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Let a quantity of interest, Y , be modeled in terms of a quantity X and a set of other quantities ZZZ. Suppose that for ZZZ there is type
B information, by which we mean that it leads directly to a joint state-of-knowledge probability density function (PDF) for that set,
without reference to likelihoods. Suppose also that for X there is type A information, which signifies that a likelihood is available.
The posterior for X is then obtained by updating its prior with said likelihood by means of Bayes’ rule, where the prior encodes
whatever type B information there may be available for X . If there is no such information, an appropriate non-informative prior
should be used. Once the PDFs for X and ZZZ have been constructed, they can be propagated through the measurement model to
obtain the PDF for Y , either analytically or numerically. But suppose that, at the same time, there is also information of type A, type
B or both types together for the quantity Y . By processing such information in the manner described above we obtain another PDF
for Y . Which one is right? Should both PDFs be merged somehow? Is there another way of applying Bayes’ rule such that a single
PDF for Y is obtained that encodes all existing information? In this paper we examine what we believe should be the proper ways of
dealing with such a (not uncommon) situation.
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1. INTRODUCTION

IN THE EVALUATION of measurement uncertainty, the dis-
pute over the Bayesian versus frequentist interpretations of

probability seems to be resolving itself in favor of the former
view. One argument supporting this assertion is the upcom-
ing revision of the Guide to the Expression of the Uncertainty
in Measurement (GUM) [1] – currently in preparation by the
Joint Committee for Guides in Metrology, JCGM – which is
expected to follow an entirely Bayesian approach [2, 3]. This
implies that no distinction will be made between the ‘type A’
and ‘type B’ evaluation methods.

As is well known, these methods were established by Rec-
ommendation INC-1 (1980) of the Working Group on the
Statement of Uncertainties, from which the GUM originated,
to differentiate between what at the time were considered to be
the two ways of obtaining the standard uncertainty associated
with an estimate for a certain quantity. In the type A evalua-
tion, uncertainty components were to be characterized by es-
timated variances (or estimated standard deviations) together
with their corresponding number of degrees of freedom. It
follows from this terminology that this method was intended
to be strictly frequentist in nature. In turn, the ‘type B’ eval-
uation was defined as that proceeding ‘by other means’, that
is, in ways other than the (frequentist) statistical analysis of
the measurement information. The uncertainty components in
this category were to be characterized by terms that could be
considered as approximations to the corresponding variances.

This brief outline was augmented in the GUM [1], wherein
detailed guidance was provided for implementing the two
evaluation methods. For example, the type B method would
be used if one only knew that the possible values of a quan-

tity are contained within a given finite interval, in which case a
rectangular distribution with support on that interval would be
assigned [1, clause 4.3.7]. However, such a distribution is not
to be interpreted in a frequentist sense, but rather as a prob-
ability density function (PDF) encoding the existing ‘state of
knowledge’ about the quantity. It follows that Bayesian con-
cepts do appear in the current GUM, albeit implicitly.

Along with Bich [3], we believe that in metrological appli-
cations the time is ripe to forgo the frequentist view altogether
in favor of the Bayesian one, and to drop the distinction be-
tween methods of uncertainty evaluation. The reason is that,
in the Bayesian framework, there is just one single and gen-
eral evaluation methodology: it consists in using probability
theory for deriving a state of knowledge PDF for the quan-
tity of interest. Summary features of this distribution can then
be provided: its mean (for the best estimate of the quantity)
and its standard deviation (for the standard uncertainty asso-
ciated with the best estimate). Various coverage intervals hav-
ing specified probabilities of containing the value of the quan-
tity can also be computed. This value is assumed to be fixed –
at the time of measurement – but indeterminable; it could only
be made known exactly by means of a perfect measurement.

Nevertheless, we suggest it would be useful to retain the
notion of types of information about the quantity whose PDF
is to be constructed, say X . The type B information, desig-
nated as I B

X , can be defined as that leading directly to a PDF
f (x |I B

X ) without reference to a likelihood, as in the example
above for the rectangular PDF 1.

1Throughout we shall use upper case letters to denote quantities and lower
case letters for their possible values. The ‘given’ part of the PDF’s arguments
shall indicate on which information they rely.
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To obtain a PDF based on type A information about X , ap-
plication of the well-known Bayes rule is required. We define
this type of information, denoted by I A

X , as that imparted by
direct observations, which are typically regarded as being in-
dependent draws from an appropriate sampling distribution of
which X and other quantities PPPX are parameters. It is assumed
that this information is sufficient for setting up a likelihood
`
(
x, pppX ;I A

X
)
, where pppX is the set of variables for the possi-

ble values of the parameters PPPX (see (22) in section 3 for an
example.). Once the likelihood has been established, it is used
to update the prior for the parameters X and PPPX . This prior en-
codes any other relevant information I about them, if there
is any, otherwise a non-informative prior needs to be chosen.
The result is the posterior PDF for these parameters, out of
which the PDF f (x |I A

X ,I ) would be obtained by marginal-
ization (see below for further details).

Note that this procedure does not involve the notion of de-
grees of freedom, is not frequentist, and differs markedly from
the type A evaluation as outlined in the GUM. Note also that
it does not imply unique results in all situations. In particu-
lar, since non-informative priors may be established by dif-
ferent rules, minor variations of results may be expected, see
e.g. [4, 5]. Hence, despite the statement above that ‘just one
single and general evaluation methodology’ exists, slightly
differing results may nonetheless ensue.

