
 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 6, 2014 

 

 

 302 

 

Noise Propagation in Multiple-Input ADC-Based     

Measurement Systems 

Diego Bellan 

Department of Electronics, Information and Bioengineering, Politecnico di Milano,                                                          

piazza Leonardo da Vinci, 32, 20133, Milan, Italy, diego.bellan@polimi.it 

 
In this paper, the complete statistical characterization of the amplitude spectrum at the output of a multiple-input ADC-based 

measurement system is derived under the assumption of input channels with different noise levels. In practical applications the 

input channels correspond to the spatial components of a vector field (e.g., magnetic/electric field). Each output spectral line 

represents the amplitude of the vector field at a specific frequency. Such amplitude is a random variable depending on the noise 

levels (internal and external noise) of the input channels. Closed form analytical solution for the probability density function of the 

vector field amplitude is not available in the mathematical literature under the hypothesis of different noise levels. Therefore, an 

analytical expression for the probability density function is derived on the basis of a Laguerre series expansion. The impact of the 

kind of time window, the sampling frequency, and the number of samples is clearly derived and put into evidence. Approximate 

analytical expressions for the mean value and the variance of the vector field amplitude are also provided. Analytical results are 

validated by means of numerical simulations. 
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1.  INTRODUCTION 

EASUREMENT SYSTEMS based on analog-to-digital 

conversion of signals are widely used in several 

engineering fields. The increasing availability of 

faster and higher-resolution analog-to-digital converters 

(ADCs), together with the increasing computational 

capability of processors, allow the design and development 

of measurement systems with increasing complexity. An 

interesting example of such complexity is represented by an 

ADC-based measurement system designed to measure the 

frequency content of a non-stationary vector field (e.g., 

magnetic/electric field) [1]-[3]. In fact, in this case the 

measurement system must implement one input channel for 

each spatial component of the vector field (e.g., the x, y, and 

z components) to be acquired simultaneously. Then, the 

digitized signals must be transformed into the frequency 

domain and properly processed to provide the required 

information concerning the whole vector field. Typically, if 

the vector field to be measured is non-stationary in time, 

each measurement window consists of a small number of 

samples. In this case it is well known that the noise effects, 

coming from both internal (i.e., electronic) and external (i.e., 

environmental) sources, can greatly affect the measurement 

accuracy [4]. The analysis of noise propagation from the 

analog amplitude domain to the frequency domain is 

therefore a fundamental task in order to provide a proper 

statistical characterization of the whole measurement 

process.  

Noise propagation in single-channel ADC-based 

measurement systems has been widely studied in the 

relevant technical literature (e.g., [5]-[7]). For the multiple-

input case, however, the available literature is mainly 

concerning the system architecture (e.g., [8]), whereas a 

thorough statistical analysis of noise propagation has not 

been provided yet. The main difficulty is related to the 

circumstance that, in the most general case, the input 

channels are characterized by different noise levels (i.e., 

internal and/or external noise). In fact, the whole vector-

field measurement in the frequency domain requires a 

proper processing of input data affected by different noise 

levels. A complete statistical characterization of the 

measurement results would require the derivation of the 

probability density function (PDF) of the measured field 

amplitude. Such an objective, however, is still a challenging 

issue from a mathematical viewpoint. Indeed, in the case of 

different noise levels, the amplitude of the measured vector 

field is a random variable (RV) whose PDF has not been yet 

derived in analytical closed form in the mathematical 

literature (e.g., [9]-[10]). In this paper, an analytical 

approach based on a Laguerre series expansion [10] will be 

exploited for deriving the PDF of the vector field amplitude 

measured by an ADC-based multiple-input measurement 

system with different noise levels per channel [11]. The 

impact of specific signal processing choices, such as the 

kind of time window, the number of samples, and the 

sampling frequency, will be put into evidence. 

The paper is organized as follows. In Section 2 the 

motivations of the paper are reported, with the description of 

an ADC-based multiple-input measurement system, and the 

required data processing to obtain the vector field amplitude 

in the frequency domain. In Section 3 the mathematical 

results concerning the Laguerre series expansion are 

reported and used for a complete statistical description of a 

measured vector-field amplitude. Moreover, approximate 

results concerning the mean value and the variance of the 

vector field amplitude are reported, while the related 

derivations are provided in the Appendix. In Section 4 the 

analytical results are compared with numerical results 

obtained by means of properly designed repeated-run 

simulations. Finally, concluding remarks are drawn in 

Section 5. 
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2.  MOTIVATION OF THE WORK 

The general analysis proposed in this work was motivated 

by the measurement application outlined in this Section. 

