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Signal denoising can not only enhance the signal to noise ratio (SNR) but also reduce the effect of noise. In order to satisfy the 

requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet 

transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet 

transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold 

computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as 

well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in 

comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more 

practical engineering problems. 
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1.  INTRODUCTION 

OISE is random and unpredictable, so noise reduction 

processing is necessary to get an accurate measurement 

result. Wavelet denoising is one of the important 

applications in engineering practice. Since 1989, when S. 

Mallat presented wavelet transform fast algorithm [1], 

people have proposed a series of wavelet denoising methods 

by using the wavelet transform. So far, there are three main 

types of the wavelet denoising method which are in essence 

the same: spatially selective noise filtration(SSNF) [2], 

modulus maxima denoising [3] and wavelet thresholding 

denoising [4]. First, we obtain the wavelet coefficients by 

the wavelet transform; second, process wavelet coefficients 

by using a certain algorithm; at last, reconstruct the signal 

by previous processed coefficients to denoise. Wavelet 

threshold denoising method can achieve optimum in the 

sense of minimum mean square error approximation, and it 

has better visual quality, so it is widely used in the signal 

denoising domain.  

In 1996, W. Sweldens presented a method to construct the 

wavelet function based on lifting scheme [5], and 

subsequently presented the concept of second generation 

wavelet transform [6]. Literature [7] proved that any wavelet 

transform which has finite impulse response filter (FIR) can 

be decomposed by the finite number of steps lifting scheme. 

The conclusion establishes the relationship between the 

traditional discrete wavelet transform and the second 

generation wavelet transform, and also provides the 

foundation for constructing a richer wavelet basis function. 

Comparing with traditional wavelet transform based on the 

Mallat algorithm, lifting scheme does not rely on the 

concept of translations and expansions, and it also avoids 

the Fourier transform absolutely. Lifting scheme can be 

calculated in-place without auxiliary memory, thus it has 

fast computational speed. In the condition of same data 

length, the computation speed of lifting scheme wavelet 

transform can be increased by a factor of two in comparison 

to the traditional wavelet transform. Second generation 

wavelet transform has so many merits, thus it becomes a 

hotspot of discrete wavelet transform. 

Liu [8] applied lifting wavelet algorithm to the signal 

denoising of inertial instruments and SINS alignment,  

experimental results show that lifting wavelet algorithm can 

improve the rate and precision of strap-down inertial 

navigation system (SINS) alignment. M. Abid [9] proposed 

an image denoising method by using the adaptive lifting 

scheme, this method estimates the noise energies in the 

subband and uses lifting wavelet to perform image 

denoising. Such scheme can adapt itself well to the analyzed 

signal, which allows keeping important information for de-

noising applications. Although Literature [8] and [9] made a 

good noise reduction effect by using lifting wavelet 

transform, this wavelet denoising method is usually 

employed in offline mode, thus its application scope is 

limited. In order to satisfy the requirements of real-time 

signal denoising, Xia [10] proposed an online wavelet 

denoising approach. Xia introduced a moving data window 

into traditional wavelet transform to carry out online 

wavelet denoising, and discussed some problems of online 

denoising, such as border distortion and pseudo-Gibbs 

phenomena, but the computation load of this denoising 

algorithm is large because it uses traditional wavelet 

transform. 

In this paper, in order to satisfy the requirements of real-

time wavelet signal denoising and enhance the effect of 

denoising, an improved semisoft shrinkage real-time 

denoising method based on lifting wavelet transform is 

proposed. Theoretical analysis and MATLAB simulation 

experimental results prove the effectiveness of this method. 
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2.  THE LIFTING WAVELET TRANSFORM  

A.  Principle of lifting scheme. 

 

 
 

Fig.1.  Forward wavelet lifting transform. 

 

Due to the high efficiency, little memory and low 

computational complexity, the lifting wavelet transform is 

widely used in signal processing. The forward wavelet 

lifting transform is described in Fig.1. A typical lifting 

scheme consists of three steps: split, predict and update. Let 

ja  be original data, lifting step is described as follows: 

1)  Split step: the sample data are divided into two subsets: 

the odd sample set 
1jodd + and the even sample set 

1jeven + . This signal split processing is called lazy wavelet 

transform. Other methods can be used in data split 

processing as well. 
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2)  Predict step: in this step, the odd sample set 
1jodd +  is 

predicted from the neighboring even sample set 
1jeven +

. 