In metrology, however, a quantity of interest not directly
accessible by measurement is usually modeled as a function
of one or more input quantities, about which information of
one or both types should be available. Two ways of process-
ing that information are then possible. The first is the so-
called GUM uncertainty framework, which consists in apply-
ing the ‘law of propagation of standard uncertainties’ associ-
ated with the best estimates of the input quantities, to obtain
the standard uncertainty associated with the best estimate of
the measurand. Naturally, the best estimates and the standard
uncertainties of the input quantities should be the means and
standard deviations of the corresponding PDFs, obtained as
described above. Alternatively, the PDFs for the input quan-
tities may be ‘propagated’ through the measurement model in
order to obtain the PDF for the output quantity. This second
option is preferable, because the resulting PDF fully utilizes
all information at hand.

An example is the model Y = X/Z, where Y is the length
of a gauge block at a reference temperature, X is its length
at the calibration temperature, and Z is a thermal correction
factor [6, 7]. If the measurand is Y , some information on both
X and Z is needed. That on the former might be of type A, as
acquired with an interferometer, say, while knowledge about
the latter might be taken from the scientific literature and be
of type B. The analysis would yield PDF f (y |M ,I A

X ,I B
Z )

for Y , where the letter M symbolizes that the model is also
included in the information that has been utilized. However,
suppose that at the same time there were type B information
for Y , as taken from a previous calibration certificate of the
gauge block. This information would lead directly to PDF

Scenario Quantity
X Y

1 A N
2 B N
3 A & B N

4 N A
5 A A
6 B A
7 A & B A

8 N B
9 A B

10 B B
11 A & B B

12 N A & B
13 A A & B
14 B A & B
15 A & B A & B

Table 1: Combinations of type A, type B and no information (N) for
the quantities X and Y to be considered in the model Y = F(X ,ZZZ). In
all scenarios type B information about ZZZ is assumed to have already
been encoded by a given PDF.

f (y |I B
Y ), with no reference to the model at all. How should

a PDF f (y |M ,I A
X ,I B

Y ,I B
Z ) based on the model and on all

three pieces of information be obtained? Would the method
for so doing depend on the type of information at hand for the
three quantities? Would such a PDF have a smaller or larger
standard uncertainty than the two previous ones?

So far, the documents produced by the JCGM have been
silent about such questions, although they are obviously rele-
vant to practical problems in metrology. A general method to
produce a PDF based on information of both types in a sim-
ple measurement model will be proposed in section 2 below.
Section 3 presents a short discussion on the non-informative
priors to be used in the case of Gaussian likelihoods. An ex-
ample for illustrating the method is given in section 4 and
conclusions are drawn in section 5.

2. ANALYSIS

We shall consider a measurement model of the type

Y = F(X ,ZZZ), (1)

where Y is the measurand. We shall analyze scenarios where
for both X and Y there may be information of type A, type B,
both types together or no information at all, whereas for ZZZ we
shall consider type B information only, see table 1.

It will be assumed that, by itself, acquisition of knowledge
about any one of these quantities will not provide new knowl-
edge about the other quantities before considering the model.
For example, in scenario 9, information pieces I A

X and I B
Y

lead to independent PDFs f (x |I A
X ) and f (y |I B

Y ). However,
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by action of the model in conjunction with the information on
ZZZ, information I A

X gives rise to a joint PDF for {Y,ZZZ}, while
information I B

Y produces a joint PDF for {X ,ZZZ}. From these
PDFs the marginals f

(
y |M ,I A

X
)

and f
(
x |M ,I B

Y
)

can be
obtained. In other words, the model plus information on X
results in information on Y and vice versa.

For completeness, all scenarios in table 1 will be studied.
The analysis of those for which there is no information about
X or Y (i.e. scenarios 1 – 4, 8, and 12) is straightforward.
Notwithstanding, we shall begin with them because they are
the basis of the rest of the scenarios.

2.1. Scenarios 1, 2 and 3: No information about Y

The case in which there is information about the input quan-
tities X and ZZZ but none about the measurand Y presents no
difficulties. Consider first information of type B only about
X , which leads to PDF f (x |I B

X ). To obtain the PDF for Y ,
we shall assume that for given ZZZ the relation between X and
Y is one-to-one, at least within the domains of interest, so
model (1) can be written equivalently as X = G(Y,ZZZ). Thus,
changing variables yields

f
(
y,zzz |M ,I B

X
)
=

∣∣∣∣∂ G
∂y

∣∣∣∣ f
(
G |I B

X
)

f (zzz), (2)

from which f
(
y |M ,I B

X
)

can be obtained by marginaliza-
tion. Note that, for conciseness, we have written G instead of
G(y,zzz) and f (zzz) instead of f (zzz |I B

ZZZ ).
Suppose now that there is information of types A and B

about X but again no information about Y . As was mentioned
in the Introduction, information I A

X leads to the likelihood
`
(
x, pppX ;I A

X
)
, while information I B

X is encoded in the prior
f
(
x, pppX |I B

X
)
. The term I B

X may or may not include infor-
mation about the parameters PPPX . If not, some kind of formal-
ism may be needed to construct this prior, see e.g. [8]. From
Bayes’ rule we get

f
(
x, pppX |I A+B

X
)

∝ `
(
x, pppX ;I A

X
)

f
(
x, pppX |I B

X
)
, (3)

and by transformation into the {Y,ZZZ} coordinates we obtain

f
(
y,zzz, pppX |M ,I A+B

X
)

∝∣∣∣∣∂ G
∂y

∣∣∣∣`(G, pppX ;I A
X
)

f
(
G, pppX |I B

X
)

f (zzz). (4)

This time, to find f
(
y |M ,I A+B

X

)
we need not only

marginalize but also compute the normalization constant.
An alternative approach to treat scenario 3 is to apply

Bayes’ rule in the form [9]

f
(
y,zzz, pppX |M ,I A+B

X
)

∝ `
(
G, pppX ;I A

X
)

f (y,zzz, pppX |I B
X ).

