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Measurement uncertainty evaluation based on the Monte Carlo method (MCM) with the assumption that all uncertainty sources 

are independent is common. For some measure problems, however, the correlation between input quantities is of great importance 

and even essential. The purpose of this paper is to provide an uncertainty evaluation method based on MCM that can handle 

correlated cases, especially for measurement in which uncertainty sources are correlated and submit to non-Gaussian distribution. 

In this method, a linear-nonlinear transformation technique was developed to generate correlated random variables sampling 

sequences with target prescribed marginal probability distribution and correlation coefficients. Measurement of the arm stretch of 

a precision centrifuge of 10-6 order was implemented by a high precision approach and associated uncertainty evaluation was 

carried out using the mentioned method and the method proposed in the Guide to the Expression of Uncertainty in Measurement 

(GUM). The obtained results were compared and discussed at last. 
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1.  INTRODUCTION 

EASUREMENT uncertainty is one of the most important 

parameters for lab metering, geometrical product 

specification and quality assurance, especially when 

the measurement result is part of a measurement chain 

tracing back to national standards. So it is necessary to give 

the uncertainty associated with measurement. 

GUM is an internationally accepted standard document for 

uncertainty evaluation, which is based on the law of 

propagation of uncertainty (LPU) [1]. In GUM, correlation 

between input quantities of measurand is easy to handle, and 

for the cases where the mathematical model of measurand is 

strongly non-linear, it would also be helpful to have 

recourse to LPU with the second or higher-order Taylor 

series expansion [2]. However, for cases where computation 

of partial derivatives is difficult or the output quantity is not 

characterized by a Gaussian distribution nor a scaled and 

shifted t-distribution, the GUM may be inadequate, whereas 

the supplement 1 to GUM—Propagation of Distributions 

using a Monte Carlo method (GUM S1) [3] is expected to 

perform well in such cases and has been recommended. 

In GUM S1, propagation of uncertainty of input quantities 

to measurand is based on probability density functions 

(PDFs) by using the Monte Carlo simulation. Since GUM 

S1 can provide guidance when the conditions for GUM are 

unclear or are not fulfilled, MCM has been employed in 

evaluating uncertainty by many researchers recently [4-10]. 

So far, uncertainty evaluation based on MCM is studied 

widely and some researchers also consider correlation in 

their uncertainty calculation [11]. The fact is still that, 

however, MCM-based measurement uncertainty evaluation 

method considering correlation between input quantities is 

limited. For some measurement problems, considering 

correlation is important and even essential. For example, 

when input parameters of measurand are derived from the 

same instrument, the same reference or are physically 

correlated, one should seriously confirm if these data can be 

treated as independent. For these complicated measurement 

problems, GUM S1 recommends theoretically sampling 

from the joint PDF of input quantities; still it is very difficult 

to implement in practice. So a few researchers focused 

mainly on considering correlation of input quantities with 

Gaussian distribution [3, 12-14], and there is limited 

information available in literature about MCM-based 

uncertainty evaluation methods with correlated but non-

Gaussian distributed input quantities. In fact, uncertainty 

sources deriving from instrument or reference are more 

often treated as Uniform or Triangular distribution but not 

Gaussian distribution [15]. Therefore, it is necessary to 

develop a MCM-based uncertainty evaluation method that 

can handle measurement problems with correlated and any 

probability density distributed input quantities. 

Based on GUM S1, we extended uncertainty evaluation to 

measurement problems with correlated input quantities, the 

principle and process is given in Section 2, and a 

generalized method for generating correlated random 

sampling sequences with target PDF is developed in 

Section 3. Arm stretch of a 10
-6

 precision centrifuge is 

measured and associated uncertainty is evaluated in 

Section 4. At last, conclusion remarks are made in Section 5. 

