 2 and Sec 3, 
respectively. In Sec. 4, the experiment results are shown and 
the performance of the proposed method is evaluated by 
comparing with the results from clinical experts. 

 
2.  SUBJECT 

An H&N CT image is shown in Fig.1. Parotid glands are 
anatomically located at both lateral sides of the neck, so that 
the regions of interest (ROI) can be set at both sides of the 
spine and the air path in the center of the section. It can be 
seen that the soft tissues including parotid glands have lower 
contrast and weaker boundaries in the CT images than the 
bones and air path. 

 

 
 

Fig.1.  An H&N CT image and the parotid glands. 
 

A pathological parotid gland is shown in Fig.2., and the 
inner contour delineates the skeptical lesion which needs to 
be considered. Moreover, in some cases, lesions may be 
large and may occupy a great part of the parotids. 
 

 
 

Fig.2.  An H&N CT image with parotid pathology. 
 

The framework proposed in this paper is shown as the 
summarizing block diagram below (Fig.3.). 

The proposed scheme starts from SWT, and the 
coefficients are utilized to derive the texture features for 
FBS and wavelet-based energy map (WEM) denoting the 
local energy for ACM delineation. In localization shown in 
Fig.3., FBS is used to segment the soft tissue into regions, 
and then morphological process and geometric feature 
analysis are proposed to extract and recognize the lesions 
from the segmentation results. Then in fine delineation, 
initial contours are derived from the lesion segmentation 
results, and wavelet coefficient manipulation is applied to 
enhance the energy features in WEM to improve the ACM 
performance on tissue boundaries. As a result, the lesion 
regions can be automatically localized and extracted, and the 
derived information can be applied for clinical evaluation. 
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Fig.3.  Schematic diagram of the proposed method. 

 
3.  METHODS 

In this section, the methods proposed in this work are 
described. At first, SWT is introduced, and the methods to 
derive texture features and enhance the wavelet-based 
energy features are both mentioned. Besides, the 
morphological process and GSFs to extract the lesion 
regions are introduced after FBS, and methods to set the 
initial conditions to improve the ACM performance are also 
described in this section. 

 
A.  Stationary Wavelet Transform (SWT) 

SWT is a modified method proposed to overcome 
problems such as translation variance in discrete wavelet 
transform (DWT). DWT is a method utilizing a pair of bi-
orthogonal digital high-pass and low-pass filters which can 
decompose a signal into sub-bands to capture both time and 
frequency information of digital signals. The one level 
convolution of a discrete one-dimensional (1-D) signal f[x] 
can be computed by (1) and (2). 
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where WL and WH denote the approximation coefficients and 
detail coefficients, respectively, hL and hH are a pair of bi-
orthogonal high-pass and low-pass wavelet filters, and j is 
the scale parameter. In DWT, a 1-D signal is decomposed 
into two sub-bands, and each sub-band can be continuously 
decomposed in cascades into the other sub-bands at different 
scales. Two-dimensional (2-D) DWT can be implemented 
by convolving the signal with wavelet filters along both 
directions, and the 2-D signal can be as a result decomposed 
into four sub-bands, including Low-Low (LL), Low-High 
(LH), High-Low (HL) and High-High (HH). LL is the 
approximate sub-band while LH, HL and HH are the detail 
sub-bands of horizontal, vertical and diagonal directions, 
respectively. In traditional DWT, each convolution 
operation is followed by dyadic down-sampling and sub-
band coefficients are down-sampled by 2, so translation-

invariance cannot be preserved. Translation-invariance is an 
important property for applications such as alignment, 
pattern recognition and detection. In [19]-[22], several 
translation-invariant DWT methods including a trous 
algorithm, redundant DWT (RDWT) and SWT were 
proposed to avoid over-smoothing of the signals in DWT 
denoising, or to reserve more significant signal properties 
and keep the location without translation. In [23], Hu et al. 
utilized the SWT to derive the contourlet coefficients which 
require more detailed local features. SWT is an un-
decimated wavelet transform (WT) and it can capture time-
frequency information while keeping the location invariance. 
Besides, unlike a trous algorithm, SWT can preserve 
directional information in 2-D signals and does not need 
recursive computation in RDWT [19], [20]. 