Let us consider a measurement system for a three-axial 

vector field (e.g., a magnetic field) based on analog-to-

digital conversion of time-domain data. The measurement 

system is aimed at providing the amplitude spectrum of the 

vector field through a time-to-frequency transformation of 

the acquired data. 

The three-dimensional nature of the field requires a three-

axial probe providing the time-domain analog signals 

corresponding to the vector field components (i.e., x, y, and 

z components). More specifically, each analog signal is the 

sum of the related field component, i.e., )(tvx , )(tv y  or 

)(tvz , and additive noise. It is assumed that each field 

component can be modeled as a sum of sine waves, while 

additive noise consists of internal (i.e., electronic) and 

external (i.e., environmental) noise. In the following 

sections, mathematical derivations related to the x channel 

will be shown. Similar expressions hold for y and z 

channels.  

The x-component of the vector field can be written as the 

sum of a constant term 0,xA , and N  sine waves with 

amplitude nxA , , frequency nf , and phase nϑ , i.e.,: 

 

 ∑
=

ϑ+π+=
N

n

nnnxxx tfAAtv

1

,0, )2cos()( . (1) 

 

Analog signals are captured via a suitable three-axial 

probe and acquired in the form of three digitized time-series 

[ ]kx , [ ]ky , and [ ]kz  by means of analog-to-digital 

conversion. The digitized signal [ ]kx  coming from the x 

channel can be written as:  

 

 )()()(][ SxSxS kTnkTvkTxkx +== , 1,...,0 −= SNk , (2) 

 

where ST  is the sampling interval and SN  is the length of 

each time-series. Independent additive zero-mean noise xn  

introduced by the x-channel has been assumed in (2). The 

sampling frequency SS Tf /1=  must be chosen in order to 

fulfill the sampling theorem, i.e., NS ff 2> , where Nf  is 

the maximum frequency in the input signal spectra. 

Proper time-windowing through a window function ][kw  

is adopted in order to reduce spectral leakage [12], and a 

properly weighted Discrete Fourier Transform (DFT) is used 

-via the Fast Fourier Transform (FFT) algorithm- in order to 

obtain spectral estimates of sine wave components: 

 

 { },][][DFT
NPSG

2
][ kwkx

N
nX

S

=  (3) 

 

where NPSG is the Normalized Peak Signal Gain 

characterizing the selected time window.  

It can be shown that, regardless of the distribution of 

additive noise, the real and the imaginary parts (i.e., XR and 

XI) of the random variable (RV) X[n] are normally 

distributed uncorrelated RVs [5], with mean values given by 

their deterministic components (i.e., unbiased RVs), and 

equal variances 
222

IR XXX σ=σ=σ  depending on the power 

of the corrupting noise xn . By assuming locally-white noise 

(i.e., flat noise in a proper frequency interval including the 

sine wave to be estimated) one obtains [13]: 

 

 fS
xnX ∆=σ ENBW2  (4) 

 
where ENBW is the Equivalent Noise Bandwidth of the 

selected time window, 
xn

S  is the local value of the noise 

Power Spectral Density (PSD), and SS Nff /=∆  is the DFT 

frequency resolution. Notice that, for a given PSD noise 

level, the frequency-domain variance 2
Xσ  is affected by the 

kind of time window (i.e., the ENBW), and by the ratio 

between the sampling frequency and the number of samples 

(i.e., f∆ ). 

In order to estimate the amplitude of the sinusoidal 

components of the measured field, the contributions from all 

the three channels must be taken into account. Thus, for 

each frequency index n, the measured sine-wave amplitude 

is given by: 

 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]222222
nZnZnYnYnXnXnM IRIRIR +++++=  (5) 

 
where the subscripts R and I denote the real and the 

imaginary part of the related RV, respectively. 

In the most general case considered in this paper, the noise 

levels of the three channels can take different values, i.e., 
222
ZYX σ≠σ≠σ . The reason can come from measurement 

channels with non-equal internal (electronic) noise levels, 

and/or from external (environmental) noise with different 

levels on the three axial components.  

The circumstance of different noise levels results in a non-

trivial problem when the statistical characterization of (5) is 

needed (e.g., PDF). In fact, while the case of equal variances 

is a standard statistical problem, the case of different 

variances is still unsolved in a closed analytical form. In the 

following Section, the statistics of M will be derived under 

the general assumption of channels with different noise 

levels, by exploiting one of the last contributions in the 

mathematical literature resorting to a proper series 

expansion [10]. 