 

2.  EVALUATION METHOD CONSIDERING CORRELATION 

In a Bayesian approach to measurement uncertainty 

evaluation, the measurement result y of measurand Y is the 

expectation of the measurand 

 

( )Yy g dη η η= ∫                                 (1) 

 

Probability density function gY(η) encodes the given 

information about Y and η denotes a possible value that can 

be attributed to Y. The standard uncertainty u(y) associated 

with the measurement result is the standard deviation of y 

 

2 2( ) ( )( )Yu y g y dη η η= −∫                      (2) 
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When measurand Y depends on several input quantities X1, 

… , XN , for which information is available by a joint PDF 

gX1, … , XN(ξ1, … , ξN) and the possible values of the input 

quantities are denoted as (ξ1, … , ξN), it is propagated 

through the model function Y=f (X1, … , XN) to yield the 

PDF gY(η) associated with the measurand Y. Consequently, 

the best estimate y of Y and associated standard uncertainty 

u(y) can be stated as [16] 
 

1 ,..., 1 1 1( ,..., ) ( ,..., )
NX X N N Ny g f d dξ ξ ξ ξ ξ ξ

+∞ +∞

−∞ −∞
= ∫ ∫L L      (3) 

 

[ ]
1

22

,..., 1 1 1( ) ( ,..., ) ( ,..., )
NX X N N Nu y g f y d dξ ξ ξ ξ ξ ξ

+∞ +∞

−∞ −∞
= −∫ ∫L L  (4) 

 

MCM provides a practical and generally applicable tool 

for calculating the multidimensional integrals (3) and (4), 

especially for a large number of input quantities and 

complex model function f (X1, … , XN). In the Monte Carlo 

simulation, a random selection of combinations of possible 

values of input quantities is made to propagate the 

distributions associated with these quantities. And for 

independent or typical correlated input quantities (e.g., joint 

Gaussian distribution), MCM is implemented easily by 

drawing random deviates from the distribution gXi(ξ), i=1, 

…, N, and propagating these deviates through model 

function of measurand to yield random deviates distributed 

as gY(η). Repeating this procedure many times, an empirical 

distribution  of  gY(η)  is  obtained,  from  which the estimate  

and associated standard uncertainty of Y as well as coverage 

intervals can be determined. 

For complex measurement problems with correlated and 

non-Normal distributed input quantities, however, the 

situation is more troublesome, and the above Monte Carlo 

procedure recommended by GUM S1 [3] is unfitted, for it is 

very hard to assign a joint PDF gX1, … , XN(ξ1,…, ξN) for input 

quantities in practice. Usually, the prescribed marginal 

probability distribution and correlation coefficients of input 

quantities are available by using previous information from 

manufacture’s certificates or analyst’s experience. 

Consequently, drawing random deviates from the correlated 

joint PDF gX1, … , XN(ξ1,…, ξN) can be carried out by 

employing a linear-nonlinear technique. The corresponding 

Monte Carlo simulation steps, shown in Fig.1. as a 

schematic flow graph, are as follows: Independent random 

sequences uniformly distributed in the interval [0,1] are 

generated, dimensionality of the sequences equals to the 

number of input quantities and the length of each dimension 

is the Monte Carlo trial times M; Then, the independent 

random sequences in the interval [0,1] are converted 

according to the PDFs and correlation coefficients of input 

quantities to independent random sequences, correlated 

Gaussian distributed sequences or correlated non-Gaussian 

distributed sequences, respectively, by adopting three 

methods (illustrated in Fig.1.); Last, the mean and associated 

uncertainty of output quantities as well as coverage interval 

at a given coverage level are calculated. 

 
 

 

 
 

Fig.1.  Schematic flow graph of uncertainty evaluation based on MCM considering correlation. 
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A.  Sampling from the PDFs of input quantities. 

We classify input quantities of measurand as independent 

quantities (denotes by X1, X2, … , Xn1), correlated quantities 

with Gaussian distribution (denotes by Xn1+1, Xn1+2, … , 

Xn1+n2) and correlated quantities with non-Gaussian 

distribution (denotes by Xn1+n2+1, Xn1+n2+2, … , Xn1+n2+n3), 

apparently ‘n1+n2+n3‘equal to the number of input quantities 

N. Moreover, the three types do not necessarily exist 

simultaneously in a measurement problem. 

The sampling values of independent input quantities X1, 

X2, … , Xn1, denoted as (ξ1, … , ξn1), are calculated by means 

of inversion of corresponding cumulative distribution 

functions (CDFs) of each input quantity 

 

1 2 1 1 1

1 1 1

1 1 2 2( ) , ( ), , ( )
n n nX X X X XF u F u F uξ ξ ξ− − −= = =L          (5) 

 

Where ur, r=1, 2, …, n1, is pseudo random sequences 

(vector), and F
-1

Xr(.) is the CDF of input quantity Xr. 