The implementation of SWT algorithm is similar to DWT 
but convolution operations in SWT are not followed by 
down-sampling. Instead, SWT up-samples the wavelet 
filters by inserting zeros to realize the multi-scale analysis. 
Hence, the approximation and detail sub-bands of SWT can 
both keep the same size as the original data. A wavelet filter 
h with length of n at 0th level can be written as (3). 
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The filter becomes (4) at a higher level. 
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Hence, 2-D SWT can be implemented by computing the 

following equations (5)-(8) and four sub-bands can also be 
generated. 
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where hL,j and hH,j are the wavelet filter pairs in jth level, 
WLL, WLH , WHL and WHH denote the coefficients in LL, LH, 
HL, and HH sub-bands.  
 

  
(a) (b) 

 
Fig.4.  Illustrations of DWT and SWT, and the four sub-bands 

respectively (a) DWT (b) SWT. 
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The sub-bands of SWT as expressed in Fig.4(b). have the 
same size as the original image and do not suffer from 
resolution degradation as DWT in Fig.4(a). To extract the 
tissue regions of lesions, the SWT coefficients are applied to 
derive the local features of tissue regions for segmentation. 
Besides, the sub-bands with the same size as the original 
image are also utilized to derive the modified energy feature 
map for ACM that each pixel in the feature map can directly 
correspond to each pixel in the original image.  

 
B.  Lesion localization with feature-based segmentation 
(FBS) and geometric shape features (GSFs) 

FBS is applied to segment regions by discriminating their 
local features derived from regional pixels, such as gray 
level distribution and texture features. In previous works, 
lesions in medical images could be found by figuring out the 
tissue regions with the different features from the normal 
regions. Hence, with reliable features, tissue regions can be 
segmented by means of segmentation algorithms, and the 
lesion regions can also be discriminated and localized. 
Texture feature analysis is an effective method that can 
describe the regional features in images, and has been 
introduced in previous works to segment the suspected 
tumor regions of livers in abdominal CT images and brains 
in MRI [24]-[27]. Beside gray level intensities, texture 
features mainly express the relationship between a pixel and 
its neighbor pixels. Deriving texture features with the 
wavelet coefficients in sub-bands is one of the most popular 
methods. Various texture features have been introduced for 
applications based on statistical computation of the wavelet 
coefficients [28], [29]. However, different from SWT, 
traditional WT coefficients are down-sampled during 
decomposition and more than one adjacent pixel in original 
images shares a wavelet coefficient in sub-bands such that 
the derived features may be over-smoothed as mentioned in 
[21]. Therefore, with SWT coefficients, fine texture features 
can be preserved. In this work, three feature measures 
including energy, mean and variance are adopted in 
companion with gray level for soft tissue region 
segmentation and computed by (9)-(11): 
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where i, j mean the column and row indices of the pixels 
inside the mask, Wi,j means the wavelet coefficients and N is 
the number of pixels in the mask which are gathered to 
calculate the energy. The sub-band LL which contains the 
approximation coefficients along row and column directions 
can be thought to have a smoothed image blurred by low-
pass filters, and can represent the information about local 
gray intensities. Energy is an effective feature for texture 

characterization, and is calculated mainly with the detail 
coefficients to reflect the distribution of the variation along 
the frequency. The mean and variance are the descriptors 
used to describe the local statistical features. Based on these 
feature descriptors, image segmentation algorithms are 
aimed to connect pixels in an image appearing with similar 
features into regions.  