The high-pass coefficient 
1jd + is calculated as the error in 

predicting the odd sample set 
1jodd +  from the even one 

1jeven +
by using a prediction factor P , such that: 

 

1 1 1( )j j jd odd P even+ + += −                         (2) 

 

Predict step is also called dual lifting. 
1jd +  is called 

wavelet coefficient or detail coefficient. 

3)  Update step: to produce the low-pass coefficient
1ja +
, 

the even sample set 
1jeven +

is updated from the wavelet 

coefficient 
1jd +
by using the updating factor U  

 

1 1 1
( )

j j j
a even U d+ + += +                      (3) 

 

Update step is also termed as primal lifting. 1ja +  is called 

scale coefficient or approximation coefficient. 

The structure of inverse transform process is symmetrical 

with forward transformation process of lifting scheme. 

Thereby, it ensures not only the integrity of reversible 

transform but also the transform accuracy of reconstruction. 

The inverse wavelet lifting transform is described in Fig.2.  

Inverse transform process of lifting scheme also consists 

of three steps. 

 

1)  Update step:  

 

                    
1 1 1( )j j jeven a U d+ + += −                       (4) 

 

2)  Forecast step:  

 

                  
1 1 1( )j j jodd d P even+ + += +                      (5) 

 

3)  Merge step: 

 

                  
1 1( , )j j ja Merge even odd+ +=                   (6) 

 

  
 

Fig.2.  Inverse wavelet lifting transform. 

 

B.  Lifting implementation of traditional wavelet transform. 

The construction of traditional wavelet which is based on 

lifting scheme does not create the new wavelet. The 

construction of wavelet can be completed entirely in the 

spatial domain. At the same time, the computation amount 

of the first generation traditional wavelet transform based on 

lifting algorithm is reduced by half in comparison with the 

classical Mallat algorithm, and lifting algorithm can save a 

lot of storage units, so it is more suitable for real-time noise 

reduction processing. 

Lifting implementation of wavelet transform consists of 

split, predict and update. The lifting implementation of 

forward wavelet transform is also comprised of the above 

three steps. First, employing lazy wavelet to split the 

original input data ( )x z and obtaining the odd sample set 

( )o z and the even sample set ( )e z , as depicted in Fig.3. 

 

 
 

Fig.3.  z-transform of lazy wavelet. 

 

And then, employing odd sample set ( )o z  to predict even 

sample set ( )e z  via factor 
1( )u z , employing prediction 

error to update odd sample set ( )o z  via operator 
1
( )p z , and 

repeating lifting and dual lifting steps. At last, wavelet 
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approximation coefficients ( )a z and detail coefficients ( )d z  

can be obtained by correction of odd sample ( )o z  and even 

sample ( )e z via scaling 1/ K and K , respectively. The flow 

chart of lifting implementation of forward wavelet transform 

is shown in Fig.4.  

In Fig.4., ↓2 denotes down sampling, suppose signal data 

is x = (..., x-2, x-1, x0, x1, x2, ...)，the down sampling data is 

Bx =  (..., x-2,  x0,  x2, ...);  ↑2 denotes up sampling, suppose 

signal data is x = (..., x-2, x-1, x0, x1, x2, ...), the up sampling 

data is Ex  = (..., x-2, 0, x-1, 0, x0, 0, x1, 0, x2, ...). 

The inverse wavelet transform using lifting is described in 

Fig.5. as follows: First a scaling, then alternating dual lifting 

and lifting steps, and finally the inverse Lazy transform. The 

inverse transform can immediately be derived from the 

forward by running the scheme backwards. 

Suppose 
1 2{ , , , )Nx x x x= L is input data whose data 

length is N , le  and lo  denote even sample set and odd 

sample set, respectively. The lifting implementation 

algorithm of wavelet transform is provided in the Appendix. 

 

 

 
 

Fig.4.  The lifting implementation of forward wavelet transform. 

 

 
 

Fig.5.  The lifting implementation of inverse wavelet transform. 