For sampling values of mutually correlated input 

quantities X n1+1, X n1+2,… , XN, the generating procedure is 

illustrated in detail in Section 3. 

 

B.  Output quantity and associated uncertainty calculation. 

When sampling values of input quantities are generated, 

the next step is calculating {η
j
=f (ξ1

i
, … , ξN 

i
) }, i=1, … , M, 

by using model function Y= f (X1, … , XN). The series {η
 1
, η

 

2
, … , ξ 

M
} constitute a set of independent random deviates 

from the PDF of Y. Then, calculate the mean and standard 

deviation of {η
 1
 , η

 2
 , … , ξ 

M
} as the measurement result y 

and associated standard uncertainty u(y) for measurand Y. 

Lastly, sort the values {η
 1
 , η

 2
 , … , ξ 

M
} in ascending order, 

η
 (1)

 ≤ η
 (2)

 ≤ … ≤ ξ 
(M)

, and determine a shortest coverage 

interval [η
 (L)

 ≤ η
 (H)

] at coverage probability p where H-L 

equals to the integer part of p·M+1/2. 

As M →+∞, these calculation results converge to the 

optimal value of the measurand. For finite M, however, the 

results of MCM contain a random error, and M must 

therefore be chosen sufficiently large (e.g., ≥10
6
) to ensure a 

small calculation error, corresponding guidance for choosing 

an appropriate M can be seen in [3, 17]. 

 

3.  SAMPLING SEQUENCES OF CORRELATED INPUT 

QUANTITIES GENERATING 

The goal of this section is to generate a n×M-dimensional 

random sampling sequence X=(x1j, … , xnj)
T
 with the target 

marginal distribution function FXk(ξ) and correlation 

coefficient matrix Rx, here n is the number of correlated 

input quantities of measurand, j=1, 2, … , M, k=1, 2, … , n. 

An appropriate methodology for this goal is based on linear-

nonlinear transformation detailed by Li and Hammond [18], 

Marida [19] and Cairo [20], et al. In this algorithm, random 

sampling sequences with target marginal probability 

distribution can be obtained by transforming non-linearly 

elements of a sample from a multivariate standard Normal 

distribution (corresponding random vector is denoted as Z) 

with correlation coefficients matrix RZ, and the sampling 

values of the correlated multivariate standard Normal 

distribution are transformed linearly from different sampling 

sequences (denoted as vector V) of independent standard 

Normal distribution by the Cholesky factor. The whole 

procedure is illustrated in Fig.2., and can be viewed as a 

three-step process. In the first step, correlation matrix RZ is 

calculated by the desired correlation matrix RX. The second 

step involves linearly transforming an independent standard 

Normal distributed variable V into a correlated multivariate 

Normal distributed variable Z. In the last step, the target 

distributed variable X is transformed non-linearly from Z. 

 

 
 

Fig.2.  Procedure of generating correlated random sampling 

sequences with target probability distribution. 

 

According to the principle of cumulative probability 

distribution equivalency, sequences X can be calculated by 

 

[ ] [ ] [ ]( )
1 2

1 1 1

1 2( ) ( ) , ( ) , , ( )
T

x x xn nF F Fφ φ φ− − −= = LX H Z z z z    (6) 

 

where vector zk=( zk1, zk2,… , zkM)
T
, k=1, 2, … , n, denotes 

sampling sequences from n-dimensional joint Normal 

distributed variable Z. F
-1

X is the inverse CDF of X and Φ is 

the standard Normal cumulative probability function 

 

/ 2
2

0

1 1 1
( ) 1 ( ) exp( )

2 22

zz
z erf t dtφ

π
 

= + = + − 
 

∫            (7) 

 

The transformation function F
-1

Xk[Φ(.)] ensures that Xk has 

the target marginal distribution FXk. Therefore, the important 

problem is to calculate the correlation coefficient matrix RZ 

that is used to generate correlated Normal sampling 

sequences, then the correlated sampling sequences of target 

random variable X can be generated by (6). Here, the 

correlation coefficient matrices RX and RZ are stated as 

 

1 2 1

1 2 2

1 2

1

1

1

n

n
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X
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R
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Z
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 =
 
 
  

L

L
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     (8) 

 

According to the definition of correlation coefficient, the 

mathematical relationship between RZ and RX can be 

eventually expressed as [18] 

 

2 2

2 2

( )( ) ( ( ) )( ( ) )

2 1
exp( )

2(1 ) 2 1

i j

i j

i j
i j

i i j j i i j j

x x

i j i j

i z z i j j

i j

z z z z

E x x H z H z
r

z r z z z
dz dz i j

r r

µ µ µ µ

σ σ σ σ

π

+∞ +∞

−∞ −∞
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∫ ∫
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Nonlinear 
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where, µi, σi is the expectation and standard deviation of xi. 