In H&N CT images, the gray values of the pixels at the 
bone tissues are high and low at the holes between 
anatomical structures or inside the air path. Therefore, the 
bones and the spaces in images can be pre-eliminated before 
the segmentation process in order to reduce the computation.  
The empirical gray level thresholds for the images from a 
machine can be obtained by observing the brightness 
reaction in numerous images captured by the same machine. 
The feature vectors can be preliminarily selected such that 
only the feature vectors which correspond to the pixels 
having gray intensity within the high and low thresholds are 
eligible for the feature classifying computation.  

After feature descriptors corresponding to the pixels are 
derived, the pixels having similar features can be related by 
classifying the feature vectors. K-means is an unsupervised 
segmentation algorithm to classify a group of n-dimensional 
feature vectors into k clusters [30]-[31], and similar feature 
vectors can be classified into the same cluster. In medical 
image applications, k-means has been utilized in the liver 
and brain tissue segmentation in abdominal CT images and 
MRI images [32]-[34]. The main concept of k-means is to 
minimize the sum of the square distance from each point to 
the center of the group that it is assigned to. As a result, the 
adjacent pixels with similar features can be gathered into 
regions and labeled with the same grouping indices.  

Hence, the soft tissue can be segmented into regions with 
texture features (Fig.5(b).). Then, the following 
morphological process is proposed to extract the suspected 
regions from the segmentation results. 
Step 1. Erode the extracted regions after segmentation. 
Step 2. Label each separate region with a unique number. 
Step 3. For each labeled blob, fill the holes inside. 
Step 4. Dilate the filled blob with the mask of the same size 

at Step 1. 
Step 5. Remove the region if the area is smaller than the 

threshold. 
Step 6. Go to Step 3 until all labeled regions in Step 2 are 

processed. 
The threshold in Step 5 used to remove the small 

fragments can be determined with regard to the requirement 
that the smallest dimension of the lesion needs to be figured 
out in images.  

In Fig.5., the FBS and morphological process to localize 
the suspected lesion region is presented. Fig.5(b). represents 
the FBS result of Fig.5(a). with k-means segmentation, and 
Fig.5(c). to Fig.5(f). illustrate the morphological process to 
extract the segmented regions. The blob in Fig.5(f). is one of 
the labeled blobs with eligible size to be extracted in 
Fig.5(d). As a result, Fig.5(g). is the boundary contour of the 
extracted region. 
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(a) (b) 

  
(c) (d) 

   

(e)  (f) (g) 
 
Fig.5.  (a) An original parotid CT image (b) The result of FBS with 
k-means (c) Segmented tissue regions (d) Erosion process (e) An 
extracted blob from (e) (f) Filling and dilation process (g) the 
extracted boundary of (f). 
 

After FBS and the morphological process, more than one 
tissue region is extracted (Fig.5(d).), but not every extracted 
region is lesion region requiring fine delineation. In 
accordance with clinical experience, shape is an important 
feature of suspected lesions. Therefore, each extracted blob 
is then analyzed for their GSFs, and the suspected regions 
can be found among the segmentation results. Three GSFs 
are introduced, including form factor, aspect ratio, and 
circularity.  

Form factor F can be derived by (12): 
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where AROI is the area of the region, and PROI means the 
perimeter of the region.  

Aspect ratio A and circularity C can be computed by (13) 
and (14), respectively. 
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where μR is the mean of the distance from the average center 
of the region to the bounding points, and Rσ is the quadratic 
mean of the deviation of the relative distance: 
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where (x, y) denotes the coordinates of the bounding points 
and ),( yx  is the average. 

As shown in Table 1., the GSFs of three extracted 
pathological regions are listed, and three examples of 
normal tissue regions are also listed in Table 2. 
 
Table 1.  Extracted blobs of suspected tissue regions and the GSFs. 

 

GSF 
   

F 0.905 1.347 0.699 
C 3.086 10.013 2.338 
A 1.690 1.015 1.381 

 
 

Table 2.  Extracted blobs of normal tissue regions and the GSFs. 
 