 
3.  MATHEMATICAL DERIVATION 

For the purpose of deriving the statistics of the RV (5) it is 

useful to derive first the PDF of the RV under the square 

root, i.e., 

 

 222222
IRIRIR ZZYYXXW +++++= . (6) 
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As a second step, the PDF and the CDF (i.e., the 

cumulative distribution function) of M are obtained by 

means of the theorem on the transformation of RVs [14]. In 

fact, by observing that 

 

 WM = , (7) 

 

it follows that the PDF and the CDF are given by 

 

 )(2)( 2MfMMf WM =  (8) 

 

 )()( 2MFMF WM = . (9) 

 

In the literature, several attempts have been made to derive 

the PDF of the sum of the squares of normal RVs with 

different variances and non-zero mean values. Different 

approximate expressions have been therefore derived, but 

the closed form analytical solution is not available yet. One 

of the more recent and interesting contributions in the 

mathematical literature is described in [9]. In that paper, the 

following RV is considered: 

 

 ∑
=
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K

i

iii zW

1
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where ),...,1( Kizi =  are standard normal RVs (i.e., zero-

mean and unit variance normal RVs). Notice that the 

coefficients δi and αi take into account the actual mean 

values and variances of the K RVs. In particular, by 

comparing (10) with (6) it can be easily observed that for the 

specific application under analysis we have 6=K , and the 

coefficients are given by: 
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where the subscript “0” denotes the mean value of the 

corresponding RV.  

In [10] the PDF of W defined in (10) is expressed in the 

form of a Laguerre series expansion: 
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where { }Kii ,...,1, =α=α  and { }Kii ,...,1, =δ=δ  are the 

vectors of the coefficients defined above, the coefficients 

ka  are calculated recursively as: 
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and the coefficients kb  are given by: 
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where 

 

 Kiii ,...,1,1 =βα−=γ . (15) 

 

Expansion (12) is uniformly convergent for all 0>W  

provided that 2/max
k

kα>β . 

Finally, in (12), the function );( xKg  is the central 2χ  

PDF with K degrees of freedom given by: 
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and )()12/( xL K
k

−  is the k-th generalized Laguerre polynomial 

given by: 
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with parameter 12/ −= Kn . 

The analytical expression for the PDF of the measured 

amplitude M can be therefore obtained by means of (8) and 

(12) as: 
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A series expansion for the CDF of W  is also derived in 

[10]: 
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where the function );( xKG  is the central 2χ  CDF with K 

degrees of freedom given by: 

 

 ∑
−

=

− 







−=

12/

0

2/

2!

1
1);(

K

k

k
x x

k
exKG . (20) 

 

From (9) and (19), by letting 6=K , the analytical 

expression for the CDF of the measured amplitude M can be 

written as: 
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The analytical results given by (18) and (21) provide a 

complete statistical characterization of the measured 

amplitude M. The statistical moments (e.g., the mean value 

and the variance) of the RV M can be derived from (18).  

However, approximate and simpler analytical results could 

be useful from the application viewpoint [15]. Approximate 

expressions for the mean value and the variance of M can be 

readily obtained from the results derived in Appendix 

starting from a Taylor series approach [14]. From equations 

(A2), (A3) and (A4), for the mean value of M it can be 

obtained: 
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where: 

 

2222

2
0

2
0

2

2
0

2
0

2

2
0

2
0

2

ZYX

IRZ

IRY

IRX

AAAA

ZZA

YYA

XXA

++=

+=

+=

+=

 (23) 

 

From (A3), (A4) and (A5), for the variance of M it can be 

obtained: 
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Notice that (22) and (24) give also the mean value and the 

variance of only-noise spectral components provided that 

the amplitudes A, AX, AY, and AZ are set to zero. 

 
4.  NUMERICAL ASSESSMENT 

Analytical results derived in Section 3 have been validated 

through properly designed numerical simulations. A three-

axial sinusoidal vector field with normalized amplitude 

1=A  has been simulated, consisting of three sinusoidal 

components with the same amplitude 3/A  and frequency 

MHz41.24=f . The three sine waves were corrupted by 

additive zero-mean white Gaussian noise with different 

PSD, i.e., 
9

1070
−⋅=

xn
S , 9

1060
−⋅=

yn
S , and 

9
1050

−⋅=
zn

S . Notice that a noise distribution different 

from the Gaussian distribution could be considered since the 

normal behavior of the DFT coefficients (3) is due to the 

Central Limit Theorem [14] and not to the kind of noise 

distribution. Each noisy sine wave was sampled with 

sampling frequency GS/s1=Sf , by taking a number of 

samples per channel 122=SN . Each digitized signal was 

then multiplied by a Hann window, and the DFT was 

evaluated by means of the FFT. According to (3) applied to 

each channel, the three frequency spectra were obtained. 