For many marginal distributions, (9) is very complicated and 

is usually unsolvable by analytic methods and must be in 

virtue of numerical calculation. Cairo [20] and Hammond 

[18] employed Newton’s method and Raphson Quadrature 

formula to solve (9), while Yen [21] applied Gaussian 

Quadrature integration and Seyed [22] used artificial neural 

networks. In these methods, besides the complexity of 

algorithm, the computational times also increase 

quadratically with n and may be inaccurate for ill-suited 

initial values. To avoid the problems involved in solving (9), 

here we build an objective function and used optimal search 

strategy to calculate the values of rzizj corresponding to the 

target values of rxixj. The objective function can be selected 

as 

 

{ }Search , Let min ( , , )
i j i j i jz z x x i j z z i jr r f z z r dz dz

+∞ +∞

−∞ −∞
− ∫ ∫  (10) 

 

where 2 2

2 2

( ( ) )( ( ) )
( , , )

2 1
exp( )

2(1 ) 2 1

i j

i j

i j
i j

i i j j

i j z z

i j

i z z i j j

z z z z

H z H z
f z z r

z r z z z

r r

µ µ

σ σ

π

− −
=

− +
⋅ −

− −
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a) The trend of statistical values of X and Z. 
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b) Histograms of random variables X and Y. 

 
Fig.3.  Sampling sequences distribution with 20,000 points and 

histograms of random variables X , Y and Z. In Fig.3.a), the trend 

of statistical values of X and Z is inverse as the corresponding 

correlation coefficient is subtractive. Fig.3.b) shows the empirical 

frequency distributions of random variables X and Y, which clearly 

illustrates the high consistency of sampling sequences’ statistical 

PDF with the given theoretical probability distribution. 

Genetic Algorithm is employed to solve (10), which has 
been proved to be an efficient search strategy for nonlinear 
root finding problems and there is no need to set appropriate 
initial values. Besides, the up and down limit of integral 
within interval [−4,4] is accurate enough for bivariate 
Normal distribution in (10). 

To verify the proposed method, three random sampling 
sequences with uniform distributed variable X in the interval 
[0,2], arcsine distributed variable Y in the interval [0,1], and 
uniform distributed variable Z in the interval [2,4], for which 
the target correlation coefficient matrix is given in (11), are 
generated by the proposed method. The distribution 
relationships between the three sampling sequences with 
20,000 points are illustrated in Fig.3. Actual correlation 
coefficients of the sampling sequences are also calculated 
and the results are shown in (11). 

As can be seen from Fig.3. and (11), random sampling 
sequences generated by the proposed method approximately 
submit to the target probability distribution and the desired 
correlation coefficients. 

 

1.0 0.5 0.6

0.5 1.0 0.0

0.6 0.0 1.0
i jx xr

− 
 =  
 − 

1.0000 0.5012 0.5976

0.5012 1.0000 0.0007

0.5976 0.0007 1.0000

i jx xr

− 
 =  
 − 

% (11) 

 
4.  MEASUREMENT UNCERTAINTY EVALUATION FOR ARM 

STRETCH OF PRECISION CENTRIFUGE 

Precision centrifuge is a motor driven arm structure device 
for calibrating the performance parameters of inertial 
accelerometer or other inertial instruments. For high 
precision centrifuge, whose relative standard uncertainty of 
output acceleration reaches to 10

-6
 order, the measurement 

and associated uncertainty evaluation of dynamic changes in 
radius due to centripetal loading, dynamic center of rotation, 
and thermal expansion is essential [23], thus, there is a 
significant contribution of measurement uncertainty to 
output acceleration, which further affects calibration 
accuracy of inertial accelerometer. Micron, even submicron 
measurement uncertainty can be valuable for high precision 
calibrating tests and the influence of correlation between 
uncertainty sources derived from senses, mechanical 
installation errors, and data acquisition system is enormous 
and must be considered. 