GSF 

   
F 0.271 1.347 0.461 
C 0.399 1.169 0.273 
A 1.642 1.922 8.619 

 
According to the clinical experts and by observing the 

pathological images, most parotid lesions are approximately 
rounded and concentrated. Numerous images with typical 
parotid pathologies are selected. The lesion regions are 
delineated by clinical experts and the shape of lesion regions 
is analyzed for their GSFs. Some of the typical pathological 
images are shown in Fig.6.  

 

 
 

Fig.6.  Some images with typical parotid pathologies and the 
lesions are delineated by clinical experts in green. 

 
 

Conclusively, we propose a rule expressed in (17) based 
on the analysis of the shape features of typical pathological 
lesions with tolerance for fear to wrongly neglect the lesions. 

 
               )0.7()8.1 2.2( ≥≤≥ FandAorC     (17) 

 
After analyzing each segmented region, only the regions 

having similar shape features with lesions are preserved. As 
a result, the suspected lesion regions can be localized, and 
the segmentation results are utilized for the following fine 
delineation. 
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C.  Fine delineation with automatic initial conditions and 
modified feature map 

After localizing the lesion regions, in order to delineate the 
lesion regions with higher accuracy, geodesic active contour 
(GAC) is used. It is an ACM method simplifying the snake 
method and using the gradient value as the external energy 
parameter [35]. The gradient can be thought to have more 
distinct boundary features while the main idea of this kind 
of GAC is to minimize the energy function which controls 
the smoothness of the curve and attracts the curve toward 
the boundaries. The traditional energy function in GAC can 
be written as (18). 
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monotonically decreasing stopping function and I∇  is the 
gradient of an image I. 

The terms in (18) include the external energy which is 
responsible for attracting the contour towards the object in 
the image and the internal energy to control the smoothness 
of the contour. In order to deform an initial contour towards 
the local minima of (18), the steady state solution is given 
by 
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where t denotes the time as the contour evolves, k is the 
Euclidean curvature and N

r
means the unit inward normal to 

the curve C. In order to solve the geodesic problem, level set 
formulation is introduced and curve C is considered as a 
zero level set function in (20).  
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Hence, the contour can be represented with a signed 
distance map measuring the minimum distance from the 
contour to a point. GAC evaluation can be implemented in 
companion with the distance map and gradient energy as 
written in (21).  
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the normal and curvature can be evaluated by
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It is shown that the initial contours and gradient can highly 
affect the GAC results. Instead of manual placement, the 
extraction results of the lesion regions can be used to derive 
the initial contours. In Fig.7(a)., a boundary of an extracted 
region is extracted and then transformed into a distance map 
as shown in Fig.7(b)., and the signed distance map can be 
utilized as the initial condition for GAC. 

 

  
(a) (b) 

 
Fig.7.  (a) A boundary of an extracted region (b) The distance map 
of (a). The brighter points mean the longer distance from the 
contour. The points inside the contour are set to negative distance. 

 
Although the initial contour close to the tissue regions can 

be obtained, in GAC curve evolution, the external energy 
controls the movement to the real tissue boundaries, and is 
associated with the gradient magnitude. However, as for soft 
tissues in CT images, the regions are noisy and do not have 
sufficient gradient to attract the active contours. Instead of 
the traditional method, the gradient magnitude in (19) can be 
obtained using the square sum of the detail coefficients of 
SWT as in (22). 
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HHLHHL WWWI ++=∇        (22) 