(5)
This so-called observation equation approach [10] needs a
prior f (y,zzz, pppX |I B

X ). By comparing (4) and (5) we see that,
for the sake of consistency, this prior must be the transformed

version of f
(
x, pppX |I B

X
)
, that is,

f (y,zzz, pppX |I B
X ) =

∣∣∣∣∂ G
∂y

∣∣∣∣ f
(
G, pppX |I B

X
)

f (zzz). (6)

The analysis for the case of type A information only about
X (and no information about Y ) follows from (4) and (5)
which become, respectively,

f
(
y,zzz, pppX |M ,I A

X
)

∝

∣∣∣∣∂ G
∂y

∣∣∣∣`(G, pppX ;I A
X
)

f (G, pppX ) f (zzz)

(7)
and

f
(
y,zzz, pppX |M ,I A

X
)

∝ `
(
G, pppX ;I A

X
)

f (y,zzz, pppX ), (8)

where f (G, pppX ) in (7) must be an appropriate non-informative
prior, whose transformation yields the one to be used in (8).

2.2. Scenarios 4, 8 and 12 : No information about X

Formulas for those cases where there is no information about
X and any type of information about Y follow immediately
from the analysis above. Thus, if only I B

Y is available, PDF
f
(
y |I B

Y
)

can be obtained directly.
If both I A

Y and I B
Y are present, the analog of (3) gives

f
(
y, pppY |I A+B

Y
)

∝ `
(
y, pppY ;I A

Y
)

f
(
y, pppY |I B

Y
)
, (9)

where pppY are the possible values of the parameters PPPY of the
sampling distribution from which the data I A

Y are assumed to
be drawn. Again, note that the prior f

(
y, pppY |I B

Y
)

may need
to be determined by using the procedure in [8] if I B

Y does not
include information about all parameters PPPY .

Finally, if only I A
Y exists we use

f
(
y, pppY |I A

Y
)

∝ `
(
y, pppY ;I A

Y
)

f (y, pppY ) , (10)

where f (y, pppY ) is a non-informative prior. In all these in-
stances, the measurement model is not needed. It would only
be used if the PDF for X were desired.

2.3. Scenarios 6 and 9 : type B information about X plus
type A information about Y , and vice versa

We are now ready to address the more interesting scenarios
for which there is information on all quantities in the model.
Consider first scenario 6, in which there is type B informa-
tion about X plus type A information about Y . The former
is encoded by f (x |I B

X ), while the latter is expressed by the
likelihood `

(
y, pppY ;I A

Y
)
. To use Bayes’ rule we need a prior

for Y and PPPY . We shall assume that this prior can be writ-
ten as f (y, pppY ) = f (y) f (pppY ), implying that the parameters PPPY
(if any) are independent from Y . This will usually be a fit-
ting premise, because in most cases there will be no logical
connection between Y and the parameters PPPY of the sampling
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distribution from which information I A
Y is assumed to be ob-

tained. Use of (2) for the prior f
(
y,zzz |M ,I B

X
)

then yields

f
(
y,zzz, pppY |M ,I B

X ,I A
Y
)

∝∣∣∣∣∂ G
∂y

∣∣∣∣`(y, pppY ;I A
Y
)

f
(
G |I B

X
)

f (zzz) f (pppY ), (11)

where f (pppY ) must be non-informative.
It should be mentioned that, since there is no information

about Y and PPPY , one might be tempted to write (11) as

f
(
y,zzz, pppY |M ,I B

X ,I A
Y
)

∝ `
(
y, pppY ;I A

Y
)

f (y, pppY ) f (zzz),
(12)

with a non-informative prior f (y, pppY ) but without utilizing
f
(
x |I B

X
)

at all. However, the inconsistency between the
‘given’ part of the arguments of the PDFs on either side of
this equation makes evident that, as remarked in [6], ‘it would
not be sensible to perform a Bayesian analysis with a non-
informative prior when in fact information is available’.

The situation in scenario 9 is opposite to that in scenario 6,
for we now have type A information about X and type B in-
formation about Y . (See [11] for a recent example of such
scenario.) In this case compute first

f
(
x,zzz |M ,I B

Y
)
=

∣∣∣∣∂ F
∂x

∣∣∣∣ f
(
F |I B

Y
)

f (zzz), (13)

where F is short for F(x,zzz). Then insert this prior in

f
(
x,zzz, pppX |M ,I A

X ,I B
Y
)

∝

`
(
x, pppX ;I A

X
)

f
(
x,zzz |M ,I B

Y
)

f (pppX ), (14)

with f (pppX ) being non-informative. Finally, transform this
PDF back to the {Y,ZZZ} coordinates. These operations yield

f
(
y,zzz, pppX |M ,I A

X ,I B
Y
)

∝

`
(
G, pppX ;I A

X
)

f
(
y |I B

Y
)

f (zzz) f (pppX ), (15)

which can be regarded as an observation equation approach.

2.4. Scenarios 7 and 13 : types A and B information about
X plus type A information about Y , and vice versa

The analysis when there are both types of information about
X together with type A information about Y follows by simply
updating the PDF f

(
y,zzz |M ,I A+B

X

)
, obtained from (4), with

the likelihood `
(
y, pppY ;I A

Y
)
, that is

f
(
y,zzz, pppY |M ,I A+B

X ,I A
Y
)

∝

`
(
y, pppY ;I A

Y
)

f
(
y,zzz |M ,I A+B

X
)

f (pppY ). (16)

In the opposite case (type A information about X to-
gether with types A and B information about Y ) the PDF
f
(
y |I A+B

Y

)
, obtained from (9), is updated by the likelihood

`
(
x, pppX ;I A

X
)
. This is done by writing

f
(
y,zzz, pppX |M ,I A

X ,I A+B
Y

)
∝

`
(
G, pppX ;I A

X
)

f
(
y |I A+B

Y
)

f (zzz) f (pppX ), (17)

which is a simple extension of (15).

