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This work discusses fully automated extraction of brain tumor and edema in 3D MR volumes. The goal of this work is the
extraction of the whole pathological area using such an algorithm that does not require a human intervention. For the good visibility
of these kinds of tissues both T2-weighted and FLAIR images were used. The proposed method was tested on 80 MR volumes of
publicly available BRATS database, which contains high and low grade gliomas, both real and simulated. The performance was
evaluated by the Dice coefficient, where the results were differentiated between high and low grade and real and simulated gliomas.
The method reached promising results for all of the combinations of images: real high grade (0.73 ± 0.20), real low grade (0.81 ±
0.06), simulated high grade (0.81 ± 0.14), and simulated low grade (0.81 ± 0.04).
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1. INTRODUCTION

SINCE THE MR technique is becoming more popular due
to its non-invasive principle, the imaging of biological

structures by MR equipments is a routine investigating proce-
dure today [1]. For this reason, the automatic processing of
this kind of images is getting more attention. Nowadays, the
issue of automatic analysis of brain tumors is of great inter-
est. It is the first step in surgical and therapy planning. And
the very first step of the automatic analysis of brain tumor is
its detection and subsequent segmentation. The difficulty of
the tumor segmentation is in its shape variability in each case.

So far, the proposed general brain MR segmentation algo-
rithms, with a few exceptions (such as [2], which mention it
peripherally), do not deal with this task at all. Hence, concrete
algorithms have to be developed.

The automatic segmentation of brain tumors is still a chal-
lenging problem, even though several different and interest-
ing fully- or semi-automatic algorithms have been proposed
in recent years. The existing algorithms can be classified into
semi- and fully-automatic methods from a user viewpoint and
into region- and contour-based methods from technical view-
point.

The semi-automatic [3], [4] require some user interaction,
e.g., to select the starting point lying inside the tumor or to
select several points of foreground and several points of back-
ground. The automatic [5], [6] methods do not require any
interaction and are usually based on prior knowledge of the
human brain structure, either tissue atlas or left-right symme-
try, or their combination.

The region-based methods [7], [8] usually search for pix-
els or regions with similar properties that create connected
regions. This includes, e.g., region growing, classification,
etc. The contour-based methods [9] use image gradient in

particular area to detect a boundary and create a region for
subsequent boundary evolution. The most famous method of
this group is active contours [10]. Some works [11], [12] use
combination of region-based and contour-based methods and
try to combine the advantages of both of these groups.

At present, multi-parametric image analysis is frequently
discussed within the scientific community [13]. This tech-
nique, even though it can be based on traditional segmentation
methods (thresholding, active contours), exploits information
obtained from more images or modalities at the same time.

This is widely used in algorithms using machine learning
and classification approach. Varieties of these machine learn-
ing methods can be found in the proceedings of the MIC-
CAI 2012 Challenge on Multimodal Brain Tumor Segmenta-
tion (http://www.imm.dtu.dk/projects/BRATS2012).
This challenge and the obtained results showed that the cur-
rent methods still do not reach the sufficient accuracy. This
publicly available database has reached high interest and is
widely used for evaluation of current algorithms, e.g., in [14],
[15], where the later one deals only with segmentation of the
core of low grade gliomas and reached promising results.

However, these methods still have limitations. The main
one is the transferability to the MR volumes acquired with dif-
ferent parameters. For this purpose, the intensity normaliza-
tion has to be used. Many methods have been developed for
this task as well, but even a small shift can cause the failure of
classification algorithms, which in almost all cases relies on
the image intensities. This was shown in [14], where promis-
ing results were achieved, when the model was trained on the
same database, while after testing on a different database, the
performance dropped significantly.

The current methods usually rely also on T1-weighted con-
trast enhanced images [16]. This is the image we are try-
ing to avoid, since it requires a contrast enhanced agent (usu-
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ally gadolinium) to be injected into the patient’s blood, which
breaks the non-invasivity of magnetic resonance.

The general properties of healthy brain are widely used as a
prior-knowledge. One of them is the probability of tissues lo-
cations using probabilistic brain atlas, which requires manual
labeling of template MRI and is used, e.g., in [17]. Another
widely used knowledge, which is used in this article, is the
approximate left-right symmetry of healthy brain. This ap-
proach is also used, e.g., in [5], [6]. The areas breaking this
symmetry are most likely parts of a tumor or an edema.

