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The main tissue parameters targeted by MR tomography include, among others, relaxation times T1 and T2. This paper focuses 

on the computation of the relaxation time T2 measured with the Spin Echo method, where the sensing coil of the tomograph 

provides a multi-echo signal. The maxima of these echoes must be interleaved with an exponential function, and the T2 relaxation 

can be determined directly from the exponential waveform. As this procedure needs to be repeated for each pixel of the scanned 

tissue, the processing of large images then becomes very intensive. For example, given the common resolution of 256x256 with 20 

slices and five echoes at different times TE, it is necessary to reconstruct 1.3∙106 exponential functions. At present, such 

computation performed on a regular PC may last even several minutes. This paper introduces the results provided by accelerated 

computation based on parallelization and carried out with a graphics card. By using the simple method of linear regression, we 

obtain a processing time of less than 36 ms. Another effective option consists in the Levenberg-Marquardt algorithm, which 

enables us to reconstruct the same image in 96 ms. This period is at least 900 times shorter than that achievable with professional 

software. In this context, the paper also comprises an analysis of the results provided by the above-discussed techniques. 
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1.  INTRODUCTION 

AGNETIC RESONANCE IMAGING (MRI) is currently one 
of the most advanced diagnostic techniques. In this 
method, the resulting image is generated via excitation 

of hydrogen nuclei in the examined tissue and, 
subsequently, sensitive response detection. A large number 
of imaging sequences are available to display different 
tissue properties. The most common tomographically 
acquired parameters include relaxation times T1 (spin-
lattice) and T2 (spin-spin). Although both these times are 
identical in pure water, they can be advantageously applied 
for the recognition of biological tissues, whose T2 is less 
than T1. The more tissue parameters are known, the higher 
the possibility of their recognition or the correct diagnosis of  
a pathology. In this context, it is interesting to note that the 
multiparametric analysis [1] of diseased tissues became a 
fundamental factor to influence the concept of fast 
computation of T2-based tissue maps [2], [3]. 

The relaxation time T2, whose reconstruction is discussed 
in this paper, can be acquired by means of various 
sequences, including the Spin Echo (SE) and the Gradient 
Echo (GE) methods. The frequently applied SE approach [4] 
utilizes two radio frequency pulses with phases of 90° and 
180°. After the former pulse, the protons’ magnetization 
vector is flipped into the x-y plane, and T2 relaxation begins 
to show; some protons thus precess at slightly higher 
frequencies, others at lower ones, and dephasing occurs. The 
latter (or the refocusing) pulse, however, flips the individual 
spins in the x-y plane to rephase them, and the receiving coil 
will detect a signal having an amplitude that depends on the 
T2 relaxation of the tissue. This process repeats with the 
growing time TE, where TE/2 is the period between the 
pulses with the phases of 90° and 180°. The time sequence 
of the Spin Echo method is presented in Fig.1. 

 

 
 

 
Fig.1. The time progression of the Spin Echo sequence and the T2 

exponential decay. 
 

The relaxation time T2 is determined from the waveform 
of the exponential function which passes through maximum 
values of the individual echoes. This function can be 
expressed as 
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where E is the envelope of the spin echoes, TE is the time of 
the echo arrival from the first excitation pulse given by 
double of the time between the arrivals of the first and 
second excitation pulses. 

The relaxation time T2 is therefore determined via the 
following steps: 
• acquisition of several images via the SE sequence with 

different times TE; 
• exponential regression at points located in the maxima 

of the individual echo signals;  
• calculation of the T2 relaxation. 
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This procedure is repeated for all pixels in the image. For 
the applied image with the size of 256x256 pixels and depth 
of 20 slices, we then have 1.3∙106 exponential regressions, 
and there are 5 points from which the exponential function 
is reconstructed. 

It follows from the outlined facts that the computing task 
is rather complex with respect to the data size. Generally, 
two solution options are available. The first (and the most 
common) approach consists of solving the task sequentially, 
which requires us to perform in every step exponential 
regression from the five measurements for each pixel. The 
second method is based on the parallelization of the task. 
The computation of the value of the relaxation time T2 in 
each pixel depends only on the values obtained from the five 
measurements with the SE method, and therefore regression 
can be performed for all the pixels simultaneously. The 
parallel image processing technique then substantially 
reduces the time necessary to yield the actual result [5]. 