A practical precision centrifuge’s arm stretch was 
measured (Fig.4.). The precision centrifuge can provide an 
acceleration benchmark at the range of 1g to 100 g with the 
relative standard uncertainty of 10

-6
, which is used to 

calibrate model parameters of high precision accelerometer 
in inertial navigation. 
 

 
 

Fig.4.  Picture of precision centrifuge with the acceleration relative 

standard uncertainty of 10-6. 
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A.  Measurement principle of arm stretch. 

The measurement for arm stretch of precision centrifuge is 
based on capacitance micrometer (Fig.5.). The capacitance 
micrometer is fixed in a precision clamp and fine-tuned to 
ensure the sense is aligned to the edge of positioning stage 
mounted on the centrifuge at an initial distance of about 
400µm. Here the positioning stage is used to fix the tested 
inertial accelerometer.  

 

 
 

Fig.5.  Schematic diagram of measuring the arm stretch of 

precision centrifuge. Ri, i=1,2, is the direct space between sensor of 

the capacitance micrometer and the edge of positioning stage when 

centrifuge is in static state and work state, respectively. 

 
When precision centrifuge circumgyrates at target 

rotational angular velocity of ω, the turntable(radius) will be 
stretched, and as the positioning stage arrives at the location 
of capacitance micrometer, output of the capacitance 
micrometer will turn into effective values from over-range 
state. Direct distance between the sensor of capacitance 
micrometer to the edge of positioning stage under the static 
state and test state with target ω can be measured. And then 
the data output by capacitance micrometer is calculated on a 
PC after being sampled by an A/D converter. The arm 
stretch ∆R equals to the difference by subtracting direct 
distance between the sensor of capacitance micrometer to 
the edge of positioning stage at target ω from the 
corresponding distance when the centrifuge is static. 

 
B.  Modeling and identification of uncertainty sources. 

According to the above principle, the mathematical model 
of measuring ∆R can be expressed as 

 

1 2R R R∆ = −                                   (12) 

 
Where, R1 is direct distance between the sensor of 
capacitance micrometer and the edge of positioning stage 
when the centrifuge is in static state, while R2 corresponds to 
the test state at a target rotational angular velocity of ω. 

The following significant sources of uncertainty that affect 
the measurand ∆R can be identified: 
1. Repeatability of R1 and R2. To reduce the influence of 

electrical noises or other random errors, the mean of 
repeated readings of output values in the same 
environment condition was adopted as the measurement 
result. And the corresponding uncertainty can be 
estimated as a type A component, which can be 
classified as deriving from random effects. 

2. Indicating error of the capacitance micrometer due to 
nonlinearity, hysteresis and thermal drift of sensor. 

3. Mechanical installation error of capacitance micrometer. 
Ideally, the central axis of capacitance micrometer must 
be vertical to the edge of positioning stage, whereas 
there is a misalignment error in practice. 

4. Error of A/D convertor due to thermal drift, zero drift, 
plus error of data acquisition. 

5. Roundness error of the positioning stage. There is a 
residual roundness error contained in the output values 
of capacitance micrometer. Although the positioning 
stage is processed mechanically with ultra-smooth 
surface, a point to point trigger measurement strategy is 
still used to reduce the roundness error. 

Usually, the error sources mentioned in b) ~e) must be 
compensated for ∆R and associated uncertainty must be 
considered into the total measurement uncertainty of ∆R. 
These uncertainty sources are usually available by using 
previous information from certificates or analyst’s 
experience, and can be estimated as a type B component, 
which can be classified as deriving from systematic effects. 
Considering the above error sources, ∆R can be modified as 

 

1 1 1 1 1 2 2 2 2 2

1 1

1 1q q

k k

k k

R R R
q q

α β γ δ α β γ δ
= =

   
∆ = + + + + − + + + +   

   
∑ ∑ (13) 

 

where, parameters of all input components are presented in 
Table 1. As an uncertainty budget, it lists the most important 
contributors to measurement uncertainty of ∆R and takes 
into account all their necessary parameters.  