Consequently, in this work a fully automated method based
on symmetry analysis is proposed. Using the symmetry anal-
ysis, the preliminary locating of this kind of pathological area
is found, followed by the border delimitation, which is per-
formed by Otsu’s thresholding technique [18] in both image
modalities using the knowledge of the brain tumor manifes-
tation in both of them. The details of the proposed algorithm
are described in section 2.

The rest of the paper is organized as follows. In section 3,
the data used for evaluation and the evaluation criteria are de-
scribed. Section 4 describes the performance of the algorithm
and its comparison with other state-of-the-art methods. The
conclusion of the paper is given in section 5.

2. PROPOSED METHOD

The input of the whole process is registered 3D T2 and FLAIR
magnetic resonance volumes. The reason for these contrast
volumes is the good visibility of this kind of pathology in both
of them. However, it is not always possible to separate it from
healthy tissue using only one of these contrasts.

The flow diagram of the proposed method is depicted in
Fig. 1. The input of the whole process is a 3D magnetic res-
onance volume containing a tumor. The algorithm does not
deal with the tumor presence detection, but this topic, unfor-
tunately dealing only with 2D images, can be found in our
previous work [19]. The pathology extraction process con-
sists of three steps described in detail in subsequent subsec-
tions. These steps are preprocessing, symmetry analysis, and
tumor extraction.

2.1. Preprocessing

The first step is the extraction of brain, followed by cutting the
volume. Since all images in testing BRATS database contain
only brain, this step was skipped during testing. However,
there are several methods used for brain extraction from 3D
volumes such as [20]. This algorithm has been created and
implemented by our colleagues and can be easily used. Sub-
sequently, the regions outside the brain volume are cut off to
ensure that only relevant areas are analyzed. From this new
cut volume, the mid-sagittal plane has to be extracted to cor-
rectly align the head. Several methods exist for this task as
well, e.g., the one based on bilateral symmetry maximization
[21] can be used.

Fig. 1: The flow diagram of the proposed method.

2.2. Symmetry analysis

The first part of this work is the detection of symmetry anoma-
lies, which are usually caused by a brain tumor, whose de-
tection is the main purpose of this article. The first step of
this process is dividing of the input volume into left and right
halves.

Assuming that the head is not rotated and the skull is ap-
proximately symmetric, the symmetry axis is parallel to the
sagittal plane and divides the volume of the brain into two
parts of the same size. Since the method is not pixel-based,
the precision of the determined symmetry axis has not signif-
icant influence.

A cubic block, with the side length computed as one quar-
ter of the cropped image side length, is created. This size and
sizes computed in the following computation are suitable for
the detection of both small and large tumors. The algorithm
goes through both halves symmetrically by this block. The
step size is smaller than the block size to ensure the overlap-
ping of particular areas. These areas are compared with their
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Fig. 2: Example of the brain tumor probability map on volumes from
real data of the low grade glioma. The left column shows the slices
detected with the highest Asymmetry Coefficient. The right column
shows the asymmetry maps of the T2-weighted volume of the corre-
sponding slices.

opposite symmetric parts.
The comparison is done by the Bhattacharyya Coefficient

[22], which was also used previously in [6]. Normalized his-
tograms with the same range are computed from both parts
and the Bhattacharyya Coefficient (BC) is computed from
these histograms as follows [22]:

BC =
N

∑
i=1

√
l (i) · r (i) (1)

where N denotes the number of bins in the histogram, l and r
denote histograms of blocks in left and right half, respectively.

The range of values of BC is 〈0,1〉, where the smaller the
value, the bigger the difference between histograms. For the
next computation, the Asymmetry Coefficient is computed as
AC = 1−BC.

The Asymmetry Coefficient (AC) is computed for all
blocks. Since the step size is smaller than the block size, the
overlap exists and more values of AC are present for most pix-

els. To obtain the appropriate asymmetry map, the mean of all
values computed for a particular pixel is computed.

The computed ACs create the asymmetry map, where the
higher value expresses the higher probability of tumor pres-
ence in particular location. The example of such asymmetry
map is depicted in Fig. 2.