The reason for the proposed design of a method for fast 
computation of the T2 relaxation time is the lack of a 
corresponding tool. At present, any extensive experimental 
research using the analysis of images obtained via MRI 
requires data correction and preprocessing. The computation 
of the relaxation times from the data acquired through 
imaging sequences constitutes the initial stage within both 
the image processing chain and the description of the 
examined biological tissues by means of real physical 
parameters [6]. In view of the presented problem, the aim of 
this paper is to introduce the procedure of T2 map 
reconstruction utilizing fast graphics processors and various 
mathematical models. Moreover, the suggested approaches 
and solutions might also serve as inspiration and guidance 
for researchers intending to assemble or correct similar data 
processing methods. 

The first section of the article comprises a survey of the 
following problems or aspects: state of the art in fast T2 map 
reconstruction; database of MR test images; and the 
software/hardware used for the implementation of the fast 
reconstruction methods. In this connection, a detailed 
characterization of both the sequential and the parallel 
approaches to T2 map computation is provided. The 
following chapter then compares the results obtained with 
the analyzed techniques and presents the related 
computation times, and the final part of the paper contains 
an overall evaluation of the problem. 

The research in fast image processing methods is 
motivated by a major research track presently pursued at the 
DTEEE and partner institutes, where a large number of 
science projects involve the analysis of biological tissues. 
Recently, the procedure referred to as multiparametric 
analysis has been often applied; this technique is designed to 
view a tissue as a set of several parameter distributions, and 
therefore the tissue is not interpreted from the perspective of 
merely a single measured parameter. In current diagnostics, 
the most frequently examined images are those weighted by 
relaxation times T1 and T2 or by diffusion or perfusion 
coefficients; significant attention is also paid to derived 
images generated via defined calculation. The growing 
number of parameters increases the processing time and 
intensifies the computation, making necessary the search of 

suitable tools to either simplify or accelerate the actual 
processing. One of the projects in which the author of this 
paper currently participates in is based on investigating 
schizophrenia in mice. Within this project, sixty laboratory 
mice have been examined thus far, and images weighted by 
the T1/T2 relaxation times and by the diffusion coefficient 
were acquired from all the samples; the images weighted by 
the relaxation time T2 were obtained via the SE imaging 
sequence. Given the size of the image database, it became 
obvious that a new tool for batch-based fast processing has 
to be created. 

In recent years, graphics cards have become a popular 
instrument for parallel image processing [7], [8]. Methods 
enabling us to implement parallelization in image filtering 
[9], segmentation [10] and the otherwise very time-intensive 
registration [11], [12] are sufficiently described by several 
papers within the field of medical image processing. In MRI 
data processing, graphics cards are employed for a wide 
variety of computations. Sources [13] and [14], for example, 
then interestingly characterize the recent development and 
prospects of parallelization within medical data processing. 
Further, the problem of simple computation of the T2 
relaxation time is also analyzed in a number of articles and 
other sources, such as [15], [16], and [17]. Although the 
procedures presented in the indicated studies often utilize a 
simple linear model of the exponential function after 
logarithmic transformation, the processing time of the 
proposed techniques is not mentioned by the authors. 
However, time-intensive computation is expectable, given 
that the actual implementation was performed in the Matlab 
environment and assuming sequential execution of the 
program. The described regression function is also applied 
in our case, but the method principally prefers lower echo 
values. This drawback is discussed in references [18], [19]. 
Generally, we can point out that not many authors analyze 
the problem of employing parallelization to accelerate the 
computation of T2; rather, most papers concentrate on the 
use of exponential fitting in concrete applications. 

Several tools facilitating the computation of T2 maps are 
also available, for example MRI Processor [20]. This 
software computes both T1 and T2 maps and is equipped 
with two approximation iterative algorithms, namely the 
Levenberg-Marquart and Simplex methods. The tool is 
conceived as a plug-in for the well-known environment 
ImageJ, and it supports the computation of data up to four 
dimensions. Another suitable software package to process 
tomographic data is Marevisi [21], which is designed 
specifically for MR data processing. The program facilitates 
the computation of relaxation times via the regression of a 
series of available exponential waveforms. The software is 
applicable only commercially. 