Defined parameters and associated uncertainty 
components are listed in Table 1. The data in the first and 
second row were quantified from experimental work, and 
associated uncertainty was regarded as Type A component 
deriving from random effects. During the process of 
measurement, the temperature was controlled within 
20±0.5°C and grounded resistance was controlled within 
50 mΩ in our laboratory. Detailed Mean values of R2 and 
associated standard deviation at different rotational angular 
velocities are listed in Table 2. Because the uncertainty 
components derived from repeatability at all rotational 
angular velocities are larger than the uncertainty 
components from resolution of instruments, the latter is not 
budgeted in Table 1. 

For other type B components in Table 1, all we can 
confirm is the confidence interval, the defined values for 
these components are acquired from verification certificates 
or experimental judgement. Estimates of these components 
are recognized as zero, but the associated uncertainty must 
be calculated and propagated. Uniform distributions are 
assigned for capacitance micrometer’s indication error α1, α2 
and A/D converter error β1, β2, which is common treatment 
in GUM. For installation error γ1 and γ2, ideal state is 
leaving the axis of the capacitance micrometer vertical to the 
plane of measurement. Unfortunately, there is always an 
error brought by installation of capacitance micrometer, and 
we can confirm that installation error is not possible to 
beyond a certain value in view of phenomenological 
prediction. Through fixing capacitance micrometer in a 
precision fixture and fine-tuning repeatedly, installation 
error tends to be close to zero, so the probability frequency 
distribution can be regarded as maximum near zero and 
becomes smaller for larger installation errors. Based on the 
above analysis, Triangular distribution is assigned for γ1 and 
γ2. 



 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 6, 2014 

 

 

 313 

Table 1.  Measurement results and associated uncertainty budget for arm stretch. 

 

Symbol Description 
Estimation 

/µm 
Distribution Division 

Standard 

uncertainty 

/µm 

Type Correlation 

R1 Mean value of R1 430.69 Normal 1 0.019 A Independent 

R2 Mean value of R2 See Table 2 Normal 1 See Table 2 A Independent 

α1 
Corrected value of capacitance 

micrometer’s indication error 
0 Uniform 3  0.121 B 

α2 
Corrected value of capacitance 

micrometer’s indication error 
0 Uniform 3  0.121 B 

Mutually 

correlated 

β1 
Corrected value of A/D converter 

error 
0 Uniform 3  0.058 B 

β2 
Corrected value of A/D converter 

error 
0 Uniform 3  0.058 B 

Mutually 

correlated 

γ1 
Corrected value of installation error 

of capacitance micrometer 
0 Triangular 6  0.102 B 

γ2 
Corrected value of installation error 

of capacitance micrometer 
0 Triangular 6  0.102 B 

Mutually 

correlated 

δ1 
Corrected value of roughness error of 

positioning stage 
0 Normal 1 0.018 A Independent 

δ2 
Corrected value of roughness error of 

positioning stage 
0 Normal 1 0.018 A Independent 

 

 
Table 2.  Mean values and standard deviation of R1 and R2 at 

different rotational angular velocities. At each rotational angular 

velocity, the trial times of repeated measurement are 20. 

 

Symbol 
ω=5.24 

rad/s 

ω=20.96 

rad/s 

ω=31.42 

rad/s 

Mean value of R2 /µm 429.33 425.14 421.58 

Standard deviation of 

R2 /µm 
0.0471 0.0529 0.0426 

 

Correlation coefficient between γ1 and γ2 is recognized as 

strong, since mechanical installation error of capacitance 

micrometer affects coequally the output values R1 and R2. 

As indication spectrum of capacitance micrometer and A/D 

convertor are in the same range when measuring R1 and R2, 

which can be seen from Table 1. and Table 2., correlation 

coefficients between α1 and α2, β1 and β2 can be also 

expected to strengthen. In order to identify quantitatively 

these correlation coefficients, mean values of R1 and R2, 

which is sensed by capacitance micrometer and then output 

by A/D convertor, are processed according to the following 

formula with repeated measurement trial times of 20 

 

1 1 2 2

1

( )( )

( 1)

q

i i

i

R R R R

r
q q

=

− −
=

−

∑
                           (14) 

 

where, r denotes correlation coefficient, q denotes the 

number of independent measurements, 1R , 2R  denote the 

mean values of arm stretch, corresponding results at 

different rotational angular velocity are presented in Table 1. 

and Table 2., and correlation coefficients are about 0.77 and 

0.73, respectively, when target ω is 5.24 rad/s and 20.96. 