 

 

3.  IMPROVED SEMISOFT SHRINKAGE REAL-TIME DENOISING 

METHOD 

A.  Overall design. 

Precision and computational efficiency of wavelet 

denoising are two important performance criteria for real-

time application. In order to satisfy the requirements of the 

above performance criteria, an improved semisoft shrinkage 

real-time wavelet denoising method based on lifting scheme 

was proposed. The method, which adopts moving data 

window technology, makes real-time wavelet denoising 

become possible, employs wavelet transform based on 

lifting scheme to reduce computational complexity 

significantly, uses hyperbolic thresholding function and 

recursive threshold computing method to guarantee the 

dynamic characteristics of the system and further improve 

the real-time calculating efficiency, and adopts symmetric 

extension for handling finite length signal boundary 

distortion, the improved scheme is shown in Fig.6. 

 
 

Fig.6.  The improved scheme of real-time denoising. 

 
B.  Moving data window. 

It turns out that every FIR wavelet can be decomposed 

into lifting steps. As discrete wavelet transform has 

characteristics of shift variant and non-causality, it is 

difficult to get the recursive calculations about wavelet 

transform and wavelet denoising. Consequently, it affects 

the online real time application of wavelet denoising. For 
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realizing real-time processing of signal denoising, the 

moving data window technology [10] was adopted. The 

basic concept of moving data window is to get the latest 

piece of real-time data every time, and then by using 

wavelet denoising method to process it, the end data of the 

piece of denoised data is output as final denoising result. 

Define 2 , , 1kW k Z k= ∈ >  is the length of moving data 

window, W is also the required minimum number of sample 

data for the multi-resolution wavelet decomposition, ix is 

the ith value of real-time sample signal. At the first stage of 

online denoising, when sample data are not long enough for 

a wavelet transform, we keep the data as such. As soon as 

the minimum length is reached, the first window initiates 

and online denoising begins. Subsequently, the window 

moves ahead step by step with the fixed width. The concrete 

steps of moving data window are described as follows: 

• When 2
k

i < , due to the length of sample data sequence 

1 2( , , , )ix x xL  is too short, it does not meet the 

requirement of minimum length, so wavelet denoising 

method does not perform, the sample data are directly 

output without any processing. 

• When 2
k

i = , the length of sample data sequence 

1 2 2
( , , , )kx x xL  meets the requirement of minimum 

length of moving data window, then the first wavelet 

denoising performs. The data sequence after denoising is 

denoted as 
1 2 2

ˆ ˆ ˆ( , , , )kx x xL . Finally, take signal 
2

ˆ kx  as 

the denoising result of signal
2kx  and output it. 

• When 2 1ki = + , using wavelet denoising in the sample 

data sequence 
2 3 2 1

( , , , )kx x x
+

L . The data sequence after 

denoising is denoted as 
2 3 2 1

ˆ ˆ ˆ( , , , )kx x x
+

L . Finally, take 

signal 
2 1

ˆ
kx
+

 as the denoising result of signal
2 1kx
+

 and 

output it.  

• The data window moves ahead step by step, and the 

above steps are repeated until all the sample data is 

processed.  

 

C.  Recursive threshold value computing method. 

The selection of threshold value is the key issue in the 

method of wavelet threshold denoising. Currently, literature 

[4] proposed the widely used threshold selection method 

named as universal threshold method. The universal 

threshold is defined as 

 

                       
1,

2log

(| |)

0.6745

j

N

median d

λ σ

σ

=

=

                        (7) 

 

Where, N is the signal length, σ denotes the standard 

deviation of the noise, σ can be estimated from the median 

of the detail coefficients 1, jd at the first level of signal 

decomposition, ( )median ⋅  is median function. 

The universal threshold may be unwarrantedly large due to 

its dependence on the number of samples. It will yield an 

overly smoothed estimate. Considering that the wavelet 

coefficients within subbands are, in fact, locally stationary 

and have dependency both in scale and across scales, here a 

level-dependent threshold, which is more adaptive to the 

noise and signal characteristics, is presented by the formula: 
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          (8) 

Where, iN is the signal length, if the width of moving data 

window is 2k
, then 1 2kN = , 

1

2 2kN −= ,
2

3 2 ,kN −= L ; 

iλ is the ith  level threshold value; ,i jd is the detail 

coefficient at the ith level of signal decomposition. 