 
2.  SUBJECT & METHODS 

The image resolution provided by experimental MR 
tomographs commonly ranges between 64x64 pixels 
and 512x512 pixels in a slice; three-dimensional imaging, 
however, enables us to obtain even 5123 pixels. In multi-
echo acquisition, the number of pixels must be also 
multiplied by the number of echoes, and as the 
reconstruction of T2 images typically requires the acquisition 
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of 5 images, it is necessary to process 5∙5123 = 0.67∙109 
values. The increasing image quality, which constitutes a 
decisive factor in tissue recognition, then obviously raises 
the computational difficulty of the entire processing chain. 
Thus, the actual conversion of such large data volumes has 
to be viewed in a completely different manner.  

If the reconstruction of a T2 map is carried out using a 
regularly available software package, the computation time 
required to process a single, average data volume will most 
probably remain within tens to hundreds of milliseconds. In 
higher resolution images, such computation may last even 
several minutes on a common PC; the processing of a whole 
set of experimental samples would therefore require minutes 
to hours of computation time.  

The computation period can nevertheless be significantly 
reduced by parallel programming and suitable application of 
standard hardware, usually a graphics card, which is 
characterized by a large number of implemented processor 
cores. The computation can thus be distributed among the 
processor threads executed in parallel, and the processing 
will be accelerated without its quality being compromised. 

 
A.  Image description 

The designed parallel processing method was tested using 
a three-dimensional image acquired with a Bruker Biospec 
94/30 tomograph (9.4 T) at the Institute of Scientific 
Instruments of the Academy of Sciences of the Czech 
Republic. The image captures a brown rat. The resolution of 
the images is 256x256 pixels, and the depth corresponds to 
twenty slices. Each pixel is measured five times with the 
Spin Echo method; the selected echo times TE are 15, 45, 75, 
105, and 135 ms. 

 
B.  Hardware and software specifications 

To compare the sequential and parallel execution of the T2 
map  computation  process,  we  used  a PC equipped with 
an Intel Core2 Quad 2.66 GHz, 4 GB RAM 
(2 × DDR2 @ 400 MHz). The set of related software 
included Windows 7 64-bit and Matlab R2013a. 

The parallel execution was implemented via a CUDA 
platform v. 7.0 with an nVidia graphics card, namely a 
GeForce GTX 770 (1024 threads per block; max thread 
block size 1024x1024x64; 4 GB of total memory at the 
frequency of 7 GHz; 1 GHz GPU). 

 
C.  Methods used 

The aim of the processing was to acquire a map of the T2 
relaxations of tomographically represented tissues. The 
paper presents two methods suitable for the purpose: a) 
sequential computation, and b) parallel computation. For 
both these approaches, the same image was used to facilitate 
comparison; this image consists of n pixels, and n is 
expressed as 

 
 s 256 256 20 1 310 720n w h n= ⋅ ⋅ = ⋅ ⋅ = ,            (2) 

 
where w is the image width in pixels, h is the image height 
in pixels, and ns is the number of slices. 

To compare the different processing times, we tested three 
algorithms implemented in the Matlab environment via 
sequential and parallel programming. The first two 
algorithms utilize methods based on converting exponential 
regression to linear regression via logarithmization of the 
equation [19]. While the first of these two procedures 
exploits the simple application of the least squares method 
to linear regression, the second one embodies an improved 
approach to the problem: although built upon the first 
technique, it allows simple correction to eliminate the 
drawback of greater weighting of smaller values of the 
acquired echoes [19]. We assume measured values that 
approximately correspond to the functional dependence 
expressed as 

 
bxy a e= ⋅ ,                                  (3) 

 
After logarithmization, this formula yields the equation of 

a line 
 

ln ln ln bxy a e= + .                          (4) 

 
Using simple modification, we can explicitly express the 

value of the exponent b as 
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By applying the least squares method, we obtain – for the 

calculation of the coefficient b – the formula for the first 
exponential regression method (ER1): 
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where the vector x represents the individual times of the 
echoes TE, the vector y denotes the measured echo values, 
and n is the number of measurements. By comparing the 
formulas 1 and 3 and substituting the coefficient b from the 
equation 6, we obtain the relaxation time T2 in the form 
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Each thread of the process therefore computes a voxel of 

the T2 map according to the following formula (ER1): 
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The second procedure assigns the same weight to all 
measured echoes, thus ensuring a more accurate result. The 
regression model of this method consists of a simple 
correction, after which the following function is minimized: 

