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Based on enhanced interpolation DFT, a novel parameter estimation algorithm for the exponential signal is presented. The 

proposed two-step solution consists of a preprocessing unit which constructs a new signal sequence by continuously cycle shifting 

sample points and summing up N buffered exponential signal sample sequences, then an interpolation DFT engine to obtain 

accurate parameter estimation of the exponential signal based on the signal sequence generated by the preprocessing unit. 

Compared to previous works, owing to the combination of the pretreatment and the interpolation DFT analysis, the tedious 

iteration for spectral leakage elimination can be removed, and remarkable improvements are achieved in terms of estimation 

accuracy and speed. The simulation results verify the effectiveness of the proposed algorithm. 
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1.  INTRODUCTION 

INCE THE exponential signal model has been widely 

used in many engineering applications, such as linear 

system identification, electric power system analysis [1], 

radar and sonar systems, cognitive radio, nuclear magnetic 

resonance spectroscopy (NMRS) [2], etc., its characteristic 

parameters, including frequency, amplitude, damping and 

phase, are often required to be analyzed and estimated 

accurately [3]. The general estimation procedures for these 

parameters can be classified as either parametric or 

nonparametric methods. Parametric methods, such as 

autoregressive models, Prony’s method, MUSIC algorithm, 

etc., can provide high-accuracy estimates, however, they 

demand intensive computational algorithms to realize 

prefect ‘model agreement’ with a real multi-component 

signal [4]. Nonparametric methods are computationally 

efficient and have less sensitivity to algorithm design 

parameters. Applying the discrete Fourier transform (DFT) 

to estimation of damped exponential signal is the primary 

approach of the nonparametric estimation. 

In order to achieve the high-accuracy estimates using a 

DFT-based method, the inherent limitations of DFT due to 

the picket fence and spectral leakage effects caused by non-

coherent sampling, which may result in unacceptable 

estimation errors, must be worked out. To counteract the 

picket fence effect of DFT, the interpolated DFT (IpDFT) 

method which can mitigate the impact of sampling of the 

continuous spectrum is introduced [5], [6]. The spectrum 

samples are suitably interpolated in the neighborhood of 

each spectral peak. Although the picket fence effect 

suppression is improved with the increase of interpolation 

points in [7], [8], the influence of spectral leakage cannot be 

alleviated simultaneously. Then, based on three maximum 

DFT bin interpolation, the spectral leakage is reduced by 

means of iterative estimation and subtraction of the negative 

part of the spectrum [9]. However, the iteration is extremely 

intensive computationally and difficult to implement. On the 

other hand, since the window sequence is usually employed 

before DFT to suppress the spectral leakage effect, the 

different time windows are investigated for the parameter 

estimation [10]-[13]. Unfortunately, a particular window 

cannot improve the estimation accuracy of all parameters 

simultaneously, some compromise must be made. The 

rectangular window for its high frequency resolution is 

widely used for frequency estimation [7]-[9]. A weighted 

multipoint interpolation of the DFT algorithm with the 

Hanning window is proposed by [10], and it can only 

improve the accuracy of the amplitude estimation. Recently, 

a new DFT interpolation algorithm, the so-called RVCI-M 

(Rife–Vincent algorithm) for signal analysis, was derived 

[11]. RVCI-M which utilizes the Rife–Vincent class-I 

window has a preferable frequency estimate, but is not good 

at precise damping factor estimation.  

In this paper, a new parameter estimation algorithm for the 

exponential signal, which is based on the enhanced DFT 

approach, is presented. The proposed algorithm first 

constructs a new signal sequence by continuously cycle 

shifting sample points and summing up N buffered 

exponential signal sample sequences. Then, according to the 

new signal sequence, the interpolated DFT refers to the 

three neighboring spectral lines at the peak of each mode to 

obtain accurate parameter estimation of the exponential 

signal. Compared to previous works, owing to the 

combination of the pretreatment and the interpolation DFT 

analysis, the tedious iteration for spectral leakage 

elimination can be removed, and remarkable improvements 

are achieved in terms of estimation accuracy. The 

performance of the proposed algorithm is validated by 

simulation, and the comparison of different algorithms is 

also discussed in detail. 