For the sake of simplicity, correlation coefficients of α1 and 

α2, β1 and β2, γ1 and γ2 are all assigned as 0.8, which will 

bring a very small deviation with other adjacent values. 

 

C.  Uncertainty evaluation by two methods and discussion. 

Measurement model (13) is linear with correlated input 
quantities, so the uncertainty propagation model with the 
first-order Taylor series expansion is accurate enough for 
measurand ∆R based on the GUM uncertainty framework. 
Here, we give the mathematical model for estimation of the 
standard uncertainty of ∆R, considering the correlation 
between input components 

 

2 2 2 2

1 2 1 2 1 1 2

2 2 2 2

1 2 1 2 2 1 2

2 2

1 2 3 1 2

( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

( ) ( ) 2 ( ) ( )

u R u R u u ru u

u R u u u u r u u

u u r u u

α α α α

δ δ β β β β

γ γ γ γ

+ + + −

∆ = + + + + −

+ + −

 

(15) 
 

Where u(.) denotes standard uncertainty, r1, r2 and r3 are the 
correlation coefficients between α1 and α2, between β1 and 
β2, between γ1 and γ2, respectively. 

On the other hand, by using the proposed technique to 
generate random correlated sampling sequences, uncertainty 
evaluating procedure based on MCM for arm stretch ∆R is 
as follows: 

 
1. Calculate correlation matrix Rz based on target 

correlation coefficients of input quantities α1, α2, γ1, γ2, 
β1 and β2 using (9) and (10). 

2. Form the Cholesky factor A of Rz., i.e the upper 
triangular matrix satisfies Rz =A

T
A. 

3. Generate a random array Z of standard Gaussian 
variates with dimension 10×M, where M is the trial 
number of the Monte Carlo simulation. 10 is the 
number of input quantities. 

4. Generate random sampling sequences Xi of input 
quantities R1, R2, δ1, δ2 in Table 1., which can be 
converted from random array Zi (i =1,2,3,4, denotes the 
ith column of Z): xi=µi+σi×zi, where µi and σi denote the 
mean value and standard deviation of input 
quantitiesR1, R2, δ1, δ2, respectively. 
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5. Generate random sampling sequences Yi of standard 

Gaussian variates with correlation matrix Rz using 

mathematical relationship: yi=A
T
×zi, where i=5,6,…,10. 

6. Generate random sampling sequences of input 

quantities α1, α2, γ1, γ2, β1 and β2 according to respective 

accumulation distribution function using (6) and (7). 

7. Calculate ∆R by selecting a value from the random 

sequences of input quantities in turn and a sequence of 

∆R can be obtained: {∆R
 1
 , ∆R

 2
 , … , ∆R 

M
}. 

8. Calculate mean value and associated standard 

uncertainty according to the sequences of ∆R. Sort the 

values {∆R
 1
 , ∆R

 2
 , … , ∆R 

M
} in ascending order, and 

determine the shortest coverage interval [∆R
 (L)

 ≤∆R
 (H)

] 

at coverage probability p where H-L equals to the 

integer part of p·M+1/2. 

 

The abovementioned Monte Carlo calculating process was 

implemented by using MATLAB 2010b, and the Monte 

Carlo trial times were set to M=1×10
6
, which was found to 

be sufficiently large in this case. Alternatively, Monte Carlo 

trial times can be determined by adaptive Monte Carlo 

method, which will reduce greatly computing times, 

especially for complicated mathematical model of 

measurement [24, 25]. Based on the two methods, mean 

values and associated standard uncertainty calculating 

results of ∆R at the rotational angular velocities of 5.24 rad/s 

and 31.42 rad/s are shown in Table 3., in which two 

significant digits were regarded as meaningful. The 

empirical frequency distributions based on MCM are 

illustrated in Fig.6., which provides an approximation to the 

PDF of ∆R. Coverage intervals at the coverage probability 

of 95 % from GUM and MCM are indicated by dashed and 

vertical full lines in Fig.6., respectively. 