 

( )2
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− −∑ .                       (9) 

 
If we now apply the least squares method, we obtain (via a 

process analogical to that used in deriving the ER1) the 
formula enabling the calculation of the relaxation time T2 
through ER2: 

 

( )

( ) ( ) ( )

2

2

1 1 1
2

1 1 1 1

ln ln

n n n

i i i i i

i i i

n n n n

i i i i i i i i

i i i i

y x y x y

T

y x y y x y y y

= = =

= = = =

 
−  
 = −

−

∑ ∑ ∑

∑ ∑ ∑ ∑
.    (10) 

 
The third algorithm is also based on the minimization of 

the function given by the least squares method; in this case, 
however, the minimization is performed with the 
Levenberg-Marquardt (LM) optimizing approach [22], 
which is given by numerical solution of the formula 

 

( )( ) ( )diag fλ δ+ = −  
T T TJ J J J J y β .          (11) 

 
where β is the vector of searched parameters of the 
interleaved function f, and the size of the parameter λ 
determines the characteristics of the algorithm. For low 
values of λ, the Levenberg-Marquardt model approaches the 
Gauss-Newton optimization method; for high values of λ, 
however, the model is close to the gradient descent 
technique. For the numerical solution, it is necessary to 
specify both the initial estimation of the searched parameters 
and the convergence criteria. In our case, the aspects were 
set as follows: 
• Estimation of searched parameters: a0 = 1000; b0 = -1. 
• Convergence criteria: the maximum of 100 iterations 
• λ0 = 0.01. 
 

D.  CPU implementation 

The three above-described techniques were all 
implemented in Matlab via sequential and parallel 
programming.  

At the initial stage, the test images were processed 
sequentially via two different techniques. The first of these 
methods sequentially reads individual image entities by 
means of a for cycle directly in Matlab, and one pixel of the 
resulting image is calculated during each step. As Matlab 
belongs to the family of interpreted programming languages,   
this processing method appears to be the least suitable in 
terms of the time required; for this reason, the specified 
processing time is usually only approximate and cannot be 
straightly compared with parallelized computations. A 
Matlab code to calculate the T2 map via a for cycle is shown 
as follows: 

for j = 1:length(t2echo) 
    b = (5*sum(te.*log(t2echo(j,:)))- 
    sum(te)*sum(log(t2echo(j,:))))/(5*sum(te.^2)- 
    sum(te)*sum(te)); 
 
    t2mapa(j) = -1/b; 
end 

 
The other CPU-based sequential processing technique 

utilizes the optimized MEX function (written in the C 
language) in Matlab. This approach markedly differs from 
the previously described one in that the time-intensive for 
cycle is transferred from the interpreted Matlab environment 
to the very fast processor code of the MEX function. Such a 
code representing computation of the T2 map via the ER1 
method is presented below. 

 
void compT2(double *te, double *t2echo, double  
            *t2, int n) 
{ 
    int idx; 
    double xx[5], yy[5], xxyy[5], logyy[5],  
           xx2[5], xx2yy[5], xxlogyy[5],  
           yylogyy[5], xxyylogyy[5]; 
     
    for (int i = 0; i < 256*256; i++) 
    { 
        for (int j = 0; j < 5; j++) 
        { 
            idx = i*5+j; 
            xx[j] = te[j]; 
            yy[j] = t2echo[idx]; 
            xxyy[j] = xx[j]*yy[j]; 
            logyy[j] = log(yy[j]); 
            xx2[j] = xx[j]*xx[j]; 
            xx2yy[j] = xx2[j]*yy[j]; 
            xxlogyy[j] = xx[j]*logyy[j]; 
            yylogyy[j] = yy[j]*logyy[j]; 
            xxyylogyy[j] = xx[j]*yy[j]*logyy[j]; 
        } 
 
        t2[i] = (n*sum(xxlogyy)- 
                 sum(xx)*sum(logyy))/(n*sum(xx2)- 
                 sum(xx)*sum(xx)); 
  t2[i] = -1.0/t2[i]; 
 