From (8), level-dependent threshold method considers the 

propagation characteristics of the noise wavelet coefficients 

in the wavelet domain. Noise wavelet coefficient has 

different threshold in different scale. However, this method 

has shortcoming of threshold value depending on the signal 

length. At the same time, median function ( )median ⋅  needs 

to be calculated when calculating each level noise standard 

deviation, thus, the computational complexity is large and 

the real-time performance is poor. 

This paper presents a more efficient recursive threshold 

computing method [11], and its expression is 
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1 1
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1
, 1

1
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i i
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N

i
i

i
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λ λ
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− = ⋅ >

 + −

             (9) 

 

Where α and β  are adjustable parameters and greater 

than zero, other parameters are the same as (8). 

From (9), this approach is simply to calculate the threshold 

of the first level, and then employ the recursive method to 

calculate the other level wavelet threshold. α ， β can be 

obtained by offline experimental analysis or experience. 

Such improved threshold method not only considers the 

propagation characteristics of the noise wavelet coefficients 

in the wavelet domain but also makes threshold value 

determination independent of the signal length. Due to 

calculating the median function only one time, recursive 

way further enhances the calculation speed. 

 

D.  Hyperbola thresholding function. 

Soft-thresholding and hard-thresholding function are 

usually used in the wavelet threshold denoising. Hard-

thresholding denoising method retains the high frequency 

detail coefficients whose absolute value is greater than the 

threshold, and set the detail coefficients whose absolute 

value is less than the threshold to be zero. The hard-

thresholding function is given as follows 
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Where， , ,1 ,2 ,3 ,{ , , , , }i j i i i i nd d d d d= L  is the ith level 

detail coefficient, n  is the data length of the ith  level detail 

coefficient; iλ is the ith level threshold value; ,i jd%  is 

the ith level detail coefficient after threshold processing. 

The soft-thresholding function is given as follows: 
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The hard-thresholding method can better retain local 

characteristics of the signal edge and is suitable for 

denoising of sudden change noise signal. But the hard-

thresholding method presents oscillations in the vicinity of 

the function’s discontinuities at λ± , such oscillations are 

called the pseudo-Gibbs phenomena, which will affect the 

visual quality of the denosing result. 

Signal processed by the soft-thresholding method is 

relatively smooth, and to some extent reduces the pseudo-

Gibbs phenomenon. However, there exists a permanent bias 

between ,i jd%  and ,i jd , which will certainly affect the 

precision of signal reconstruction and give rise to the 

phenomenon of edge blur. 

Consequently, this paper adopts a hyperbolic semisoft 

shrinkage function [12] which is given by 

 

2 2
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( ) ( ) | |

0 | |

i j i j i i j i

i j

i j i

sign d d d
d

d

λ λ

λ

 − ≥
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<

%          (12) 

 

Where, ( )sign ⋅ is Signum function, iλ is the ith level 

threshold value obtained from (9). Hyperbolic semisoft 

shrinkage function overcomes the shortcomings of the hard-

thresholding function and the soft-thresholding function. 

Three thresholding function curves are shown in Fig.7.  

 

 
Fig.7.  Thresholding function curve. 

E.  Boundary processing. 

Wavelet transform algorithm is derived from the 

assumption that the signal length is infinite, but in practical 

applications signal is of finite length, so boundary point 

must be processed in the application of wavelet transform 

avoiding boundary distortion. One of the possible ways to 

eliminate boundary distortion is to extend the signal beyond 

the boundary. Traditionally, the finite length signal can be 

zero padded, but this expansive effect is undesirable in 

many applications. The application of periodic extension in 

multi-scale filter banks introduces artificial discontinuity in 

the extended signal. Currently, symmetric extension is a 

popular technique for handling finite length signal boundary 

extension in a non-expansive manner [13].  

In this paper, symmetric extension is adopted. Suppose 

sampling signal sequence is ( ), 1,2,x t t n= L ; ( )a i  is the 

symmetric extension of ( )x t ; when t L≥ , 

 

( ), 1,2, ,
( )

( ), 1, 2, , 2

x t L i i L
a i

x t L i i L L L

− + =
= 

+ − = + +

L

L

      (13) 

 

Where, L  is the width of moving data window. ˆ( )a i  is 

the wavelet denoising result of ( )a i , take signal ˆ( )x t  as 

the denoising result at time t  by (14) . 