2.5. Scenarios 10, 11, 14 and 15 : type B information about
X and Y

In all scenarios considered so far, the existing information is
such that it leads to an unambiguous PDF for the measurand
Y . This does not happen in the remaining scenarios. Consider
first scenario 10, in which there is only type B information
about both X and Y . The reason for the ambiguity is that
information I B

Y allows f
(
y |I B

Y
)

to be obtained directly, but
marginalizing (2) yields f

(
y |M ,I B

X
)
. Naturally, only under

very unusual circumstances will these two PDFs coincide.
The simplest way out of this seemingly conflicting situa-

tion would be to discard one of the two pieces of informa-
tion. But if both of them are to be retained, f

(
y |I B

Y
)

and
f
(
y |M ,I B

X
)

ought to be merged. In [12] we reviewed two
methods for doing so: logarithmic pooling

f
(
y |M ,I B

X ,I B
Y
)

∝
[

f
(
y |M ,I B

X
)]wX [ f

(
y |I B

Y
)]wY ,

(18)
and linear pooling

f
(
y |M ,I B

X ,I B
Y
)
= wX f

(
y |M ,I B

X
)
+wY f

(
y |I B

Y
)
,

(19)
where in both cases the pooling weights wX and wY should
add up to one. They should be selected by subjectively judg-
ing the reliabilities of the corresponding pieces of informa-
tion.

If additionally there were type A information, the PDF
f
(
y |M ,I B

X ,I B
Y
)

obtained by either method should be
updated by the likelihoods `

(
x, pppX ;I A

X
)

in scenario 11,
`
(
y, pppY ;I A

Y
)

in scenario 14 or both of them in scenario 15.

2.6. Scenario 5 : type A information about X and Y
The remaining scenario is that of type A information only
about both X and Y . Two approaches are then possible. In
approach a) the PDF f

(
y,zzz, pppX |M ,I A

X
)
, obtained from the

equivalent equations (7) or (8), serves as prior to be updated
by the likelihood `

(
y, pppY ;I A

Y
)
. This approach yields

fa
(
y,zzz, pppX , pppY |M ,I A

X ,I A
Y
)

∝

∣∣∣∣∂G
∂y

∣∣∣∣×
`
(
G, pppX ;I A

X
)
`
(
y, pppY ;I A

Y
)

f (G, pppX ) f (pppY ) f (zzz). (20)

In approach b) transform f
(
y, pppY |I A

Y
)

obtained from (10)
into the {X ,ZZZ} coordinates and update the result with the like-
lihood `

(
x, pppX ;I A

X
)
. Then transform the result back to the

{Y,ZZZ} coordinates. This approach leads to

fb
(
y,zzz, pppX , pppY |M ,I A

X ,I A
Y
)

∝

`
(
G, pppX ;I A

X
)
`
(
y, pppY ;I A

Y
)

f (pppX ) f (y, pppY ) f (zzz). (21)

Thus, two different PDFs for Y based on the model and on
information I A

X and I A
Y can be obtained. Their difference

lies in the non-informative priors used: for X in approach a)
and for Y in approach b). Is this an important ambiguity and
is there a way out of it?
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To answer these questions, we note that the PDF derived
by approach a) is the limit of the one in (16) with f (x, pppX )
taking the place of f

(
x, pppX |I B

X
)
, and that the PDF derived

by approach b) is the limit of the one in (17) with f (y, pppY )
taking the place of f

(
y, pppY |I B

Y
)
. Therefore, since scenario 5

may be considered as the limiting case of scenario 15 (with
less and less information I B

X and I B
Y ) one might think of

adopting the approach of the latter, i.e. pooling of the two
non-informative priors. Since the same pair of likelihoods
is used for successive updating in (20) and (21), logarithmic
pooling of the priors followed by updating with the two like-
lihoods would lead to the same outcome as if (20) and (21)
were directly logarithmically pooled. This property, which
additive pooling does not have, is called ‘external Bayesian-
ity’ [13] and was considered in a metrological context in [14].
However, given that non-informative priors normally have
only a minor impact on the outcome, pooling them will in
most cases be an unnecessary hassle. In fact, as we shall
see in the example below, the marginals fa

(
y |M ,I A

X ,I A
Y
)

and fb
(
y |M ,I A

X ,I A
Y
)

will usually have nearly equal stan-
dard deviations, their means being only slightly displaced
from one another. Thus, simply choosing the one PDF
fa
(
y |M ,I A

X ,I A
Y
)

or fb
(
y |M ,I A

X ,I A
Y
)

that better suits
the application at hand may suffice.

3. GAUSSIAN LIKELIHOODS

Non-informative priors were mentioned many times above.
Their construction may be effected by different principles [15]
and will not be addressed in this article, except for the brief
discussion that follows. It refers to the case of Gaussian like-
lihoods, which appear frequently in metrology. These likeli-
hoods arise when type A information about a certain quantity,
say X , consists of nX samples collected from a Gaussian sam-
pling distribution of mean X and standard deviation ΣX . If the
mean of these samples is x and their standard deviation is sX ,
the likelihood takes the form [16, eq. 1.4.2]

`
(
x,σX ;I A

X
)

∝
1

σ
nX
X

exp
[
− (nX −1)s2

X +nX (x− x)2

2σ2
X

]
,

(22)
where σX represents the possible values of ΣX .

Suppose information I B
X is available. It may or may not

include that about ΣX . If it did not, and if X and ΣX were
taken as independent, one would use

f
(
x,σX |I B

X
)

∝
1

σX
f
(
x |I B

X
)
, (23)

as the prior to be updated by the likelihood (22) [8, 15].
The case when there is no type B information about X (nor

about ΣX ) has been amply studied [6, 17]. The accepted non-
informative prior is in this case [16]

f (x,σX ) ∝
1

σX
, (24)

which corresponds to (23) with f
(
x |I B

X
)
= const.