    } 
} 

 
The parallel, CPU-based processing was performed by 

means of three procedures. The first of these employs direct 
parallelization and enables optimization for concrete 
hardware, both thanks to the Matlab built-in function 
arrayfun; this function executes the particular processing 
type via the user-selected method in all elements of the 
vector/matrix. The efficiency of this solution is nevertheless 
hampered by two major problems, namely the already 
described slow execution of the interpreted code and the 
large amount of time required for calling the external m-
function that facilitates the actual computation over each 
element of the processed vector. At this point, it is also 
necessary to mention the unavailability of detailed 
documentation for the software-based execution of the 
arrayfun function. The second parallelization technique 
uses sequential processing, only the Matlab cycle for is 
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substituted by the parallelized cycle parfor with the 
maximum number of threads (four in this case) allowed by 
the hardware. 

The third approach to parallelized computation via CPUs 
consists in calling the MEX function, which computes the T2 
map very quickly, using a compiled code written in C++. 
Here, the actual parallelization is performed through 
Microsoft tools of the Parallel Patterns Library (PPL), 
namely using the parallelized cycle parallel_for. This 
cycle operates similarly to its common counterparts, but 
unlike them it utilizes all processor cores available. A MEX 
function to reconstruct the T2 map via the ER1 method is 
shown in the following section: 

 
void compT2(double *te, double *t2echo, double  
            *t2, int n) 
{ 
    parallel_for(0, 256*256, 
                 [&t2, &te, &t2echo, &n](int i) 
    { 
        int idx; 
        double xx[5], yy[5], xxyy[5], logyy[5],            
               xx2[5], xx2yy[5], xxlogyy[5],  
               yylogyy[5], xxyylogyy[5]; 
  
        for (int j = 0; j < 5; j++) 
        { 
            idx = i*5+j; 
            xx[j] = te[j]; 
            yy[j] = t2echo[idx]; 
            xxyy[j] = xx[j]*yy[j]; 
            logyy[j] = log(yy[j]); 
            xx2[j] = xx[j]*xx[j]; 
            xx2yy[j] = xx2[j]*yy[j]; 
            xxlogyy[j] = xx[j]*logyy[j]; 
            yylogyy[j] = yy[j]*logyy[j]; 
            xxyylogyy[j] = xx[j]*yy[j]*logyy[j]; 
        } 
 
        t2[i] = (n*sum(xxlogyy)- 
                 sum(xx)*sum(logyy))/(n*sum(xx2)- 
                 sum(xx)*sum(xx)); 
        t2[i] = -1.0/t2[i]; 
    }); 
} 

 
To simplify the implementation of the algorithms in the 

MEX function, the CPU program was (unlike GPU 
distributed programs) complemented with the double data 
type in all real variables. 

 
E.  GPU implementation 

The parallel computation is invariably performed over 
only one slice of the three-dimensional image, which 
exhibits the resolution of 256x256 pixels; this condition 
corresponds to 65536 threads of the graphics processor. The 
computation of the three-dimensional T2 map is then carried 
out in the serial-parallel manner. 

The individual methods were implemented using CUDA 
cores. An example of the ER1 method implemented to 
calculate the exponential regression coefficients is shown 
here: 

 
 
 

 

#define tel 5 // 5 echoes 
// auxiliary function 
__device__ float sum(const float vector[tel]) 
{ 
    double sum=0; 
    sum+=vector[0]; 
    sum+=vector[1]; 
    sum+=vector[2]; 
    sum+=vector[3]; 
    sum+=vector[4]; 
    return sum; 
} 
 
// main CUDA kernel 
__global__ void compT2(float * t2map, 

const float * te, 
const float * t2echo, 
const int t2len) 

{ 
    int idx = threadIdx.x + 

(((gridDim.x * blockIdx.y) + 
blockIdx.x)*blockDim.x); 

 
    if (idx < t2len) { 

float b, xx[tel], yy[tel], xx2[tel], 
      logyy[tel], xxlogyy[tel]; 

       float n = (float)tel; 
 
       for (int i = 0; i < tel; i++) { 
           xx[i] = te[i]; 
           yy[i] = t2echo[idx+i*65536]; 
           logyy[i] = log(yy[i]); 
           xx2[i] = xx[i]*xx[i]; 
           xxlogyy[i] = xx[i]*logyy[i]; 
       } 
        