From Fig.6. and Table 3., we can learn that the proposed 

method based on MCM and GUM gives estimates and 

associated standard uncertainty of arm stretch ∆R at 

different rotational angular velocities in good agreement. As 

we know, the mathematical model (12) for measurand ∆R is 

linear, so the uncertainty propagation model (15) with the 

first-order Taylor series expansion is accurate enough for 

calculating standard uncertainty of ∆R. So it can be 

employed to illustrate the validity of the proposed method 

for solving measurement problems with correlated input 

quantities. We can conclude that the proposed method based 

on MCM is applicable to the uncertainty evaluation and can 

cope with the cases where the input quantities of measurand 

are mutually correlated and of non-Gaussian distribution. 

It can also be seen from Table 3. and Fig.6. that the 

coverage intervals at 95 % by the two methods are 

approximately equal when two significant digits are 

regarded as meaningful. That is because the output values 

are approximately characterized by a Gaussian distribution 

(Fig.6.), and GUM is expected to perform well in cases of 

calculating expanded uncertainty. Both the absolute 

differences of the respective endpoints of the two coverage 

intervals are smaller than the numerical tolerance. It is 

shown that GUM as well as MCM is effective for evaluating 

the measurement uncertainty of arm stretch ∆R with the 

above measurement approach. 

 
 

a) Uncertainty calculation result when ω =5.24rad/s. 

 

 
 

b) Uncertainty calculation result when ω = 31.42rad/s. 

 

Fig.6.  Empirical PDF of arm stretch based on MCM. Vertical full 

and dashed lines indicate the (shortest) 95 % coverage intervals 

determined by GUM and MCM, respectively. 

 

Table 3.  Measurement and associated uncertainty results of ∆R. 

 

ω / (rad/s) 5.24 31.42 

∆R /µm 1.36 9.11 

GUM 0.121 0.119 
u(∆R) /µm 

MCM 0.121 0.119 

GUM [1.093, 1.567] [8.847, 9.313] Coverage 

interval at 

95% /µm 
MCM [1.094, 1.570] [8.842, 9.313] 

 

To illustrate the significant contribution of correlation 

between input quantities to the measurement uncertainty 

results of measurand ∆R, calculation by using MCM was 

carried out with the assumption that all input quantities are 

independent. The measurement results of arm stretch ∆R 

and associated coverage intervals at 95 % are shown in 

Fig.7., the associated standard uncertainty u(∆R) at different 

rotational angular velocities is given in the inset of Fig.7. As 

can be seen, the standard uncertainty in this hypothetical 

case is about two times larger than that when some input 

quantities of ∆R are considered to be correlated. The reason 

is that the two input quantities of measurand in 

mathematical model of measuring ∆R present a relationship 

of subtracting, which is conductive to decrease the influence 
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of correlated systematical effects on measurement 

uncertainty of ∆R. It can be concluded that the contribution 

of correlation between input quantities is significant and 

cannot be neglected. It is apparent that with the influence of 

random effects increasing, the difference between the 

calculation results with full (correlated) model and the 

standard (uncorrelated) MCM will be reduced.  
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Fig.7.  measurement results of ∆R and associated coverage 

intervals at 95 % with independent input quantities. The values 

shown in the inset are the standard uncertainty at different 

rotat ional  angular veloci ty  ω  of precision centri fuge. 

 

From the above calculation and analysis, it can be 

concluded that correlated input quantities with a relationship 

of subtracting or division will weaken the influence of 

corresponding uncertainty components on the measurement 

uncertainty of measurand. 

 

5.  CONCLUSION 

In this paper, a general approach for measurement 

uncertainty evaluation with correlated input quantities is 

proposed based on MCM, and a linear-nonlinear 

transforming technique is further developed to generate 

random sampling sequences of input quantities with target 

marginal probability distribution and correlation coefficients. 

The arm stretch of a precision centrifuge with acceleration 

relative standard uncertainty of 10
-6

 order is precisely 

measured and associated uncertainty evaluation is 

performed by using GUM and the proposed method. The 

results show that the two methods give standard uncertainty 

of the arm stretch ∆R in good agreement. The proposed 

method can be a practical alternative to the GUM and MCM 

in complicated measurement cases with strongly nonlinear 

measurement model and non-Gaussian distributed nor a 

scaled and shifted t-distributed output, where correlation 

between input quantities must be taken into account. 
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