In contrast, the appropriate non-informative prior
f (y,zzz,σX ) to be updated by a likelihood of the form
`
(
G, pppX ;I A

X
)

(equation 8) has been the subject of some
controversy. In [17], Bodnar et al studied the following three
options for this prior:

f (y,zzz,σX ) ∝
1

σX
f (zzz), (25)

f (y,zzz,σX |M ) ∝
1

σX

∣∣∣∣∂G
∂y

∣∣∣∣φ(zzz) f (zzz), (26)

and

f (y,zzz,σX |M ) ∝
1

σX

∣∣∣∣∂G
∂y

∣∣∣∣ f (zzz), (27)

where function φ(zzz) in (26) is given by equation (7) in [17].
Bodnar et al found that prior (25) may fail to produce a

proper posterior f
(
y |M ,I A

X
)
, so it is definitively inadvis-

able. They also found that in some cases prior (26) fails
as well to produce proper posteriors. That prior, which had
been proposed by us [18], was alas based on an inadvis-
able sequence of subsets in the general calculation proce-
dure developed in [8]. We detected this mishap and corrected
it [19], arriving at prior (27). Unfortunately, our revision came
too late for the authors of [17], otherwise prior (26) would
not have been considered at all. Last, Bodnar et al showed
that the marginal posterior f

(
y |M ,I A

X
)

is always proper if
prior (27) is used. This result was to be expected, because said
prior is the transformed version of (24), which is known not
to cause any difficulties in the case of a Gaussian likelihood.

4. EXAMPLE

As a simple illustration of the analysis in section 2, con-
sider the determination of the average diameter Y of metallic-
coated hollow glass micro-spheres for use in a particle image
velocimetry (PIV) application. Two methods were applied:
direct measurement of the diameter of these objects through
microscope image processing, and observation of their termi-
nal velocity X when falling in tap water at 20 oC. Under the
Stokes’ regime, this velocity is given by

X =
gY 2(ρ−ρw)

18 µw
, (28)

where g is the acceleration due to gravity, µw and ρw are the
dynamic viscosity and density of water, and ρ is the apparent
density of the hollow spheres [20, eq. 4.9.20]. This model,
which is valid if the Reynolds number Re = XY ρw/µw is
much less than 1, may be written as

Y = Z
√

X , (29)

where

Z = 3

√
2 µw

g(ρ−ρw)
. (30)

278



MEASUREMENT SCIENCE REVIEW, Volume 15, No. 6, 2015

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 1: PDF for the quantity Z defined by (30). The horizontal axis
represents the possible values z of Z, in (µm s)1/2.

Although the properties of pure water as functions of tem-
perature are known quite precisely, in this example their un-
certainty should be considered due to the influence of chlo-
rine, fluorides, dissolved minerals and other impurities, and
also because of the uncertainty in the measurement of the wa-
ter temperature. For simplicity, however, we shall use the
accepted values at 20 oC, µw = 1.00× 10−3 Pa s and ρw =
998 kg/m3, and shall assume that they are exactly known. The
uncertainty on the value of g will also be neglected.

Information I A
X consists of nX = 10 measurements of the

terminal velocity with mean x = 22.5 µm/s and standard de-
viation sX = 4.6 µm/s. In turn, information I A

Y comprises
nY = 7 direct measurements of the diameter, giving a mean
y = 10.5 µm and standard deviation sY = 2.3 µm. From
these results, the Reynolds number is of the order of 10−4,
so model (29) can be applied safely.

In its brochure, the manufacturer states that the diameter of
the spheres is within (12±3) µm, so for f

(
y |I B

Y
)

a rectan-
gular PDF with support on this interval will be used.

Type B information for X exists in the form of the opinion
of an expert according to whom measurements of the terminal
velocity outside of the interval ranging from xl = 17 µm/s to
xu = 25 µm/s could be taken as being definitely wrong. There-
fore, we shall assume that f

(
x |I B

X
)

is a rectangular distribu-
tion supported on the interval bounded by those limits.

Finally, the manufacturer’s certificate for the batch of
micro-spheres specifies that the best estimate of their apparent
density is 1430 kg/m3 with an associated standard uncertainty
of 150 kg/m3. Hence, it is reasonable to use for ρ a Gaussian
PDF whose mean and standard deviation correspond to these
values, respectively. Transforming variables, we get for Z the
PDF f (z) depicted in figure 1. Its left tail goes to zero very
rapidly, so its support can be assumed to be the positive axis.

4.1. PDFs in scenarios 4 and 8

Let us start the analysis of this example by considering sepa-
rately both types of information for Y . We have already said
that f8

(
y |I B

Y
)

is a rectangular distribution, where for clarity
a subscript has been introduced for denoting correspondence

8 10 12 14

0.1

0.2

0.3

0.4

Fig. 2: PDFs for the measurand Y in scenarios 4 (solid line), 8
(dashed line) and 12 (dotted line). In this and all remaining plots,
the horizontal axis represents the possible values y of Y , in microm-
eters.

6 8 10 12 14 16 18 20

0.05

0.10

0.15

0.20

0.25

Fig. 3: PDFs for Y in scenarios 1 (solid line), 2 (dashed line) and 3
(dotted line).

with scenario 8 (the same will be done for the rest of the sce-
narios). This PDF is plotted in figure 2 (dashed line).

If only I A
Y is taken into account we use (10) in the form

f4
(
y |I A

Y
)

∝

∫
∞

0
`
(
y,σY ;I A

Y
) dσY

σY
, (31)

where prior (24) has been used. Since the likelihood is Gaus-
sian, the integral yields for f4 a t-distribution with nY −1 de-
grees of freedom, location parameter y and scale parameter
sY/
√

nY [16, p. 97], see figure 2 (solid line).