2.3. Multi-resolution probabilistic map computation
The whole cycle of symmetry checking is repeated four times,
but with different size of block. Height and width of the block
are iteratively reduced to the half of the previous value. So the
size of the block is 1/1, 1/4, 1/16, and 1/64 of the initial size,
respectively. The purpose of smaller areas is the more precise
detection of asymmetry. This approach corresponds to multi-
resolution image analysis described in [23]. A block size of
1/256 of the initial size was tested as well, but the results were
not improved and the maximum of AC for this block size was
equal to 1 for every image in database.

The output of each cycle is a probabilistic map of anoma-
lies. The product of values corresponding to a particular pixel
is computed. The output is the new multi-resolution proba-
bilistic map.

2.4. Pathology extraction
The extraction process starts in the axial slice where the high-
est AC was detected and it is then propagated into the whole
3D volume. The method using the pathology extraction di-
rectly from the 3D volume was tested as well. This was faster,
but the performance was poorer.

2.4.1. Extraction from the most asymmetric slice
For the pathology extraction purpose, the thresholding of the
multi-resolution asymmetry map is performed by the value of
10% of the maximal asymmetry. This value was set experi-
mentally and it ensures that at least a small region is extracted.
The result is the both-sided mask that contains both the tumor
on one side and the healthy tissue on the other side.

Since multifocal tumor can appear, the detection process is
not limited to only one region. All regions created by thresh-
olding are considered. As a result, multifocal tumors located
in both halves asymmetrically can be correctly detected.

The subsequent extraction process is based on the method
proposed in [24]. The glioma and the edema can be well sep-
arated using T2-weighted volume, since they appear hyperin-
tense in this MR contrast. The automatic thresholding can be
performed to extract these pathological areas.

The threshold is determined using Otsu’s method [18] from
the points inside the resulting mask of asymmetry detection,
but the thresholding process is applied to the whole image.
According to the algorithm proposed by Otsu in 1979, the op-
timal threshold k∗ is such threshold with the following prop-
erty:

σ
2
B (k

∗) = max
1≤k≤L

σ
2
B (k) , (2)

359



MEASUREMENT SCIENCE REVIEW, Volume 14, No. 6, 2014

Fig. 3: Example of threshold determination using Otsu’s algorithm
for T2-weighted and FLAIR image of high grade glioma. Blue:
histogram of the whole asymmetric area, Green: histogram of true
pathology, Red: computed threshold.

where L is the number of intensity values in region and σ2
B (k)

denotes the between-class variance for threshold k, it is based
on class means and is computed according to the equation:

σ
2
B (k) = ω0ω1 (µ0−µ1)

2 , (3)

where ω0,ω1 mean the probabilities of class occurrence and
µ0,µ1 mean the class mean levels for classes 0 and 1, respec-
tively.

Two thresholds are computed by Otsu’s method, one for
each image (T2 and FLAIR). The computed thresholds are
the global thresholds used in propagation as well.

An example of the computed threshold from asymmetric
region in T2-weighted and FLAIR image of the same slice is
depicted in Fig. 3, where histograms of the whole asymmetric
area (blue bar graph), the true pathological area (green curve),
and the computed thresholds (red line) are shown. The com-
bination of both images and their thresholding is shown by
scatter graph in Fig. 4. As it can be seen in both these im-
ages, the pathology could not be separated in neither of these
images, but combination of both brings improvement.

Morphological erosion and dilation are performed with the
resulting mask to smooth the region borders and separate re-
gions connected by a thin area. The conjunction of these
masks is found. Since some incorrect areas could be ex-
tracted, only those which are situated mostly inside the asym-
metry region are labeled as pathological. Regions with the
size smaller than 10% of the largest segment are eliminated
as well. Since the pathological area could extend beyond
the asymmetry area border, the whole region created by the
thresholding is extracted.

The resulting mask M of the extraction process is created as
M =MT 2

⋂
MFLAIR, where MT 2 and MFLAIR denote the thresh-

olding mask of T2-weighted and FLAIR image, respectively.

Fig. 4: Example of combination of T2 and FLAIR images for pathol-
ogy extraction using thresholding of the high grade glioma used in
Fig. 3. Blue: values of the whole asymmetric area, Green: values of
true pathology, Red: computed thresholds for both images. Values
of pixels labeled as pathological are situated above both thresholds,
i.e. in top right rectangle.

This corresponds to the pixels with intensities situated in top
right rectangle in Fig. 4.

