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One of the most complex problems in measuring equipment is related to the provision of the required dynamic accuracy of 

measuring systems determining the parameters of moving objects. The present paper views an algorithm for improving the 

dynamic accuracy of such measuring systems. It is based on the Kalman method. The algorithm aims to eliminate the influence of 

a number of interference sources, each of which is of secondary significance. However, their total effect can cause considerable 

distortion of the measurement signal. The algorithm model is designed for gyro-free measuring systems. It is based on one of the 

most widely used elements in the dynamic systems, namely the physical pendulum, due to which measuring systems of high 

dynamic accuracy and low cost can be developed. The presented experimental results confirm the effectiveness of the proposed 

algorithm with respect to the dynamic accuracy of measuring systems of this type. 
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1.  INTRODUCTION 

S IT IS WELL-KNOWN [1, 2, 3],  most  of  the  existing 

measuring systems are non-linear. The Nonlinear 

System Theory is a sophisticated and not well-

developed theory. Therefore, the analysis done with its help 

is approximate. At the same time there are too many 

nonlinear measuring systems which are linearized by 

introducing a certain number of simplifying hypotheses, i.e. 

the measurement result is determined by means of linear 

mathematical models rather than by nonlinear ones. 
On the other hand, the nonlinear properties of most of 

those measuring systems are important when forming their 
accuracy characteristics. The application of linear models, in 
some cases, leads to inadmissibly large measurement errors. 
In addition, the complexity and the large variety of 
properties of those measuring systems do not allow us to use 
a universal approach to their analysis and synthesis. 

For example, when seeking optimal algorithms for signal 
processing in some measuring systems, we have to use some 
statistical models of the measurement signals and 
interference effects. Upon forming these models, the 
concept of linearity, stationarity and normal distribution is 
often used [4, 5]. However, the above listed principles are 
not always applied into practice. 

A possible solution to this problem is the application of 
adaptive algorithms which allow the measuring system to 
self-adjust depending on the statistical parameters of the 
input signal. In this way the differences between the linear 
model and the nonlinear nature of the system do not have a 
substantial impact on the formation of the measurement 
result. 

The synthesis of measuring instruments and systems 
determining the parameters of moving objects, in particular 
instruments measuring the roll, pitch, heel and trim of a 

ship, can be considered in this context. These instruments 
must include elements modelling the basic coordinate 
system [6, 7]. This enables us to determine the position of 
the moving object when it rotates around its centre of mass, 
as well as when it moves along with its centre of mass. 
There are different methods and tools for building and 
keeping the vertical in measurement mode [7, 8]. However, 
gyroscopic systems are the most frequently used due to their 
stability against the inertial effects caused by the motion of 
the object (the ship). 

On the other hand, the measuring instruments built on the 

basis of gyro-verticals are distinguished for a number of 

disadvantages such as a sophisticated design, less reliability 

under extreme conditions, requirement of special systems 

ensuring the gyro-vertical operation; large sizes, high prices, 

etc. [7, 8], thus limiting, to a great extent, their application.  

A complete solution to those problems can be found by 

means of the concept proposed in [9], where unlike the 

existing measuring methods and tools that use vertical 

stabilization in the inertial space this approach is based on 

methods eliminating the dynamic error in real time. The 

proposed concept for modelling measuring instruments and 

systems of this type overcomes, to a great degree, the above 

listed disadvantages. However, due to the deviations of the 

measuring system model, caused by its linearization, as well 

as by the presence of interference sources of random 

characteristics and additional secondary processes of 

unpredictable behaviour, additional errors can occur, thus 

considerably reducing the measurement accuracy.  

Therefore, the introduction of an appropriate adaptive 

algorithm developed on the minimum dynamic error 

criterion in the metrological chain of this type of measuring 

systems is an important condition for ensuring high 

accuracy. 
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2.  BLOCK DIAGRAM OF THE MEASURING SYSTEM 

The automatic control systems and the measuring systems 

differ in structure since the latter have a primary transformer 

at its input, whose input signal is inaccessible for both 

immediate measurement and correction. Measuring system, 

as a whole, does not make the provision of output-input 

feedbacks in their metrological circuits possible. Therefore, 

it is not possible to immediately use the results from the 

automatic control methods in the measuring systems. 