4.2. PDFs in scenarios 1 and 2

Consider now separately both types of information for X .
When only I B

X is taken into account, (2) gives

f2
(
y |M ,I B

X
)

∝ y
∫ b(y)

a(y)

f (z)
z2 dz , (32)

where a(y) = y/
√

xu and b(y) = y/
√

xl. The dashed line in
figure 3 shows PDF f2.
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Fig. 4: PDFs for Y in scenarios 5a (solid line), 5b (dashed line), 6
(dotted line) and 7 (dot-dashed line).
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Fig. 5: PDFs for Y in scenarios 5a (solid line), 9 (dashed line) and
13 (dotted line).

If only I A
X is considered we use (8) and (27), giving

f
(
y,z |M ,I A

X
)

∝

y
z2 f (z)

∫
∞

0
`

(
y2

z2 ,σX ;I A
X

)
dσX

σX
, (33)

from which

f1
(
y |M ,I A

X
)

∝ y
∫

∞

0
f
(

y2

z2 |I
A

X

)
f (z)
z2 dz, (34)

where f
(
x |I A

X
)
, of which ample use will be made in the

following, is a t-distribution with nX −1 degrees of freedom,
location parameter x and scale parameter sX/

√
nX . Figure 3

depicts f1 as a solid line.

4.3. PDFs in scenarios 12 and 13

If information I A
Y is considered together with I B

Y , from (23)
we see that the prior to be updated by `

(
y,σY ;I A

Y
)

is f8/σY .
It is then immediate that f12

(
y |I A+B

Y

)
is equal to the nor-

malized product of the t-distribution f4 with the rectangular
distribution f8, see figure 2 (dotted line).

In scenario 13 we use (17) with f (σX ) ∝ 1/σX . Integrating

out σX and z, we get

f13
(
y |M ,I A

X ,I A+B
Y

)
∝

f12
(
y |I A+B

Y
)∫ ∞

0
f
(

y2

z2 |I
A

X

)
f (z) dz , (35)

which appears as a dotted line in figure 5.

4.4. PDFs in scenario 5
Evidently, PDFs f12 and f13 are much influenced by the type
B information on Y , which causes the cut-off at y = 9 µm
(and the imperceptible one at y = 15 µm). Therefore, it is
of interest to explore scenario 5, which includes information
I A

X and I A
Y only. As discussed in subsection 2.6, in this

case there are two possible approaches. In approach a) we
start from the limit of (16) as I B

X vanishes, which gives

f
(
y,z |M ,I A

X ,I A
Y
)

∝

f
(
y,z |M ,I A

X
)∫ ∞

0
`
(
y,σY ;I A

Y
) dσY

σY
. (36)

The expression for f
(
y,z |M ,I A

X
)

is given by (33) and the
integral on the right-hand side is just f4. Thus,

f5a
(
y |M ,I A

X ,I A
Y
)

∝

y f4
(
y |I A

Y
)∫ ∞

0
f
(

y2

z2 |I
A

X

)
f (z)
z2 dz , (37)

which is portrayed in figure 4 (solid line).
In approach b), (17) with vanishing I B

Y gives directly

f
(
y,z|M ,I A

X ,I A
Y
)

∝

f4
(
y |I A

Y
)

f (z)
∫

∞

0
`

(
y2

z2 ,σX ;I A
X

)
dσX

σX
, (38)

from which

f5b
(
y |M ,I A

X ,I A
Y
)

∝

f4
(
y |I A

Y
)∫ ∞

0
f
(

y2

z2 |I
A

X

)
f (z) dz . (39)

This alternative PDF is also shown in figure 4 (dashed line).

4.5. PDFs in scenarios 3 and 6
We have already mentioned that f12 is equal to the normalized
product of f4 and f8. For the same reason

f
(
x |I A+B

X
)

∝ f
(
x |I A

X
)

f
(
x |I B

X
)

(40)

and therefore, since f
(
x |I B

X
)

is a uniform distribution,

f3
(
y |M ,I A+B

X
)

∝ y
∫ b(y)

a(y)
f
(

y2

z2 |I
A

X

)
f (z)
z2 dz , (41)

which appears in figure 3 as a dotted line.
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Fig. 6: PDFs for Y in scenarios 10 (solid line), 11 (dashed line), 14
(dotted line) and 15 (dot-dashed line).

In scenario 6, we use the likelihood `
(
y,σY ;I A

Y
)

for up-
dating the prior f2 and so obtain

f6
(
y |M ,I B

X ,I A
Y
)

∝ y f4
(
y |I A

Y
)∫ b(y)

a(y)

f (z)
z2 dz , (42)

which is shown as a dotted line in figure 4.

4.6. PDFs in scenarios 7 and 9
Consider now disregarding the manufacturer’s information
I B

Y while retaining information I A+B
X together with I A

Y .
Then, (16) yields simply

f7
(
y |M ,I A+B

X ,I A
Y
)

∝ f4
(
y |I A

Y
)

f3
(
y |M ,I A+B

X
)
,

(43)
which is depicted as a dot-dashed line in figure 4.

If the measurement information I A
Y is disregarded and the

manufacturer’s information I B
Y is kept together with the mea-

surement information I A
X , (15) gives

f
(
y,z |M ,I A

X ,I B
Y
)

∝

f8
(
y |I B

Y
)

f (z)
∫

∞

0
`

(
y2

z2 ,σX ;I A
X

)
dσX

σX
, (44)

from which

f9
(
y |M ,I A

X ,I B
Y
)

∝

f8
(
y |I B

Y
)∫ ∞

0
f
(

y2

z2 |I
A

X

)
f (z) dz . (45)

This PDF is shown in figure 5 (dashed line), where we see that
the cut-off at the right is now much more visible than that for
scenario 12 (figure 2, dotted line).