The following sections are organized as follows. In 

Section 2, the proposed parameter estimation algorithm is 

presented and discussed in detail. Performance assessments 

and comparison under different conditions are provided in 

Section 3. Finally, the paper is concluded in the last section. 
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2.  THE PROPOSED ALGORITHM  

A.  Signal preprocessing. 

The discrete signal ( )x n  is transformed into the frequency 

domain by DFT, which can be defined as 

 

( )
1

2 /

0

( ) , 0,1,.., 1
N

j mn N

n

X m x n e m N
π

−
−

=

= = −∑             (1) 

 

where N  is the number of samples. 

For a given sample ( )1x N −  in the discrete exponential 

signal sequence, there are N N-dimensional vectors 

containing this sample element. 

 

( ) ( ) ( )0 1 , , , 2 2x N x N x N= − −  Lx  

( ) ( ) ( )1 2 , 1 , , 2 3x N x N x N= − − −  Lx  

 

( ) ( ) ( )1 0 , 1 , , 1N x x x N− = −  Lx                 (2) 

 

The elements of each vector are then cycle shifted to 

guarantee that the given sample ( )1x N −  is the first 

element of each vector. The cycle shifted vectors can be 

expressed as: 

 
( ) ( ) ( ) ( )0
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( ) ( ) ( ) ( )1
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where 
( )n

n
x is the vector

n
x cycle shifted by n  sampling 

interval. 

By summing up all the vectors
( )

, 0,1, , 1
n

n
n N= −Kx , we 

can achieve a new signal vector
cs
x , which is defined as 
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The new signal vector 
cs
x  is then transformed into the 

frequency domain by DFT. 
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B.  Spectrum analysis of discrete exponential signal. 

The discrete exponential signal consisting of K  

independent modes can be expressed as 

 

( ) ( )/

1

cos 2 / , 0,1,.., 1k

K
n N

k k k

k

s n A e f n N n N
α π φ−

=

= + = −∑    (6) 

where 
k

A  is the amplitude, 
k

φ is the phase, 
k

α  and 
k

f are 

the damping and the frequency, respectively. 

Consider the spectra of the original discrete exponential 

signal ( )s n  and the pretreated exponential signal ( )cs
s n , 

respectively.  
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In the frequency domain, every mode can be separated into 

two parts. One part is located at the positive frequencies, the 

other part is located at the negative frequencies. Therefore, 

the influence of the signal ( )s n  and ( )cs
s n  on spectral lines 

can be expressed as follows: 

 

1) 
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where [9] 
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where (see Appendix A) 
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In (9) and (12), the first item on the right-hand side is the 

influence of modes in the positive frequency, and the second 

one is the influence of modes in the negative frequency 

domain. For the spectra of the original discrete exponential 

signal ( )s n , the amplitude of the parts in the positive 

frequency and in the negative frequency are ( )k
A m+

 

and ( )k
A m−

, respectively, and the phase of the parts in the 

positive frequency and in the negative frequency 

are ( )k
mφ +

and ( )k
mφ −

, respectively. For the spectra of the 

pretreated exponential signal ( )cs
s n , the influence of the 

parts in the positive frequency on the amplitude and phase 

spectra are ( )csk
A m+

and ( )csk
mφ +

, respectively, and the 

influence of the parts in the negative frequency on the 

amplitude and phase spectra are ( )csk
A m−

and ( )csk
mφ −

, 

respectively. 

 

 
  

Fig.1.  The change of amplitude after pretreatment. 