2.4.2. Propagation into neighbor slices
Once the pathology is extracted from the most asymmetric ax-
ial slice, it can be propagated into other slices. At first both 3D
volumes are thresholded using the particular threshold value
computed in the previous step. In order to avoid extraction of
healthy areas far from the pathological ones, the propagation
of neighbor mask is necessary.

Propagation starts with both neighbor axial slices and then
continues in both directions. The result for n-th slice can be
defined as:

M (n) = MT 2 (n)
⋂

MFLAIR (n)
⋂

MD (n±1) , (4)

where MD (n±1) means the dilated mask from neighbor slice
and its sign depends on the direction of propagation. The di-
lation is necessary in order to include shifted or enlarged re-
gions.

3. TESTING

3.1. Test dataset

Brain tumor image data used in this work were ob-
tained from the MICCAI 2012 Challenge on Multimodal
Brain Tumor Segmentation (http://www.imm.dtu.dk/
projects/BRATS2012) organized by B. Menze, A. Jakab,
S. Bauer, M. Reyes, M. Prastawa, and K. Van Leemput. The
challenge database contains fully anonymized images from
the following institutions: ETH Zurich, University of Bern,
University of Debrecen, and University of Utah.
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For each patient, T1, T2, FLAIR, and post-Gadolinium
T1 MR volumes are available. All volumes are linearly co-
registered to the T1 contrast image, skull stripped, and inter-
polated to 1mm isotropic resolution. No attempt was made to
put the individual patients in common reference space. The
data contains real volumes of 20 high-grade and 10 low-grade
glioma subjects and simulated volumes of 25 high-grade and
25 low-grade glioma subjects. All the simulated images are
in BrainWeb space. [25] [26]

3.2. Evaluation criteria
The suitability of all available contrast volumes was tested for
detection purpose by the proposed algorithm, as well as the
combination of all of them. As a combination, the average
asymmetry and the product of all asymmetries was used.

The evaluation criterion was the position of the maximum
AC compared to ground truth. Since there were two maxima
of the asymmetry map, one for each half, either of them was
considered.

The extraction process was evaluated by the Dice Coeffi-
cient (DC) [27], which is computed according to the equation:

DC =
2 |A

⋂
B|

|A|+ |B|
, (5)

where A and B denote the ground truth and the result masks
of the extraction, respectively. The DC compares the intersec-
tion of two sets with their union. The range of the DC values
is <0;1>, where 1 expresses the perfect segmentation.

Another measure widely employed for segmentation eval-
uation is Accuracy (A), used in, e.g., [3] and defined by the
equation:

A =
T P+T N

T P+FP+T N +FN
, (6)

where T P, FP, FN and T N stand for ”True Positive”, ”False
Positive”, ”False Negative”, and ”True Negative”, respec-
tively. This measure is in the same range as DC and the higher
value indicates the better performance as well.

4. RESULTS

In this section, the performance of both parts of the algorithm
is described and it is within the bounds of possibility com-
pared with other methods tested on the same database. At
first, the locating accuracy is evaluated followed by the evalu-
ation of the extraction process.

4.1. Pathology location
The results for particular sets of BRATS database and for par-
ticular contrast volumes are shown in Table 1.

It has to be stated that these results are for non-aligned vol-
umes. The method would not work for highly rotated vol-
umes, but, since it is region-based rather than pixel-based, the
perfect alignment was not necessary. From Table 1, it can
be seen that the most suitable for anomaly detection are T2-
weighted and FLAIR MR contrasts.

Table 1: Detection performance in particular sets

T1 T1 - CE T2 FLAIR
Real HG 60% 70% 85% 90%
Real LG 60% 90% 100% 100%
Real 60% 77% 90% 93%
Sim. HG 100% 100% 100% 96%
Sim. LG 100% 100% 100% 100%
Sim. 100% 100% 100% 98%
Overall 85% 91% 96% 96%

Fig. 5: The Dice Coefficient for particular volumes in database.

4.2. Pathology extraction

The Dice Coefficient for particular datasets is shown in Fig. 5.
The overall results of extraction process evaluated by mean
and median Dice Coefficient and Accuracy are summarized
in Table 2. Mean± std and Median±mad were computed
for both coefficients.

Even though the maximum of the FLAIR and T2 asymme-
try map was situated outside the ground truth in 3 of 80 cases,
there was no intersection between ground truth and automatic
extraction result only in one of them. In other words, even
though the maximum was located outside the tumor, the ex-
tracted regions contained this pathological area.