// compute the exponent T2=-1/b 
       b = (n*sum(xxlogyy)-sum(xx)*sum(logyy))/ 

     n*sum(xx2)-sum(xx)*sum(xx)); 
       t2map[idx] = -1.0/b; 
    } 
} 

 
In order to ensure high efficiency of the parallelized 

algorithm, we selected the data type float (32 bits) for all 
significant parameters, mainly because its accuracy is fully 
sufficient for the given task. From the sum function for the 
summation of vector elements, the original cycle for was 
removed over all members and substituted with five-step 
sum. At such a low number of vector elements, the actual 
amount of time required for the cycle initialization could 
manifest itself markedly. 

 
3.  RESULTS 

The T2 map computation as performed by the individual 
algorithms is analyzed considering the factors of processing 
time and accuracy of the obtained values. Due to marked 
differences between the sequential and parallel execution of 
the program, the comparison of the processing times is 
performed on a three-dimensional image, namely with the 
resolution of 256x256 and 20 slices. The comparison 
focused on the accuracy of the obtained values is carried out 
via the computation and analysis of the differential image 
and by comparing the computed relaxation times of concrete 
tissues. The related processing time values are presented in 
Tables 1.-3. Table 1. compares the CPU-based sequential 
and the  GPU-based  parallel  processing  types.  The time 
values  
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related to parallel processing via a graphics card are 
invariably specified without the time necessary for the 
image data transfer to the graphics memory; this time was 
defined separately and corresponds to the value of 1.3 ms 
per transfer of one MR slice. It appears that, in a simple 
exponential regression (the ER1 and ER2 methods), the 
acceleration of algorithm distributions to the GPU is not 
markedly discernible; the acceleration value is 
approximately 4.5×, which virtually corresponds to the 
published achievable values [23]. In the more complex LM 
method, we can already speak of a three hundred-fold 
acceleration. But this value can be, on the one hand, 
misleading due to differences between the applied data types 
(float in the GPU, double in the CPU approaches) or 
because the code was not optimized for the concrete 
hardware; this latter aspect may include, for example, the 
SSE vectorization, which is certainly capable of providing a 
major increase in efficiency. Within the above- described 
solution, we accentuated fast, clear, and transferable 
implementation. On the other hand, however, the time 
required for sequential processing by means of the MEX 
function roughly corresponds to the processing time 
achievable with the Marevisi and MRI Processor programs. 
If we compare (Table 2.) the times necessary for the CPU 
and GPU-based parallel processing, it becomes obvious that 
in the simple methods (the ER1 and ER2) we obtain an 
almost double acceleration with the graphics card 
distribution. In the LM method, the acceleration is 
seventyfold in the given case. Here, too, the use of double 
time consuming data types may be of major importance. 
Table 3. compares the times required for the CPU-based 
processing of one and the same image via various sequential 
and parallel techniques. For example, it is apparent from this 
comparison that 4-thread parallelization in the MEX 
function becomes reasonably applicable only with the more 
complex algorithms (the LM), where the computation is 
positively accelerated almost four-fold. The simple 
procedures (the ER1 and ER2), however, are considerably 
burdened with the time-consuming parallelization control, 
and thus the parallelization process can be accelerated only 
twice. 

 
Table 1.  The processing times of the sequential (MEX function) 

and parallel (GPU) computation methods in Matlab. 
 

Comp. 

Comp. time 
1 slice 

sequential (parallel ) 

Comp. time 
 20 slices 
sequential 
(parallel) 

ER1 8.40 ms (1.80 ms *) 168 ms (36 ms *) 
ER2 8.90 ms (1.90 ms *) 178 ms (38 ms *) 
LM  1.45 s (4.80 ms *) 29.0 s (96 ms *) 
Marevisi 4.3 s (n/a) ≈86 s (n/a) 
MRI Proc. 12.0 s (n/a) 240 s (n/a) 

*) The processing times without data transmission to the 
GPU RAM; the transmission time is approximately 1.3 
ms/slice. 

Table 2.  The processing times of the CPU (MEX function) vs. the 
GPU parallel computation methods in Matlab. 

 

Comp. 