 
Wavelet coefficient manipulation is a method used for 

image enhancement and noise attenuation by adjusting the 
local coefficients based on a designed mapping function. In 
addition to wavelet shrinkage for image denoising, 
functional mapping method also has been proposed for 
enhancing the detail features in X-ray images [37]-[39]. The 
wavelet coefficients can be adjusted based on the mapping 
function H, as demonstrated in Fig.8., so that the wavelet-
based gradient energy with the modified wavelet 
coefficients can be computed by 
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However, in the soft tissue regions with low contrast, the 

distribution of the original wavelet coefficients is 
concentrated. In order to enhance the features derived from 
the wavelet coefficients, the wavelet-based gradient energy 
can be directly mapped by (24).  
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where Ĥ  is the mapping function for energy features as 
demonstrated in Fig.8., combining shrinkage and mapping 
manipulation as written in (25). 
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Fig.8.  The mapping of the input coefficients to output coefficients 
with mapping function H(x). The dotted line means H(x)=x. 
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where y(x) is a piecewisely continuous mapping function 
designed for adjusting the features with values higher than 
threshold. The gradient magnitude in (19) can be replaced 

with the enhanced feature 
2

Î∇ , and the stopping function 

g(x) is computed by 
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The fine delineation computation is initialized with the 

signed distance function based on the contours extracted 
from FBS results and the enhanced energy map. To precede 
the iterations, fast marching is a fast front propagation 
framework [40]. The front propagation considers the pixels 
in a narrow band around the existing front and solves the 
propagation equation to move the front ahead and bring new 
pixels into the narrow band. The operation keeps until it 
approaches the region boundaries and the front does not 
move anymore. Hence, the segmentation results can help 
locate the initial conditions near the real region boundaries 
and the iteration times for convergence can be reduced. 
 

4.  RESULTS AND DISCUSSION 
This section describes the experiment results of the 

proposed method to extract the parotid lesion regions. In 
order to evaluate the proposed method used for segmenting 
the parotid lesions, the performances of the two main stages 
are both evaluated. The experiment results are compared 
with the results delineated by the clinical experts for 
accuracy, and also compared with the results using the 
method proposed in [15]  
 
A.  Experimental data 

In this work, 20 pathological CT sets were used to 
evaluate the results, and totally 137 images with parotid 
lesions were selected in the experiment. The CT dataset 
were collected from Cathay General Hospital (CGH) and the 

pathological images were selected by the clinical experts in 
the database. The CT images were scanned by Phillip 
Brilliance 64 scanner and the pixel spacing of the CT 
images was 0.78×0.78 mm2. In order to evaluate the 
performance to discriminate the suspected lesions, another 
100 images with normal parotids were also used.  

 
B.  Quantitative evaluation  

The performance of lesion region segmentation is 
evaluated by the true positive (TP) and false positive (FP) 
rates. TP is a portion of lesion region correctly segmented 
and the results are acceptable for clinical evaluation. FP is a 
portion of non-lesion region incorrectly recognized as a 
lesion. Lesion dimension is highly considered in diagnosis 
and treatment evaluation, so the fine delineation results are 
computed for their area and perimeter comparing with the 
results drawn by clinical experts for accuracy. The accuracy 
is computed by 

 

                    %100)1( ×
−
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B
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acc           (27) 

 
where A is the result derived by the proposed method and B 
is the result from the clinical experts. The TP cases are 
evaluated for accuracy to evaluate the performance of fine 
delineation. 
 
C.  Tissue segmentation and lesion localization 

Fig.9. illustrates some results after FBS and morphological 
process. GSF rule (17) is then involved to determine the 
suspected regions. The GSFs of the extracted tissue regions 
in Fig.9. are listed in Table 3. In this work, the lesions with 
diameter larger than 2 cm are required to be found, so the 
threshold of area used to remove the small fragments is 100 
pixels, with respect to the resolution of the images.  