 

Compare (13) and (10), the term of ( )csk
A m+

 in the 

brackets is just the square of the term of ( )k
A m+

 in the 

brackets. It is apparent that the amplitude decay near the 

signal is squared by incorporating the pretreatment in the 

proposed algorithm, as shown in Fig.1. Therefore, the signal 

spectrum leakage is effectively reduced. 

 

C.  Parameter estimation. 

In practice, the frequency of the signal lies between the 

DFT bins with indices: 1p − , p , and 1p + , where the DFT 

bin with index p  has the highest magnitude. The energy 

centralizes near to the spectral line p , and its amplitude is 

particularly obvious. Consequently, the parameters can be 

calculated on the basis of the three spectral lines on the peak 

of a mode. 

The three amplitudes in a mode are denoted by
1p

A − , 
p

A  

and
1p

A + , respectively. Similarly, the reference phase can be 

obtained from p  and donated as
p

φ . Based on these 

reference data, the parameters of a mode can be calculated 

as follows (see Appendix B):  

1) Frequency:  
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f pδ = −                                      (18) 

 

where δ is the fractional frequency offset. 

2) Damping: 
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3) Amplitude: 
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4) Phase: 
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3.  SIMULATION AND DISCUSSION 

Here, the performance of the proposed algorithm is 

validated by simulation and discussed in detail. Firstly, the 

estimation accuracy of the proposed algorithms is simulated 

and compared with several algorithms.  
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These algorithms for performance comparison, which use 

adjacent peaks to analyze signal parameters, include the 

Bertocco algorithm [6], the interpolated discrete Fourier 

transform for decay (IpDFTd)[11], the interpolated discrete 

Fourier transform of an exponent (IDFToE) [9], and 

Yoshida algorithm [8]. They are briefly described as follows:  

1) Bertocco algorithm is a frequency-domain interpolation 

algorithm. The algorithm makes use of two spectral 

samples. 

2) IpDFTd is based on three maximum DFT bin 

interpolation with the Hanning window. 

3) The IDFToE includes two major steps: interpolated 

DFT and leakage elimination, the first of which gets 

approximate results. Then, following a few iterations of 

the second, accurate parameters will be obtained. 

4) Taking into account more than three DFT bins, Yoshida 

algorithm uses four successive DFT bins having the 

greatest magnitudes. 

 

A.  Accuracy. 

To validate the accuracy of the proposed algorithm, the 

signal of a single-degree-of-freedom dynamic system is first 

taken as an example to simulate 

 

( ) ( )0.9 /10 cos 2 35.8 / 4

                                           0,1,.., 2 2

n Ns n e n N

n N

π π−= ⋅ +

= −
        (22) 

 

The number of samples is 512N = , and the proposed 

algorithms and the other four algorithms are simulated in 

MATLAB under the same conditions. The estimation results 

of the five algorithms are shown in Table1. 

In Table1., it is obvious that the estimates of the proposed 

algorithm, including the frequency, the amplitude and the 

phase, are both closer to the real values compared to the 

other  four  algorithms.  The  performance  of  the  proposed  

algorithm in damping estimation is slightly inferior to 

Yoshida and IpDFTd, but better than the others. The 

performance loss of the proposed algorithm is mainly 

caused by the trigonometric function approximation in the 

estimation process which can be found in Appendix B. 

 
Table 1.  Comparison of the accuracy of the different algorithms. 

 

Algorithm Freq. 

error 

(Hz) 

Damping 

error 

(1/sec) 

Amplitude 

error 

(pu) 

Phase 

error 

(rad) 

IDFToE -0.034 0.014 0.071 -0.0114 

Yoshida 0 0 -0.017 -0.0014 

Bertocco -0.035 0.008 -0.059 -0.0024 

IpDFTd 0 0 -0.018 -0.0014 

Proposed 0 0.0006 0.013 0.0003 

 
B.  Leakage elimination. 

For the leakage elimination, the superiority of the 

proposed algorithm which utilizes the preprocessed data to 

carry out parameter estimation is carefully investigated.  