Comp. time 
1 slice 

CPU (GPU) 

Comp. time 
 20 slices 

CPU 
(GPU) 

ER1 3.65 ms (1.80 ms *) 73 ms (36 ms *) 
ER2 4.20 ms (1.90 ms *) 84 ms (38 ms *) 
LM  370.8 ms (4.80 ms *) 7,416 s (96 ms *) 

*) The processing times without data transmission to the 
GPU RAM; the transmission time is approximately 1.3 
ms/slice. 

 
 

Table 3.  A comparison of the times required to process one slice 
via various CPU-based techniques. 

 

Computation ER1 ER2 LM 
MEX function, 
seq.  processing 

8.40 ms 8.90 ms 1.45 s 

MEX function, 
par. processing 

3.65 ms 4.20 ms 370.8 ms 

Matlab for cycle 710 ms 1.10 s 505 s 
Matlab parfor 

cycle (4 workers) 
225 ms 1.00 s 185 s 

Matlab arrayfun 
function 

1.54 s 1.91 s 475 s 

 
 

 
 

Fig.2.  The resulting T2 map obtained via the Levenberg-Marquardt 
algorithm (LM). 

 
Fig.2. presents a selected T2 map in the 9th slice (middle 

position) of the volume from the parallel computation using 
non-linear regression performed with the Levenberg-
Marquardt algorithm. An image obtained using this method 
is comparable to images acquired by means of professional 
MR image processing programs. In the following sections of 
the comparison, the intensities of this image will therefore 
constitute reference values of the T2 relaxations. 
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Fig.3. and Fig.4. then show the result of the parallel 
computation carried out with the linear regression technique 
according to formulas 8 (ER1) and 10 (ER2). The 
differential image to facilitate comparison of the results is 
indicated in Fig.5. 
 

 
 

Fig.3.  The resulting T2 map acquired with the linear regression 
method (ER1). 

 
 

 
 

Fig.4.  The resulting T2 map obtained using the modified linear 
conversion method (ER2). 

 
 

 
 

Fig.5.  The differential images: a) LM-ER1; b) LM-ER2. 

 
 

Fig.6.  The ROIs for evaluating the relaxation times of concrete 
tissues. 

 
Based on subjective evaluation of the images shown in 

Fig.3. and Fig.4., it is possible to confirm the accuracy of 
both methods used in the T2 map computation. An analysis 
of the map acquired via the ER1 and ER2 methods will 
indicate a higher sensitivity to noise, which degrades the SE 
images already at the acquisition stage. This problem, which 
is visible mainly in the left portion of the image, is caused 
by weak response of the examined tissues, reflecting the fact 
that the image was made with a surface coil located on the 
right-hand side. The correctness of the result can be further 
demonstrated on the differential image presented in Fig.5. 
Here, again, a higher error rate can be identified in regions 
characterized by a lower level of the SE signal. After 
comparing the differential images presented in Figs.5.a) and 
b), it is possible to state that the ER1 is a method less 
accurate and more sensitive to noise than ER2. By 
comparing the sums of the differential image intensities, 

namely 5LM-ER1 4.3 10= ⋅∑  and 5LM-ER2 2.4 10= ⋅∑ , 

we can conclude that the error exhibited by the method ER2 
is smaller than that of the technique ER1. The results can be 
also compared by the calculated relaxation time values in 
individual tissues. Fig.6. shows the regions of interest in 
which we evaluated the T2 relaxation values in images 
obtained via LM, ER1, and ER2. 

Table 4. comprises values from the evaluation of the T2 
relaxation times related to concrete tissues, namely the ROIs 
shown in Fig.6. The regions are numbered from right to left; 
the right portion of the image corresponds to the real region 
where the tomograph sensing coil was located. As indicated 
in Table 4., the error rate of both ER1 and ER2 increases 
with the distance between the coil and the evaluation spot. 
The regions I, II, and III exhibit results comparable to those 
acquired with all three methods; in the regions IV to VII, 
major disagreement can be observed between the values of 
relaxation times computed with the ER1 and ER2 methods 
and the values obtained with the reference LM. 
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Table 4.  Evaluation of the T2 relaxation times in concrete tissues. 
 