4.7. PDFs in scenarios 10, 11, 14 and 15
As mentioned in subsection 2.5, in those scenarios for which
there is type B information about both X and Y we should
start by merging the two PDFs that encode just this infor-
mation, possibly with different pooling weights if one judges
that, say, the manufacturer’s information is more reliable than

the expert’s. But one still has to choose between logarith-
mic and linear pooling. Here the decision is easy, because the
support of f8 (figure 2, dashed line) is contained within that of
f2 (figure 3, dashed line), implying that linear pooling would
produce an unreasonable discontinuity at the boundaries of
the former PDF. Hence, since logarithmic pooling appears to
be the better choice, we shall use

f10
(
y |M ,I B

X ,I B
Y
)

∝
[

f2
(
y |M ,I B

X
)]w [

f8
(
y |I B

Y
)]1−w

.
(46)

The solid line in figure 6 illustrates this PDF with w = 0.5,
since we judge that there is no reason to assign more impor-
tance to the manufacturer’s information than to the expert’s.

In scenario 11, f10 is updated using the likelihood
`
(
x,σX ;I A

X
)
. By following the same steps that led to (45)

we then get

f11
(
y |M ,I A+B

X ,I B
Y
)

∝

f10
(
y |M ,I B

X ,I B
Y
)∫ ∞

0
f
(

y2

z2 |I
A

X

)
f (z) dz , (47)

which appears as a dashed line in figure 6.
In scenario 14 we use the likelihood `

(
y,σY ;I A

Y
)

for up-
dating f10. As in scenario 12, we obtain in this way

f14
(
y |M ,I B

X ,I A+B
Y

)
∝ f10

(
y |M ,I B

X ,I B
Y
)

f4
(
y |I A

Y
)
,

(48)
which is shown as a dotted line in figure 6.

Finally, in scenario 15, either this last PDF is updated by
means of `

(
x,σX ;I A

X
)
, giving

f15
(
y |M ,I A+B

X ,I A+B
Y

)
∝

f14
(
y |M ,I B

X ,I A+B
Y

)∫ ∞

0
f
(

y2

z2 |I
A

X

)
f (z) dz , (49)

or the PDF obtained for scenario 11 is updated by means of
`
(
y,σY ;I A

Y
)
, which yields

f15
(
y |M ,I A+B

X ,I A+B
Y

)
∝

f11
(
y |M ,I A+B

X ,I B
Y
)

f4
(
y |I A

Y
)
. (50)

Equations (49) and (50) are seen to be identical by substitut-
ing (48) in the former and (47) in the latter. This reflects the
well-known fact that it is irrelevant in which order updating
takes place. The PDF encoded by (49) or (50) is depicted as a
dot-dashed line in figure 6.

4.8. Discussion
Table 2 lists the means and standard deviations of the various
PDFs that result from the analysis. The first group of scenar-
ios in this table are those that take into account information
about Y only, so to obtain the corresponding PDFs the mea-
surement model was not considered and the information about
X and Z was disregarded. These PDFs are plotted in figure 2:
a t-distribution for scenario 4, a rectangular distribution for
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Scenario Information type Mean Std. dev.
on X on Y

4 A 10.50 1.06
8 B 12.00 1.73

12 A & B 10.65 0.88

1 A 10.44 4.28
2 B 10.08 4.44
3 A & B 10.40 4.54

5a A A 10.22 0.88
5b A A 10.29 0.88
6 B A 10.15 0.90
7 A & B A 10.20 0.88

9 A B 10.93 1.46
13 A A & B 10.41 0.77

10 B B 10.26 1.62
11 A & B B 10.48 1.22
14 B A & B 10.48 0.81
15 A & B A & B 10.28 0.72

Table 2: Means and standard uncertainties of the PDFs for Y , in
micrometers, derived in the various scenarios.

scenario 8 and the normalized product of the first two for sce-
nario 12. Therefore, since f12 is the truncated version of f4,
it is natural to expect that the standard deviation of the former
should be less than that of the latter.

The next group of scenarios, 1, 2 and 3, are those of the
GUM type, that is, those that include information on the input
quantities X and Z (or rather, X and ρ) but not on Y , so they
were obtained by propagating analytically the PDFs for the
input quantities through the measurement model. The corre-
sponding PDFs, depicted in figure 3, are all very similar. It
turns out that their standard deviations are much larger than
those in the other scenarios, which take into account direct in-
formation on the output quantity. This is a consequence of the
vagueness of the information on X and Z provided. If the in-
formation on these quantities were more precise than that on
Y , an opposite picture would have resulted. It is interesting to
note that (34) for f1 and (41) for f3 differ only in the limits of
the integrals, which in the latter case arise from the expert’s
information I B

X . The fact that these two PDFs have similar
means and standard deviations shows that the expert’s opin-
ion is consistent with the rest of the information. It is rather
imprecise, however, so his contribution is not determinant.

Scenarios 5, 6, and 7 make up the group of those that share
type A information on Y but differ in the type of information
considered for X . We note that in this example the two ways
of treating scenario 5 yield almost indistinguishable PDFs,
for this reason, only their central portions are plotted in fig-
ure 4. This figure depicts also the PDFs in scenarios 6 and 7.
The fact that these two PDFs are quite similar to that for sce-
nario 5 again reveals that information pieces I A

X and I B
X in

conjunction with information on Z are unimportant in com-
parison with I A

Y .
The PDFs for scenarios 9 and 13, depicted in figure 5, are

both restricted to the interval indicated by the manufacturer
for the diameter of the spheres. These PDFs differ in that the
latter includes the type A information for Y , which causes a
marked change in shape (from the dashed line to the dotted
one) and a substantial reduction of the standard deviation.

Finally, the PDFs for scenarios 10, 11, 14 and 15 are shown
in figure 6. They are all based on type B information about
both X and Y . In scenario 10 there is no type A information,
and the corresponding PDF, f10, was obtained by merging
those for scenarios 2 and 8. Since for the reason explained
above we chose the logarithmic pooling technique, the sup-
port of f10 gets restricted to that of f8. This fact is determi-
nant, for then the PDFs for scenarios 11, 14 and 15, which
use f10 as prior, share the same restriction. Thus, f11 was ob-
tained by updating this prior with the likelihood for X , and
for obtaining f14 we used the likelihood for Y . Either of these
PDFs was updated with the remaining likelihood to produce
f15.