For the real high grade gliomas, the results correspond to
the average from all cases. If the case, where there was no
intersection and the Dice Coefficient was equal to zero, was
omitted, the average DC would be equal to 0.77± 0.10 and
the real data DC would be equal to 0.79±0.09, the overall DC
would remain the same. In this case, the accuracy would be
equal to 0.96±0.03, 0.97±0.03, and 0.97±0.02 for real high
grade glioma, real glioma, and overall database, respectively.

The examples of extraction results on the real data of the
low grade glioma and the simulated data of the high grade
multifocal glioma are shown in Fig. 6 and 7, respectively. In
both figures, the left column shows the slices detected with
the highest probability of the pathological area presence (with
maximal value of the asymmetry map computed from T2-
weighted volume), where the red color depicts the ground
truth and the blue color shows the result of tumor extrac-
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Table 2: Extraction performance in particular sets

DC A
mean median mean median

Real HG 0.73±0.20 0.78±0.09 0.96±0.03 0.97±0.02
Real LG 0.82±0.06 0.81±0.05 0.98±0.01 0.99±0.00
Real 0.76±0.17 0.80±0.07 0.97±0.03 0.97±0.02
Sim. HG 0.81±0.14 0.85±0.06 0.97±0.02 0.97±0.02
Sim. LG 0.78±0.04 0.77±0.03 0.97±0.01 0.97±0.01
Sim. 0.79±0.05 0.78±0.06 0.97±0.02 0.97±0.01
Overall 0.78±0.13 0.79±0.06 0.97±0.03 0.97±0.01

Fig. 6: Example of brain tumor extraction on volumes from real data of the low grade glioma with DC = 0.76. The particular slices detected
with the highest probability of the pathological area presence are shown. The red color depicts the ground truth and the blue color shows
the result of tumor extraction using the proposed algorithm.

Fig. 7: Example of pathology extraction on volumes from simulated data of multifocal high grade glioma with DC = 0.82. The particular
slices detected with the highest probability of the pathological area presence are shown. The red color depicts the ground truth and the blue
color shows the result of tumor extraction using the proposed algorithm.

tion using the proposed method. The right column shows the
asymmetry maps computed from T2-weighted volume of the
corresponding slices. As can be seen from Fig. 6, the precise
vertical alignment of the head was not necessary.

4.3. Comparison with other methods

Even though the proposed method was tested on publicly
available BRATS 2012 database, the comparison with other
methods was not straightforward. The MICCAI 2012 Chal-
lenge focused on segmentation of tumor and edema sepa-
rately. Hence, the described results in this paper could not be

compared to those described in the proceedings of MICCAI-
BRATS 2012 [28]. On the other hand, our work is fully au-
tomated and does not require a training phase as all methods
proposed in the proceedings. Training phase requires normal-
ized intensities in all involved images, which brings another
inaccuracy into the segmentation process and cannot be al-
ways reached accurately. An alternative to intensity normal-
ization is a patient specific training dataset that requires man-
ual selection of several points in foreground and background
tissues.
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5. DISCUSSION / CONCLUSION

The aim of this work was to propose a fully automated method
for the extraction of pathological area in 3D brain MR vol-
umes. The proposed method is based on simple image pro-
cessing tasks, but it reached similar results as the sophisticated
machine algorithms, as it was shown in section 4. However,
our method significantly outperformed others concerning the
runtime with average 33 and 44 seconds per patient for real
and simulated data, respectively. Moreover, the transferabil-
ity and usability on any database is guaranteed by its inde-
pendence of the image intensities. The algorithm does not
contain any training stage and it is based on human detection
model. The method showed promising results that could help
in automation of the brain tumor segmentation task.

In comparison with other proposed and tested methods, it
requires only two modalities, which makes the acquisition and
image preprocessing less demanding. Moreover, modalities
using contrast agent fluid are not employed here.

The proposed algorithm was able to detect and extract mul-
tifocal tumors as separated regions as well, as it was shown in
section 4.

However, there are still limitations that will be explored in
future work. One of them is the assumption of the tumor pres-
ence in the volume. This will be considered and the tumor
presence will be detected based on our previous work [19].
The future work will mainly emphasize the segmentation of
particular parts of the pathology.
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