 
Table 3.  GSFs of the extracted regions in Fig.9. examples 

 
No. F C A Suspected 

(a)-1 0.905 3.086 1.690 Yes 
(a)-2 0.281 0.439 2.063 No 
(b)-1 1.043 9.691 1.526 Yes 
(c)-1 1.067 21.156 1.093 Yes 
(c)-2 0.612 0.467 3.315 No 
(d)-1 0.908 1.954 1.231 Yes 
(d)-2 0.755 1.605 1.495 Yes(false) 

 
As shown in Fig.9., the suspected lesions can be identified 

among the extracted tissue regions based on the GSFs. 
Fig.9(d)-2. is an FP example that a segmented non-lesion 
region is adjacent to the real pathological region but 
wrongly recognized. In the experiment on 20 CT series, the 
average TP rate is 94.1 % over the 137 recognized 
pathological images and the average FP rate is 10.8 %, and 
most failed cases are due to unsatisfactory extraction results. 
In the experiment on the 100 images of normal parotids, 
non-lesion regions were incorrectly found in 8 images. 
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Original  Extracted regions 

 
  

(a) (a)-1 (a)-2 

  
(b) (b)-1 

   
(c) (c)-1 (c)-2 

   
(d) (d)-1 (d)-2 

 
Fig.9.  Examples of FBS and region extraction. 

 
 

D.  Fine delineation of lesion regions 
After the suspected lesion regions are extracted, the initial 

contours for GAC fine delineation can also be derived. In 
Fig.10., the delineation results are labeled in red and the 
segmentation results used to derive the initial contours are 
also presented on the right.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Fig.10.  Examples of GAC delineation of suspected regions using 
enhanced WEMs and the initial condition maps. 

In Fig.10., the initial contours near the real tissue 
boundaries can improve the convergence, and can help the 
contours not to be affected by scattered light as in Fig.10(e). 
Less than 20 iterations are required in the GAC computation 
with the proposed enhanced WEMs. The proposed method 
is also compared with the GAC results using gradient-based 
energy maps. Although the modified initial contours can 
help the GAC to go to the real boundaries, GAC using 
traditional gradient-based energy maps in many cases are 
still not correctly attracted to the tissue boundaries (Fig.11.). 
However, the same pathological images in Fig.11. can be 
effectively delineated with the proposed enhanced WEM 
(Fig.10(a). and Fig.10(f).). 

 

  
(a) (b) 

  
(c) (d) 

 
Fig.11.  (a).(c).GAC results using WEM. (b)(d) GAC results using 
gradient-based energy map with the same test images as (a) and (c) 
respectively. 
 

Original WELSAC Proposed method

   
(a) (d) (g) 

   
(b) (e) (h) 

   
(c) (f) (i) 

 
Fig.12.  (d)-(f) are the delineation results of (a)-(c)using the 
WEBLS and (g)-(i) are the results of the proposed method in this 
work. 

 
In Fig.12. are some examples of parotid lesion 

segmentation using wavelet energy-guided level set active 
contour (WELSAC) proposed in [15]. Replacing the manual 
initial contour in [15], the initial contours are placed based 
on the method proposed in this work. The two methods 
proposed in Fig.12. are based on the same initial contour but 
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the WEBLS cannot correctly delineate the parotid lesions. In 
most cases, WEBLS delineate the tissue regions with strong 
boundaries but not the parotid lesions with weak boundaries, 
so most of the delineation results are not reasonable for 
medical evaluation of the parotid lesions. 

In the experiment, the proposed method in this study can 
achieve satisfying results and the average accuracy of area is 
94.8 % and perimeter is 93.7 %. The TP rate and accuracy in 
percentage of each CT set are demonstrated in Fig.13. 
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Fig.13.  TP rate of lesion recognition and delineation accuracy  

in percentage of each CT set. 
 

E.  Discussion 
In lesion localization, besides FBS that can improve 

segmentation of parotid tissues, shape features analysis used 
to determine the lesion regions among the segmentation 
results (Fig.5(b).) can also improve the automation. The 
GSF rule (17) used to identify the lesion regions is induced 
from numerous typical pathologies in previous works and 
has been adjusted in clinics, so not only the 20 cases in this 
experiment; we believe that the rule is also appropriate for 
other cases. Identification of lesions is affected by the 
results of tissue extraction whether in TP or FP cases. Most 
positive lesion regions but incorrectly recognized are due to 
unsatisfying segmentation on the boundaries or the mask 
effect from morphological process, such that the adjacent 
tissues are wrongly connected with the lesion regions. In 
these cases, ACM can improve the results by placing the 
initial contour inside the segmented regions to separate the 
wrongly connected tissues.  