Since the IDFToE algorithm reduces the spectral leakage by 

means of iterative estimation and subtraction of the negative 

part of the spectrum, its performance of the leakage 

elimination is superior to Yoshida’s and Bertocco’s. 

Therefore, the performance of the proposed algorithm is 

validated by simulation and compared with the IDFToE. 

Take a signal as an example, i.e. 

 

( ) ( )
( )

0.5 /

10 /

10 cos 2 30.2 / 1.047

15 cos 2 60.8 /      0,1,.., 1

n N

n N

s n e n N

e n N n N

π

π

−

−

= ⋅ −

+ ⋅ = −
(23) 

 

The number of data is set at 512N = . The analysis result 

is recorded in Table 2. 

 
Table 2.  Calculation results of the two algorithms. 

 

IDFToE Mode Parameter Real Value 

initial 5
th

 iteration 

Proposed 

Frequency (Hz) 30.20 30.17 30.2 30.2 

Damping (1/sec) 0.500 0.857 0.5 0.497 

Amplitude (pu) 10.00 11.53 10.01 9.98 

 

Mode 

1 

Phase (rad) -1.047 -0.92 -1.048 -1.048 

Frequency (Hz) 60.8 60.82 60.8 60.8 

Damping (1/sec) 10.00 10.03 10 9.99 

Amplitude (pu) 15.00 14.96 15.14 14.98 

 

Mode 

2 

Phase (rad) 0.000 -0.018 0.002 0.006 

 

 

In Table 2., the last column shows the estimates generated 

by the proposed algorithm. It can be seen that the IDFToE 

algorithm can obtain the estimates with the same accuracy 

only after a few iterations. Then, the relationship between 

the estimation error and the frequency difference of the two 

modes of the signal is investigated. The estimation error is 

validated by the Root Mean Square Error (RMSE), which 

can be calculated as follows: 

( ) ( )
1/2

1
2

0

1
ˆ

N

n

RMSE s n s n
E

−

−

 
= −   

 
∑                    (24) 

where  

( )
1

2

0

N

n

E s n
−

−

=   ∑                                (25) 

 

Estimator ( )ŝ n  is with respect to an estimated signal ( )s n . 
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Assume that both modes have the same damping 10α = , 

the same frequency bias 0.5δ = and the same amplitude. 

When the frequency difference is larger, estimation 

accuracy is improved. The result of proposed algorithm will 

reach -77 dB, while IDFToE algorithm converges to -47 dB. 
 

Table 3.  RMSE of different frequency intervals. 
 

Frequency 

difference 

RMSE deviation 

of Proposed 

(dB) 

RMSE 

 deviation of 

IDFToE  (dB) 

6 spectral lines -33.5 -14 

9 spectral lines -44 -44 

12 spectral lines -52 -46 

20 spectral lines -66 -47 

30 spectral lines -72.5 -47 

46 spectral lines -76.5 -47 

66 spectral lines -77 -47 

 

C.  Noise. 

In practice, since the measurements are always distorted 

by wideband noise, the immunity to noise of the considered 

algorithms is evaluated. The signal with random uniformly 

distributed frequency and phase which is corrupted by noise 

is generated. Take a signal as an example, i.e. 
 

( ) ( )10 /
15 cos 2 10.8 / 4

n N
s n e n Nπ π−= ⋅ +  

0,1,.., 2 2n N= −                      (26) 

 

For the given frequency and damping, the test signal was 

embedded in Gaussian noise with standard deviation 

corresponding to the assumed signal-to-noise ratio (SNR) 

from 10 to 50 dB. The RMSE of the estimates generated by 

the five different methods discussed above are depicted 

from Fig.2. to Fig.5., respectively. 
 