ROI LM ER1 ER2 
I. 47.8±1.9 ms 49.2±3.2 ms 48.2±2.0 ms 
II. 49.4±1.3 ms 49.4±1.7 ms 49.0±1.5 ms 
III.  122.2±5.7 ms 122.7±2,6 ms 120.2±4.9 ms 
IV. 18.0±5.0 ms 53.1±6.0 ms 37.1±3.2 ms 
V. 40.4±4.1 ms 58.2±7.2 ms 51.1±5.5 ms 
VI. 77.9±9.7 ms 85.2±11.7 ms 78.9±9.5 ms 
VII. 50.4±7.1 ms 67.6±10.1 ms 60.4±8.3 ms 

 
4.  CONCLUSIONS 

The above-presented results point to the benefit of 
algorithm parallelization to both the reconstruction of T2 
maps and the implementation of such algorithms in a 
graphics card processor. In this manner, the computation of 
the T2 relaxation time maps was significantly accelerated 
without the processing quality being compromised. We 
described three reconstruction methods, namely two 
approaches based on linear regression and one utilizing 
nonlinear regression. The best results were achieved with 
the nonlinear solution, which consists of optimizing the 
exponential function parameters by means of the Levenberg-
Marquardt algorithm. Interestingly, the results obtained via 
this method were identical with those provided by regularly 
accessible software tools for the processing of data from MR 
tomographs (MRI Processor, Marevisi). These programs 
also utilize the regression approach employing the 
Levenberg-Marquardt optimization, and thus agreement 
between the results was the precondition for correct 
implementation. A comparison of the processing times 
required to compute the applied image (256x256x20 pixels) 
will indicate a major decrease in the length of the execution 
period, and we then have the following values: Marevisi - 
approximately 1.5 min.; MRI Processor - 4 min.; GPU 
acceleration – 96 ms. It is therefore possible to conclude that 
a graphics processor will proceed 900 to 2500 times faster 
than regularly available software packages; if we compared 
the processing times characterizing the linear regression 
methods, the eventual processing pace would be even 
higher. However, such comparison is rather misleading 
because the linear regression methods may exhibit a 
significant failure rate in the reconstruction of T2 maps. This 
fact was verified by comparing the processing results 
acquired with LM, ER1, and ER2. The ER1 method, which 
principally does not assign the same weight to all regression 
points, exhibited an error rate higher than that of the ER2 
approach, which solves the given problem. In both these 
cases, however, a comparison of the reconstruction results 
or an analysis of the differential images has shown that the 
linear regression methods, in which the exponential 
regression problem is converted to the optimization of the 
linear model, are not suitable for the reconstruction of 
relaxation times. This is further proved by the results 
obtained from an analysis of the differential images, where 
the sum of intensities of the individual pixels is 4.3∙105 in 
ER1 and 2.4∙105 in ER2. A higher value points to a more 
prominent difference between the result of the given method 

and the results provided by the reference technique LM. The 
reconstruction error can be demonstrated in the relaxation 
times of individual tissues, especially in spots more distant 
from the measuring surface coil. In regions marked as IV, V, 
and VII, the error of T2 reconstruction is expressed in tens to 
hundreds of percent, and we can therefore conclude that the 
simple linear regression methods ER1 and ER2 are not 
applicable for the reconstruction of maps from weak, noise-
containing signals. 

To provide a well-balanced comparison of the processing 
times, we included several types of implementation related 
to both the sequential and the parallelized techniques. 
Within this context, the easiest procedure appears to consist 
of comparing the processing speed of MEX functions 
programmed in the C language with the speed of graphics 
card-distributed computations. If we compare the purely 
sequential (pixel-by-pixel), CPU-based T2 map computation 
using the MEX function with the GPU-based processing, we 
obtain the speed acceleration values of 4.6×, 4.7×, or 300× 
in the ER1, ER2 methods (the LM). However, it appears 
more accurate and balanced to observe the CPU-based 
parallelized computation vs. the GPU-based process using 
the MEX function, where the achieved acceleration equals 
2×, 2.2×, and 77×. As pointed out above, the large increase 
in the LM method reflects the fact that the possibilities of 
the code optimization for the concrete CPU were exploited 
only partially. Assuming the values in Table 1., it is 
nevertheless possible to claim that although the 
reconstruction of MRI T2 maps can be considered a time-
consuming task within image processing, currently available 
tools (Marevisi, MRI Processor) do not employ any large-
scale optimization of the CPU code and are markedly slower 
than the analyzed implementation. 
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