As to FP cases, some regions with uniformed local 
features may be extracted and wrongly recognized because 
of similar shape features with lesion regions. However, for 
fear of missing the risky lesions in pre-inspection, tolerance 
is required and higher FP rate can be acceptable. The target 
with too small area in images may be easily neglected or 
merged into other larger regions. Besides, the morphological 
process used to remove the small regions and separate the 
connected regions may deform the lesion regions because of 
the mask effect. In fine delineation, FBS results can be 
adjusted and the automatic placement of initial contours can 
improve the ACM computation performance. In experiment, 
less than 20 ACM iteration times are required in each image. 
Besides, the WEM proposed in this work can enhance the 
boundary features and improve the property on attracting the 
contour. The contouring results are better than traditional 
gradient-based map with the same initial conditions 

(Fig.11.). The gradient map is not sufficient enough and the 
active contours are attracted by the edges stronger than the 
tissue boundaries. Besides, the WELSAC method proposed 
in [15] also achieves unsatisfying results on segmenting the 
parotid lesions. The main idea of WEBLS is to segment two 
similar lesion and non-lesion regions by dividing the energy 
feature map derived with traditional DWT. However, there 
are always more than two tissues with various features 
surrounding the parotid lesion tissues, and the translation 
variance in DWT can also blur the tissue boundaries. Only 
in few cases, the images with significant lesion regions can 
be extracted but with low accuracy.  Besides, scattered light 
due to metal reflection may result in strong light variation 
and is another significant problem in CT images.  

As shown in Fig.9(c). and Fig.12(i)., the extraction results 
are not seriously affected by the slight scattered light. 
However, the proposed method may fail if intense scattered 
light covers a large area of parotids. In recent years, more 
and more patients are equipped with metal parts in the 
bodies, and a large amount of the images may be affected by 
scattered light. Therefore, it requires developing methods to 
remove the scattered light ray in images to reduce the 
influence. In this work, Daubechies wavelets are applied 
because of their dominant properties. The higher-order 
Daubechies wavelet with longer filter length may blur the 
features for both segmentation and delineation, so the degree 
of Daubechies wavelet also depends on the resolution of 
images. According to the resolution of the CT images for 
experiment in this work, first and second order Daubechies 
wavelets are applied, and can approach more reasonable 
results than higher order Daubechies wavelets. As a 
consequence, the final extraction results can also be verified 
by comparing with the results from the adjacent slices, 
because the lesions should not vary a lot in two continuous 
slices. With reliable accuracy, the dimension of the 
extracted lesions can be automatically measured for clinical 
evaluation in clinics. 

 
5.  CONCLUSIONS 

The objective purpose of the present work is to develop a 
method that can automatically extract the parotid lesions in 
H&N CT images, in order to improve medical automation 
on diagnosis and treatment planning. The proposed scheme 
in this work can approach automatic localization of the 
suspected lesion regions and automatic delineation of the 
lesion boundaries. Localization of lesions by means of local 
features and shape features can improve the automation and 
performance on accurate delineation. Besides, GAC with the 
proposed enhanced feature maps can perform in higher 
efficiency on computation. Because of the variation of 
image quality, the performance can be adjusted by designing 
appropriate mapping functions in (24) for feature 
enhancement. As the increase of the medical images, the 
proposed scheme provides a method to reduce the manual 
process. The extracted information can be helpful for 
clinical evaluation and diagnosis confirmation. Our future 
works include collecting more pathological images to 
improve the recognition accuracy and extending the scheme 
to other images for medical applications. 
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