[ ]
1/ 2

1
2

0

1
ˆ

N

para

n

RMSE
E

τ τ
−

−

 
= − 

 
∑                  (27) 

 

where  
2E τ=                                     (28) 

 

Estimator τ̂  is with respect to an estimated 

parameterτ .τ could be frequency, amplitude, damping or 

phase. 

The RMSE of the frequency and damping estimation 

results under different SNR are shown in Fig.2. and Fig.3. It 

can be seen that the proposed algorithm achieves the same 

accuracy as Yoshida’s and IpDFTd’s when 30SNR dB≥ . 

Meanwhile, when 30SNR dB≥ , the RMSE of amplitude 

estimates generated by the proposed algorithm is the 

smallest of the five algorithms, as shown in Fig.3, and the 

proposed algorithm has the best amplitude estimation 

performance. For the phase estimation, the RMSE of the 

Yoshida and IpDFTd are slightly lower than our method’s. 

This inferiority is mainly caused by the trigonometric 

approximation incorporated in phase estimation. Thus, the 

new algorithm has a considerable balanced performance for 

the noise immunity. 

 
Fig.2.  RMSE of frequency estimation under different SNRs. 

 
Fig.3.  RMSE of damping estimation under different SNRs. 

 
Fig.4.  RMSE of amplitude estimation under different SNRs. 

 
Fig.5.  RMSE of phase estimation under different SNRs. 
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D.  System error. 

The accuracy and the noise influence on the single 

parameter estimation have been investigated. The exemplary 

signal defined as (26) in section 3.C is also utilized here to 

demonstrate the system error of the discussed algorithms.  

Considering all parameters, the systematic error can be 

calculated using (24) and (25) and is shown in Fig.6. 

 

 

 
 

Fig.6.  RMSE of signal parameter estimation under different SNRs. 

 
 

It is very obvious that the performance of the proposed 

algorithm is significantly improved with the SNR increasing, 

when 28SNR dB≥ . For a classic condition discussed by the 

algorithm in [10]: 38SNR dB= , the RMSE of the system 

error analyzed by the proposed algorithm is about 20 dB 

lower than the other four algorithms. 

Uniform frequency in Fig.7. was changed from 0.04 to 

0.16  with the step 0.02 . In Fig.8. damping was changed 

from 0.004  to 0.01  with the step 0.001 . For each frequency 

and damping, 150 realizations were generated. The 

systematic error of the five algorithms is calculated and 

shown in Figs.7.-8. The RMSE of the systematic error 

generated by the proposed algorithm is apparently lower 

than the other four algorithms  

 
 

 
 

Fig.7.  RMSE of signal parameter estimation for different 

frequencies. 

 
 

Fig.8.  RMSE of signal parameter estimation for damping factors.  

 
Then, the phase φ is a random variable with uniform 

distribution in the interval from π−  to π . The standard 

deviations (std) of the estimation errors of frequency and 

damping are investigated and compared to the Cramér-Rao 

lower bounds (CRLB). The simulation results are given in 

Fig.9. and Fig.10., respectively. It can be found that the 

standard deviations of the estimation errors generated by the 

proposed algorithm are the lowest among the five 

algorithms, and closer to CRLB than the other four 

algorithms. 

 

 
 

Fig.9.  The standard deviation of frequency estimation. 

 

 
 

Fig.10.  The standard deviation of damping estimation. 
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4.  CONCLUSION 

A novel parameter estimation algorithm for the 

exponential signal is proposed. The two-step solution first 

constructs a new signal sequence by continuously cycle 

shifting and summing up N buffered exponential signal 

sample sequences in a preprocessing unit. Then, the 

interpolation DFT engine is utilized to obtain accurate 

parameter estimation based on the preprocessed signal 

sequence. The cycle shift and addition can be quickly and 

without effort implemented by the processor that has 

pipeline architecture. New algorithm is computationally 

efficient. Simulation results indicate that the proposed 

algorithm employing signal preprocessing can significantly 

reduce the estimation error in comparison with the existing 

works, and its performance is hardly affected by spectral 

leakage effects. 