However, additional measuring channels operating in 

parallel with the basic channels can be connected to the 

metrological circuits. The additional channels may possess 

the specific structure of correcting devices used for reducing 

the dynamic error. Within them the concepts of a number of 

methods from the automatic control theory can be 

effectively used. 

In compliance with the basic principles of the above 

mentioned approach, a specific system for measuring the 

roll, pitch, heel and trim of a ship is developed in [9]. It 

overcomes the disadvantages of the existing measuring 

instruments since it is based, on one hand, on a very 

simplified mechanical module, and on the other hand, on the 

advanced achievements in the area of nanotechnologies, 

microprocessor and computer equipment.  

The block diagram of the system is shown in Fig.1. It is 

based on a gyro-free reproduction of the vertical. The latter 

is developed by using a simplified design and a physical 

pendulum. The measuring system consists of two measuring 

channels operating in parallel (Fig.1.). The data obtained 

from the basic measuring channel contains a dynamic error 

mainly caused by the deviations of the physical pendulum 

from the ideal astronomical vertical. These fluctuations are 

determined by the inertial effects caused by the ship 

fluctuations (e.g. heave, sway, surge, roll, pitch, yaw) and 

the vibrations in the place where the system has been 

mounted. 

Unlike the existing measuring methods and tools which 

stabilize the vertical in the inertial space so as to improve 

the dynamic accuracy, the proposed approach involves a 

method for eliminating the dynamic error in real time. The 

measuring procedure related to the definition of the dynamic 

error is performed in the additional channel (Fig.1.). The 

latter consists of two pairs of identical MEMS 

accelerometers used for measuring linear acceleration. 

Within the mechanical  module of the system the 

accelerometers are positioned in such a way that an 

algorithm for determining the dynamic error along the two 

measuring coordinates (heel and trim) can be developed 

from their output signals. This algorithm is described in 

detail in [9]. The additional measuring channel operates in 

parallel with the basic one so as to provide a possibility for 

eliminating the dynamic error from the measurement result 

in real time. 
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Fig.1.  Block diagram of the measuring system. 
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3.  STRUCTURAL MODEL OF THE ALGORITHM   

Taking into consideration the characteristics of the 

quantities that build the measuring environment where the 

measuring systems operate, it can be admitted that the most 

appropriate form of processing data obtained from such 

additional measuring channels is the Kalman algorithm. The 

characteristics of this algorithm fit very well into the 

solution of a number of problems arising in the process of 

accuracy optimization of the measuring instruments that 

define the parameters of all moving objects listed above 

[10]. In that case the algorithm will be developed in the 

context of the set objective, which is related to the 

improvement of the dynamic accuracy of the measuring 

system presented in [9]. This procedure is part of the 

additional channel and aims at eliminating the influence of a 

number of secondary disturbances on the measurement 

result. However, the algorithm can also be used in many 

other systems operating in dynamic mode in the area of 

metrology and automation [11-14] since the mathematical 

model is based on the physical pendulum, which is one of 

the most widely spread elements in those systems.  

As it is mentioned in [9], if the dynamic error is 

determined only on the basis of the measuring procedure 

described above, the accuracy is not sufficient. The motion 

of the moving object initiates not only basic but also 

secondary disturbance processes of unpredictable behaviour 

for the sensitive elements of the measuring instruments in 

the additional channel. The mathematical model of the 

primary processing procedure (Fig.1.) for determining the 

dynamic error takes mainly the influence of the basic 

disturbance processes into consideration. Тhe model remains 

insensitive to the secondary disturbance processes though. 

The magnitude and influence of the latter on the system's 

dynamic accuracy are different. They are determined by a 

number of parameters of random nature and are connected 

with the motion of the moving object. In some cases, 

however, under their influence the accumulated error can 

reach inadmissibly high values. 