 

ˆ ˆ( ) ( 1)
ˆ( )

2

a L a L
x t

+ +
=                        (14) 

 

4.  SIMULATION AND ANALYSIS 

In order to facilitate the comparison of noise reduction 

effect, the following performance indices are introduced as 

the evaluation criteria: Root Mean Square Error (RMSE), 

Signal to Noise Ratio (SNR). 
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Where 
ix is the original signal, ˆ

ix is the denoised signal. 

In order to verify the validity of the improved semisoft 

shrinkage real-time denoising method based on lifting 

wavelet transform, improved semisoft shrinkage method, 

soft-thresholding method and hard-thresholding method are 

adopted in the simulation. In the simulation, we used three 

types of signal: Doppler, HeaviSine and Bumps, the 

definition of these signals is shown in Appendix B. 

The system simulation parameters are set as follows: 

1) Add Gaussian white noise whose mean is zero and 

variance is 0.01 to Doppler signal; 

λ
λ−

d%

d

hard-thresholding 
soft-thresholding 
semisoft shrinkage g 
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2) Add Gaussian white noise whose mean is zero and 

variance is 0.4 to HeaviSine signal; 

3) Add Gaussian white noise whose mean is zero and 

variance is 0.2 to Bumps signal; 

4) Sum of sample is 2048; 

5) Width of moving data window is 8
2 256n = = ; 

6) Wavelet decomposition scale is 4; 

7) The db4 wavelet is selected as lifting base of the second-

generation wavelet to implement db4 lifting wavelet 

transform; 

8) Parameters of (9) are 0.3α = , 1.2β = . 
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Fig.8.  Simulation denoising results for the Doppler signal. 

 

 

Table 1.  Comparison of different de-noising method in Doppler. 

 

 Doppler signal 

 RMSE SNR(dB) 

No denoising 0.0992 9.7884 

Soft thresholding 0.0387 17.9689 

Hard thresholding 0.0434 16.9789 

Improved semisoft  

 shrinkage 
0.0386 17.9997 
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Fig.9.  Simulation denoising results for the Doppler signal. 

 

 

Table 2.  Comparison of different denoising method in HeaviSine 

 

 HeaviSine signal 

 RMSE SNR(dB) 

No denoising 0.6506 13.6204 

Soft thresholding 0.2397 22.2950 

Hard thresholding 0.2568 21.6957 

Improved semisoft  

 shrinkage 
0.2369 22.3955 

 
Denoising simulation results for the Doppler signal are 

shown in Fig.8. We can see by the wavelet real-time 

denoising that noise has been significantly reduced. From 

the visual quality, the noise reduction effect of the soft-

thresholding method is the best, followed by the improved 

semisoft shrinkage method, the hard-thresholding method is 

the worst. Real-time denoising performance of Doppler 

signal is shown in Table 1. From Table 1., we can see that 

RMSE, SNR of semisoft shrinkage method are optimal, 

followed by the soft-thresholding method whose 

performance criteria are almost the same as the semisoft 

shrinkage method, the hard-thresholding method is the worst. 
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Denoising simulation results for the HeaviSine signal are 

shown in Fig.9. From the visual quality, the noise reduction 

effect of the soft-thresholding method is the best, followed 

by improved semisoft shrinkage method, the hard-

thresholding method is the worst. Real-time denoising 

performance of HeaviSine signal is shown in Table 2. From 

Table 2., we can see that RMSE, SNR of semisoft shrinkage 

method are optimal, followed by the soft-thresholding 

method, the hard-thresholding method is the worst. 
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Fig.10.  Simulation denoising results for the Bumps signal. 

 

 

Table 3.  Comparison of different denoising method.  

 

 Bumps signal 

 RMSE SNR(dB) 

No denoising 0.4406 12.6139 

Soft thresholding 0.2870 16.3368 

Hard thresholding 0.2327 18.1565 

Improved semisoft  

 shrinkage 
0.2231 18.5242 

 

Denoising simulation results for the Bumps signal are 

shown in Fig.10. From the visual quality, the noise 

reduction effect of the soft-thresholding method is the best, 

followed by improved semisoft shrinkage method, the hard-

thresholding method is the worst. Real-time denoising 

performance of Bumps signal is shown in Table 3. From 

Table 3., we can see that RMSE, SNR of semisoft shrinkage 

method are optimal, followed by the hard-thresholding 

method, the soft-thresholding method is the worst. 