 

APPENDIX 

A. Spectrum of the preprocessed exponential signal. 

The spectrum of the complex exponential signal can be 

expressed as 
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Based on Euler's formula:  
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Expansion of   (A.1) is： 

 

( )

( )

( )

( )

2 2
2 // 2 /

1 1

1
2 // 2 /

1

2 2
2 // 2 /

1 1

1
2 // 2 /

1

1
( )

2

1

2

kk k

kk

kk k

kk

K N
j f n Nj n N j mn N

cs k

k n N

N
j f i Ni N j mi N

i

K N
j f n Nj n N j mn N

k

k n N

N
j f i Ni N j mi N

i

S m A e e e e

e e e

A e e e e

e e e

πφ α π

πα π

πφ α π

πα π

−
− −

= = −

−
−

=

−
−− − −

= = −

−
− −

=

= ×

+

×

∑ ∑

∑

∑ ∑

∑

  (A.3) 

 

( )
cs

S m is the sum of two spectra. ( )
cs

S m+ is the one for 

positive frequencies (the first item in the sum) and ( )
cs

S m−  

is the one for negative frequencies (the second item in the 

sum). 

The exponential signal on spectral lines can be expressed 

as: 
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By using the formula: 
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S m+  can be expressed as: 
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The (A.7) can be simplified as: 
 

( )

( )( )
( )

2 2

2 2 //
1

2 2
2 2 1 /

2 2 //

1
( )

2

k k

k

kk

k k

k k

kk

j m j fK
j

cs kj m j f NN
k

j m j f
j m j f N N

j m j f NN

e e
S m A e

e e

e e
e

e e

α π π
φ

π πα

α π π
α π π

π πα

− +
+

− +
=

− −
− − + −

−−

 −
= ⋅ ×

−

−
⋅ 

− 

∑
  (A.8) 

 

According to formulas： 
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S m+  can be expressed in amplitude/phase form as 
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The negative frequency part ( )
cs

S m−  can be derived in the 

same way and expressed as 
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B.  Parameter estimation. 

Parameters are calculated from spectral lines around the 

component peaks. The data of the spectral lines 1p − , p and 

1p + are substituted for the spectral line m of ( )csk
A m+

in 

(A.11), where the DFT bin with index p  has the highest 

magnitude. 

 
1) Frequency 

By letting the frequency bias ( )0.5 0.5δ δ− < <   be 
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For 1m p= +  
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For 1m p= −  
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The frequency bias δ  can be calculated based on the 

amplitude difference. 
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Then,  
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By tedious trigonometric function operations, (B.7) can be 

simplified as: 
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If the variable θ  is sufficiently small, the approximation 

can be obtained. 
 

tanθ θ≈                                (B.9) 

 
 

If N >>δ and N >>π , the terms / Nδ and / Nπ in (B.8) 

are all approaching zero. Thus, the frequency bias δ  can be 

approximated as: 
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The frequency can be achieved by substituting (B.10) into 

(B.1). 
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2) Damping 

 

The damping α  can be achieved by (B.3) and (B.4). 
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Then, (B.12) can be rewritten as 
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If the variable θ  is sufficiently small, the following 

approximations can be established. 
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If N >>δ and N >> α , the terms / Nα , ( )1 / Nδ −  and 

( )1 / Nδ +  in (B.13) are all approaching zero. Thus, the 

(B.13) can be approximated as 
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The damping α  can be expressed as 
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3) Amplitude 

 

The amplitude can be derived from (B.2) 
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If N >>δ and N >>α , (B.18) can be simplified according 

to (B.14) and (B.15). 
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The amplitude can be expressed as 
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4) Phase 

 

For m p= , (A.12) can be expressed as 
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If N  is large enough, 
( )1

1
N

N

−
≈ . (B.21) can be simplified 

as 
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