The block diagram of the Kalman filter developed for one 

of the two measuring channels of the system is shown in 

Fig.2. In this case the Kalman algorithm which measures the 

ship pitch and trim is viewed. However, an analogous filter 

with identical structure and mathematical model is 

connected to the metrological circuit of the second 

measuring channel. The block diagram can be provisionally 

divided into two loops operating in parallel. The first loop 

can be assumed as a basic one since the forecast estimate 

and the optimal value of the measured quantity are 

determined in it. The second loop operates in parallel with 

the first one. It aims at determining the current values of the 

elements from the correlation matrix of the forecast error.  

To obtain the forecast estimate )(x̂k −
r

, it is necessary to 

integrate the differential equation [15, 16]  

 

                                )t(x)t(F
dt

)t(xd r
r

⋅= , (1) 

 

under an initial condition )t(x)0(x 0

rr
= . 

In (1) )t(x
r

 is the n dimensional vector defining the state 

of the quantity whose optimal value is demanded by means 

of the Kalman filter developed. According to the block 

diagram in Fig.1. and the proposed processing procedure of 

the measuring system, vector )t(x
r

 is determined by the 

motion of the physical pendulum along the β coordinate, 

which actually defines the dynamic error in this measuring 

channel. Error β is explained in detail in [9, 17, 18]. By 

transforming equation (1) from a continuous time function 

into a discrete time function, the following expression is 

obtained for the forecast estimate [16] 

 

                               )(x
ˆ

Ф)(x
ˆ

1kkk +⋅=− −

rr
, (2) 

 

where Фk is a transition function of the [n × n]-dimensional 

state defining the dynamics of the system; )(x̂ 1k +−

r
 - the 

estimate of the vector of the state at the moment of time tk-1. 

Due to the stationary nature of the dynamic system, caused 

by the invariability of its basic parameters, the Фk matrix 

does not change in time and its elements remain constant 

[2]. 

It is necessary to define the mathematical model of the 

coefficient correcting the forecast estimate since the Kalman 

filter operates according to the forecast-correction circuit 

(2). Therefore, the continuous model of the linear dynamic 

system should be viewed. The latter could be illustrated by a 

vector-matrix differential equation defining the dynamics of 

the measuring system, and by a second equation defining the 

measuring process [7, 15] 

 

                       )t(w)t(G)t(x)t(F
dt

xd rr
r

⋅+⋅= , (3) 

 

                 )t(v)t(x)t(H)t(v)t(y)t(z
rrrrr

+⋅=+= , (4) 

 

where )t(w
r

 is r dimensional vector representing the signal 

at the system input; )t(y
r

 - m dimensional vector 

determining the error-free signal at the output of the 

measuring channel before the Kalman filter; )t(z
r

 - m 

dimensional vector defining the measurement result before 

the Kalman filter; )t(v
r

 - m dimensional vector determining 

the measurement error; F(t), G(t), H(t) - respectively [n × 

n], [n × r], [m × n] matrices, which will be described later in 

equations (10) and (12). 

The diagram in Fig.2. illustrates the used method in an 

algorithmic form. In this figure the error correlation matrix 

is denoted by Pk, the initial value of the error correlation 

matrix - by P(t0), and the matrix amplification coefficient by 

Kk . The error correlation matrix, whose value is restored at 

each time step, makes the correction of the forecast estimate 

according to an optimality criterion in relation to accuracy 

possible. In the algorithm the estimate is corrected by means 

of the matrix amplification coefficient Kk, whose discrete 

form is presented in Fig.2. 
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Fig.2. Block diagram of the Kalman filter. 

 

 

4.  DESIGNING OF THE ELEMENTS OF THE KALMAN FILTER  

The concept of the Kalman filter assumes that the 

stochastic system can be described by the models of the 

dynamics and measurement. In this case the dynamics 

model is described by the differential equation [9] 

 

      
,)t()zlmJ()t(lm

)t(glm)t(k)t()lmJ(

1x01

1
2

1x

1

1

ψξ

βββ β

&&&&

&&&

⋅⋅⋅+−⋅⋅−=

=⋅⋅⋅+⋅+⋅⋅+
 (5) 

 

where m1, l, 
1xJ  are mass, design and inertia parameters of 

the system sensitive element; kβ - damping coefficient; ψ(t) - 

pitch; ξ0(t) - surge; z - the coordinate in the vertical direction 

of the suspension point of the system sensitive element with 

regard to the centre of gravity of the ship. 