This last PDF, which incorporates all information, exhibits
the smallest standard deviation. However, this is due to the
sharp drop to zero at y = 9 µm. So unless one were com-
pletely certain of the limits given by the manufacturer – espe-
cially the lower one – it would appear more sensible to drop
that information altogether, which is equivalent to assigning
zero weight to I B

Y . The PDF for scenario 15 would then
change abruptly to that for scenario 7 (or to one of those for
scenario 5 if the expert’s opinion were also to be disregarded).
On the other hand, it might be that the manufacturer is right
and that one or both instruments used to obtain the type A in-
formation are biased toward the low side. But to decide on
this possibility, more information would be required.

In short, to produce a PDF for the measurand, the basic
principle is that one should utilize all existing information,
unless there are good reasons to consider some elements of
that information as doubtful.

5. CONCLUSIONS

When evaluating physical models where a quantity of interest
is expressed as a function of other quantities, it may happen
that information on the former exists before the model is taken
into account. Neither the GUM nor its supplements address
such situations although they are important in practice. We
have done so in this paper through an example involving just
three quantities, X , Y and Z, where the second one was as-
sumed to be that of interest.

It was found that in obtaining the PDF for Y it is essential to
distinguish between the two types of information that may be
available on any of these quantities: that arising from direct
measurement data (type A) and that originating from other
sources, such as some expert’s opinion (type B).

We assumed that only type B information existed for Z,
and that either type or both together were available for X and
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Y . The analysis required extensive change of variables and
– only in case type A information was present – of Bayes’
rule. As is well known, the latter allows updating from prior
to posterior distributions by means of likelihoods, either one
at a time (the first measurement, then the next one, and so
on) or by constructing the product of likelihoods for a given
number of measurements from the outset.

In scenarios 1, 3, 4, 9 and 11 there was just one such prod-
uct to contemplate. But in scenarios 5, 7, 13 and 15 it was
necessary to treat likelihoods arising from distinct sources. In
these cases our approach was, simply, to update a prior with
one likelihood and then use the result to be updated with the
other likelihood. To our knowledge, this kind of procedure has
not been described in metrological applications yet, although
it is accepted practice in statistics [21].

Finally, in scenarios 10, 11, 14 and 15, type B information
was at hand for all quantities in the model. It was shown that
this situation requires merging two concurrent PDFs obtained
from that information, and that the PDF that results from the
merging procedure can then be updated with whatever likeli-
hoods exist, if any.

ACKNOWLEDGMENT

The first author acknowledges the financial support of Fonde-
cyt, research grant 1141165.

REFERENCES

[1] Joint Committee for Guides in Metrology. (2008). Eval-
uation of measurement data Guide to the expression of
uncertainty in measurement. JCGM 100:2008 (GUM
1995 with minor corrections).

[2] Bich, W., Cox, M., Dybkaer, R., Elster, C., Estler, W.,
Hibbert, B., Imai, H., Kool, W., Michotte, C., Nielsen,
L., Pendrill, L., Sidney, S., van der Veen, A., Woger,
W. (2012). Revision of the ’Guide to the expression of
uncertainty in measurement’. Metrologia, 49, 702-705.

[3] Bich, W. (2014). Revision of the ’Guide to the ex-
pression of uncertainty in measurement’. Why and how.
Metrologia, 51, S155–S158.

[4] Lira, I., Grientschnig, D. (2011). Non-informative priors
in GUM Supplement 1. Measurement 44, 1790–1791.

[5] Lira, I., Grientschnig, D. (2012). Assignment of a
non-informative prior when using a calibration function.
Measurement Science and Technology 23, 712–719.

[6] Elster, C., Toman, B. (2009). Bayesian uncertainty anal-
ysis under prior ignorance of the measurand versus anal-
ysis using the Supplement 1 to the Guide: A compari-
son. Metrologia 46, 261–266.

[7] Lira, I., Grientschnig, D. (2013). A formalism for ex-
pressing the probability density functions of interrelated
quantities. Measurement Science Review 13, 50–55.

[8] Sun, D., Berger, J. O. (1998). Reference priors with
partial information. Biometrika 85, 55–71.

[9] Lira, I., Grientschnig, D. (2010). Equivalence of alter-
native Bayesian procedures for evaluating measurement
uncertainty. Metrologia 47, 334–336.

[10] Possolo, A., Toman, B. (2007). Assessment of measure-
ment uncertainty via observation equations. Metrologia
44, 464–475.

[11] Elster, C. (2014). Bayesian uncertainty analysis com-
pared with the application of the GUM and its supple-
ments. Metrologia 51, S159–S166.

[12] Lira, I., Grientschnig, D. (2014). Deriving PDFs for in-
terrelated quantities: What to do if there is ’more than
enough’ information? IEEE Transactions on Instrumen-
tation and Measurement 63, 1937–1946.

[13] Clemen, R. T., Winkler, R. L. (1999). Combining prob-
ability distributions from experts in risk analysis. Risk
Analysis 19, 187–203.

[14] Grientschnig, D., Lira, I. (2014). Combining probability
distributions by multiplication in metrology: A viable
method? International Statistical Review 82, 392–410.

[15] Berger, J. O., Bernardo, J. M., Sun, D. (2009). The for-
mal definition of reference priors. Annals of Statistics
37, 905–938.

[16] Box, G. E. P., Tiao, G. C. (1973). Bayesian Inference in
Statistical Analysis. (Reprinted by Wiley in 1992 in the
Wiley Classics Library Edition.)
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