Notice that from (4) the frequency-domain variances 

resulting from the Hann window (i.e., 5.1=ENBW ) and the 

above mentioned noise data and sampling conditions are 
72

106.2 ⋅=σX , 72
102.2 ⋅=σY , and 72

108.1 ⋅=σZ . Finally, 

according to (5), the frequency spectrum of the vector field 

was obtained. In Fig.1. an example of the noisy field 

spectrum in the frequency range (0, 100 MHz) is shown. 
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Fig.1.  Example of amplitude spectrum of the simulated vector 

field consisting of a unit amplitude sine wave at 24.41 MHz and 

additive noise with different levels on the three channels. 
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Fig.2.  Comparison between the analytical PDF given by (18) and 

the numerical PDF obtained by repeated-run numerical simulations 

of the spectral line amplitude corresponding to the field sine wave 

at 24.41 MHz. 

 
The analytical results obtained in Section 3 refer to each 

spectral line in the field spectrum. Therefore, by focusing on 

the spectral line corresponding to the field sine wave (i.e., 

the spectral line at 24.41 MHz), a repeated run analysis can 

be performed in order to obtain a numerical estimate of its 

statistical behavior. Fig.2. shows the numerical PDF of the 

measured variable M (i.e., the measured sine wave 

amplitude according to (5)), obtained by 4104 ⋅  repeated 

simulation runs of the numerical procedure outlined above. 
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On the same graph, the analytical PDF given by (18) is 

shown. It can be observed that, due to the noise bias, the 

mean value of the measured variable M (i.e., the location of 

the peak of the symmetric bell-shaped curve) is larger than 

the noise-free value 1=A .  

In Fig.3. the impact of the use of different time windows is 

shown. In particular, from (4) it is clear that a change in the 

selected time window results in a different value for the 

parameter ENBW, leading to different values for the 

frequency-domain variances. In Fig.3., three windows are 

compared, i.e., the rectangular window ( 1=ENBW ), the 

Hann window ( 5.1=ENBW ), and the minimum 4-term 

Blackman-Harris window ( 2=ENBW ). As it was expected, 

the spread and the bias of the measured M increase with the 

ENBW.  
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Fig.3.  PDF of the field amplitude M at 24.41 MHz for different 

time windows. The spread and the bias increase with the ENBW of 

the selected window. 
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Fig.4.  Analytical vs numerical behavior of the mean value of the 

simulated noisy field at 24.41 MHz. Noise levels and sampling 

conditions are the same as in Fig.2. 

Fig.4. provides a comparison between the analytical 

approximate result given in (22) for the mean value of the 

spectral line amplitude at 24.41 MHz and numerical 

estimates obtained through repeated-run simulations under 

the same conditions as in Fig.2. The mean values are 

evaluated for field amplitude A ranging from 0 to 2. Notice 

that as the field amplitude approaches zero, the mean value 

remains greater than zero due to the noise bias. 
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Fig.5.  Analytical vs numerical behavior of the standard deviation 

of the simulated noisy field at 24.41 MHz. Noise levels and 

sampling conditions are the same as in Fig.2.  

 

 

In Fig.5. the comparison is related to the standard 

deviation of the amplitude of the simulated field at 

24.41 MHz, for the same noise levels and sampling 

conditions as in Fig.4. The analytical approximate standard 

deviation, given by the square root of (24), is compared to 

numerical results obtained by repeated-run simulations. The 

field amplitude ranges from 0 to 2. As the amplitude 

approaches zero, the graph provides the standard deviation 

of a spectral line consisting of only noise. Notice also the 

change in the slope of the curve, i.e., a large slope for low 

amplitude field and a small slope for higher amplitudes. 

 

5.  CONCLUSION 

In this paper, one of the more interesting and recent results 

available in the mathematical literature has been applied to 

the complete statistical characterization of the measured 

amplitude of a vector field by means of an ADC-based 

multiple-input measurement system with different noise 

levels per channel. The relationship with the sampling and 

windowing parameters has been shown and clarified. 

Although the analytical results have been applied to a three-

component vector field in the work, the proposed approach 

has a general validity with respect to the number of input 

channels. 

 



 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 6, 2014 

 

 

 307 

APPENDIX 

Let us consider the random variable 
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where 621 ,...,, yyy  denote six uncorrelated random 

variables. By means of the theorem on the transformation of 

RVs [14], the mean value of z  can be estimated as follows: 
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In the case where ky  is the square of normally distributed 

RVs, i.e., 2
kk xy = , it can be easily shown that [14]: 
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By substitution of mean value (A3) and variance (A4) into 

(A2) the explicit expression of zµ  as a function of 
kx

µ  and 

2

kx
σ  can be obtained. 

The variance of z  can be estimated as follows [14]: 
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