It is necessary to note that the measured quantity from the 

system measuring channel under consideration is ψ(t). 

According to the metrological procedure it is measured with 

accuracy depending to a great extent on the accuracy related 

to the definition of the dynamic error β(t). Namely the last 

quantity is subject to filtration in the present problem. 

Equation (5) can be easily linearized in the type 
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J
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where 
)lmJ(

glm
w

2
1x

1
0

1
⋅+

⋅⋅
=  - the natural frequency of 

the sensitive element (the physical pendulum); 

)lmJ(

k
h.2

2
1x1
⋅+

= β
; h - damping factor. 

Quantities )t(),t(0 ψξ &&&&  in the right part of equations (5) 

and (6) are random time functions. The Kalman method 

introduces a simplifying hypothesis according to which 

these quantities are assumed as random functions of a white 

noise type [15, 16, 19]. Then equation (6) will be 

transformed into 

 

                 )t(wk)t(w)t(h2)t( 1
2
0 ⋅=⋅+⋅⋅+ βββ &&&

, (7) 

 
where w(t) - scalar white noise of intensity Q = 1;    
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The second order equation (7) can be transformed into a 

system of two equations of first order 

 

                                     )t()t( χβ =& , 

 (8) 

                )t(wk)t(w)t(h2)t( 1
2
0 ⋅+⋅−⋅⋅−= βχχ& . 

 

Vector )t(x
r

 determining the state of the quantity β(t), in 

compliance with (8), will be 

 

                                    [ ]χβ=)t(xTr . (9) 

 
Then matrices F and G will be of the type 
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Within the specific problem, the equation of the measured 

signal z(t) before the filter can be written in the following 

way 

 

                                 )t(v)t()t(z += β , (11) 

 
where v(t) is the measurement error which can be considered 

white noise of intensity R = 1. 

Then matrix H from equation (4), determined by the type 

of the input signal entering the Kalman filter (11), will be 

 

                                  [ ]01HH k == , (12) 

 
The diagonal matrix P(t0), whose elements are equal to the 

variances βD  and 
βχ &DD =  of the components of the 

vector [ ]χβ=)t(xTr , is written on the basis of the 

correlation functions of quantities )t(β  and )t()t( χβ =& . 

This is due to equations )0(KD ββ =  and )0(KD
ββ && = , 

where )0(Kβ  and )0(K
β&

 are the values of the correlation 

functions of )t(β  and )t()t( χβ =&  when τ = 0 [20]. 

The spectral density of the stationary solution of the linear 

differential equation with constant coefficients (7) can be 

presented in the type [20] 

 

                           )(S)j(W)(S w
2 ωωωβ ⋅= , (13) 

 
where W(jω) is the transfer function W(p) written with the 

argument p=j.ω. 

From (7) it follows that the transfer function of the system 

sensitive element will be 

                         
2
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wph2p

k
)p(W

+⋅⋅+
= . (14) 

 
By replacing the arguments in (14), the following is 

obtained 
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Then on the basis of (13), 
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Since the process w(t) is white noise, then on the basis of 

the qualities of the latter it follows that the spectral density 

Sw(ω) ≈ c = const. Then equation (16) can be transformed 

into the type 
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Fig.3.  3-D model of the equipment and the measuring system 

under  study.  1 – equipment for reproducing reference motions; 

2 – measuring system under study. 
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From equation (17) the sought mathematical model of the 

correlation function Kβ(τ) of the process β(t) can be found 

on the basis of the common relationship 

∫
∞

⋅⋅⋅=
0

dcos)(S2)(K ωωτωτ , i.e. [15] 
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Since function )t(β  is related to )t(β&  by a differential 

operator, their respective correlation functions will be in the 

following relationship [15] 
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where τ = t2 - t1.  