Through analysis of real-time noise reduction effect of 

Bumps, Doppler and HeaviSine signal, we can find: 

1) Only from the visual quality, the denoising effect of the 

soft-thresholding method is the best, but the performance 

criteria may not be the best, and may actually be the 

worst. 

2) For signals whose continuity is better, such as Doppler 

and HeaviSine signal, the soft-thresholding method is 

significantly better than the hard-thresholding method, 

regardless of the visual quality or the performance 

criteria. 

3) For signals whose continuity is poor, such as Bumps 

signal, although denoising effect of the soft-thresholding 

method is superior to the hard-thresholding method from 

visual quality, the hard-thresholding method actually is 

obviously superior to the soft-thresholding method from 

the comparison of quantitative performance criteria. 

4) Whether the continuity of actual signal is good or bad, 

the denoising effect of improved semisoft shrinkage 

method is the best from performance criteria, and visual 

quality is suboptimal. Considering both the performance 

criteria and visual quality, the improved semisoft 

shrinkage method proposed is better than the soft-

thresholding and the hard-thresholding method, and has 

a wider application scope. 

 

5.  CONCLUSIONS 

Wavelet threshold denoising method is one of the primary 

methods of wavelet denoising. For applying wavelet 

threshold denoising method in real-time noise reduction 

application, an improved semisoft shrinkage real-time 

denoising method based on lifting wavelet transform was 

presented. This method, which adopts moving data window 

technology, makes real-time wavelet denoising processing 

possible. Wavelet transform based on lifting implementation 

greatly enhances the computation speed. The hyperbolic 

threshold function and recursive method to calculate every 

level wavelet threshold better ensure the dynamic behavior 

of the system and further enhance computation efficiency. 

At last, this method is applied to denoising simulation for 

Doppler, Bumps and HeaviSine signal, the simulation 

results prove the effectiveness of this proposed method.  

 

APPENDIX 

A.  Lifting implementation algorithm. 

The lifting implementation algorithm of wavelet transform 

is written in Table 4. 
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Table 4.  Algorithm implementation of wavelet lifting transform. 

 

Algorithm 1: The lifting implementation algorithm of 

forward wavelet transform  

Step1: Lazy wavelet transform 
0

2l le x=  

0

2 1l lo x +=  , 0,1, , / 2 1l N= −L  

Step2: Lifting and dual lifting 

For i =1 to m  

1 1

1 , 0,1, , / 2 1

i i i i

l l k l k

k

i i i i

l l k l k

k

e e u d

o o p e l N

− −
−

−
−

 = −



= − = −


∑

∑ L

 

Step3: Scale correction 

/m

l l

m

l l

a e K

d Ko

 =


=

 

la ,
ld denote as the lth level wavelet approximation and 

detail coefficients. 

 

Algorithm 2: The lifting implementation algorithm of 

inverse wavelet transform  

Step1: Scale correction 

/

m

l l

m

l l

e Ka

o d K

 =


=

 

Step2: Lifting and dual lifting 

For i =m  to 1 

1

1 1 , 0,1, , / 2 1

i i i i

l l k l k

k

i i i i

l l k l k

k

o o p e

e e u o l N

−
−

− −
−

 = +



= + = −


∑

∑ L

 

Step3: Inverse lazy wavelet transform 

0

2l lx e=  

0

2 1l lx o+ =  , 0,1, , / 2 1l N= −L  

 

B.  Formulas for test signals. 

Doppler: 
 

( ) ( 1) sin(2 (1 ) / ( )), 0.05f t t t tπ ε ε ε= − + + =  

 

HeaviSine: 
 

( ) 4sin 4 ( 0.3) (0.72 )f t t sign t sign tπ= − − − −  

 

Bumps: 
 

4 1( ) (( ) / ) ( ) (1 | | )

( ) (0.1,0.13,0.15,0.23,0.25,0.4,0.44,0.65,0.76,0.78,0.81)

( ) (4, 5,3, 4,5, 4.2,2.1,4.3, 3.1,5.1, 4.2)

( ) 0.01*(0.5,0.5,0.6,1,1,3,1,1,0.5,0.8,0.5)

j j j

j

j

j

f t h K t t K t t

t

h

ω

ω

−= − = +

=

= − − − − −

=

∑
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