It follows from (19) and (20) that 
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Then on the basis of (19) and (21) we can write the initial 

state of the correlation matrix P(t0) of the error, i.e. 
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=

220
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0D
)t(P

λµβ

β
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The expressions obtained for matrices F, G, H, P(t0) and 

the specified intensities of the white noise Q = 1, R at the 

input of the dynamic system make it possible to develop the 

Kalman algorithm on the basis of the block diagram in 

Fig.2. The algorithm improves the accuracy upon 

determining the function β(t), which appears as an important 

condition for increasing the dynamic accuracy of the 

measuring system. Moreover, the numerical values of the 

components of the given matrices are defined by the 

respective design parameters of the sensitive element of the 

system.  

 

5.  EXPERIMENTS AND RESULTS 

The experiments have been done in order to confirm the 

features and suitability of the proposed algorithm for 

improving the dynamic accuracy of such measuring 

systems. There are certain difficulties in relation to the 

experiments since there is not a well-developed reference 

base. This results in designing equipment that possesses 

reference properties and makes possible the solution of all 

types of metrological problems referring to verification, 

calibration, definition of dynamic characteristics and 

investigation of dynamic accuracy. For this purpose 

appropriate equipment possessing all required features has 

been developed. It is based on parallel mechanisms (a 

hexapod of six degrees of freedom). A 3-D model of the 

equipment and the measuring system is shown in Fig.3. 
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Fig.4.  Results from the investigation of the dynamic accuracy. 
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Fig.5.  Motion of the operating platform along the angular 

coordinate ψ. 
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Fig.6.  Results from the investigation of the dynamic accuracy. 

 

Fig.4. and Fig.6. illustrate the effect of the operation of the 

proposed algorithm as regards the dynamic accuracy of the 

measuring system. The two figures show the dynamic 

errors, respectively without )t(deε (continuous line) and 

with )t(kf

deε (dotted line) an algorithm module, defined on 

the basis of the equations  

 

                           )t()t()t( mrde ψψε −= , (23) 
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de ψψε −= , (24) 
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where )t(mrψ  and )t(kf

mrψ  are functions obtained as a result 

of the measurement of the platform motion, respectively 

without and with a Kalman filter; ψ(t) – the function 

defining the motion of the operating platform in relation to 

the trim coordinate. 

The dynamic errors shown in Fig.4. and Fig.6. are 

obtained as a result of the reference platform motions 

presented in Fig.5. and Fig.7., respectively. Fig.4. and Fig.6. 

show that the maximal values of the dynamic error )t(kf

deε  

vary within a range of 0.04° - 0.08°, whereas those of  

)t(deε  are within a range of 0.15° - 0.25°. In general, we 

can draw the conclusion that the use of the algorithm 

considerably improves the stability of the measuring system 

with respect to its dynamic accuracy. This can be also easily 

identified in Fig.4. and Fig.6., where the variation of error 

)t(kf

deε decreases by approximately 50 % in relation to that 

of error )t(deε . The impact of the algorithm regarding the 

improvement of the dynamic accuracy is high in the 

presence of interference effects caused by the fluctuations of 

the ship in relation to the non-measured coordinates.  
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Fig.7.  Motion of the operating platform along the angular 

coordinate ψ. 

 

The experiments show that in the presence of a module 

processing the signal in compliance with the proposed 

algorithm in the measurement chain, the maximal value of 

the dynamic error does not exceed 0.1°. As an example of 

the effective performance of this algorithm, we can point 

that the maximal value of the dynamic error of the 

measuring system under the same measurement conditions 

but without using the Kalman filter is within a range of 

0.2° - 0.3°. 
 

7.  CONCLUSION 

The experimental results confirm the effectiveness of the 

proposed algorithm with respect to the dynamic accuracy of 

systems measuring moving objects. As a result of the 

operation of the algorithm the accuracy characteristics of the 

measuring system under conditions of dynamic influences 

are improved to a great extent. This can be implemented 

without using expensive elements and stabilization systems. 

The algorithm can be successfully used for improving the 

dynamic accuracy in gyro-free systems measuring the 

parameters of moving objects. However, it can be applied in 

a number of other measuring instruments and systems for 

automation, operating in dynamic mode, since the 

mathematical model has been developed on the basis of a 

widely used element such as the physical pendulum. The 

algorithm is based on the Kalman method. It aims to 

eliminate the influence of a number of interference sources, 

each of which is of secondary significance. However, their 

total effect can cause considerable distortion of the 

measurement signal. 
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