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Non–integer order differentiation is changing application of traditional differentiation because it can achieve a continuous 

interpolation of the integer order differentiation. However, implementation of the non–integer order differentiation is much more 

complex than that of integer order differentiation. For this purpose, a Haar wavelet-based implementation method of non–integer 

order differentiation is proposed. The basic idea of the proposed method is to use the operational matrix to compute the non–

integer order differentiation of a signal through expanding the signal by the Haar wavelets and constructing Haar wavelet 

operational matrix of the non–integer order differentiation. The effectiveness of the proposed method was verified by comparison 

of theoretical results and those obtained by another non–integer order differential filtering method. Finally, non–integer order 

differentiation was applied to enhance signal. 
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1.  INTRODUCTION 

ON–INTEGER order differentiation (NIOD) is a 

generalization of the ordinary differentiation. 

Nowadays, NIOD attracts many scientists and 

engineers [1].  In fact, in the early eighties of the last 

century, semi-derivative voltammetry had been applied to 

peak resolution [2], and then theoretical and experimental 

resolution of semi-derivative linear scan voltammetry was 

further verified by Bobrowski et al. [3]. After the first 

application of the signal semi-differentiation, an entirely 

new perspective has been outlined in analytical science. 

Such as the fractional derivative was proposed to determine 

the overlapping band spectral parameters [4], the fractional 

order differentiation was used to improve signal resolution 

by Mocak et al. [5], the 2.5 order derivative combined with 

Fourier least square fitting was designed to process noised 

overlapped peaks [6], the fractional order derivative 

spectroscopy was used to resolve the overlapped Lorentzian 

peaks [7], the fractional order differentiation was widely 

used to detect the edges and enhance the texture of images 

[8]-[14]. In these applications, an important task is to 

implement the NIOD. A survey about the NIOD has been 

presented in [15], in which analysis, design and applications 

of analog and digital differentiators of fractional order were 

summarized. 

At present, there are already some methods to implement 

the NIOD, these methods can be mainly divided into two 

categories: one is time-domain implementation methods of 

the NIOD, for example the most direct way is using the 

Grünwald–Letnikov definition to compute the NIOD of a 

signal, taking into account the non-locality of fractional 

differentiation, the short memory principle of the NIOD was 

proposed [16], in addition, there are implementations of the 

NIOD based Savitzky-Golay polynomial [17] and radial 

basis function [18]; the other is frequency-domain [19]-[23],  

such as fractional order FIR differentiators [19-22], and 

fractional order IIR differentiators [20, 23] .  

In this paper, a Haar wavelet-based implementation 

method of NIOD is proposed. In the proposed method, the 

operational matrices were used to compute the NIOD of a 

signal through expanding the signals by the Haar wavelets 

and constructing Haar wavelet operational matrix of the 

NIOD [7]. Advantage of the proposed method is that the 

NIOD of a signal can be easily obtained by matrix-vector 

multiplication.  

In order to verify the effectiveness of the proposed 

method, some experiments have been performed to compare 

the proposed method with other methods [19, 23, 25]. Then 

the proposed method was used to enhance signal. In 

analytical chemistry and related sciences, because of the 

impact of environmental factors, the output signal is prone 

to drift and lead to an asymmetrical shape of peak, which 

will have effect on quantitative analysis. Ordinary derivative 

preprocessing technique [26, 27] or wavelet transform [28] 

was usually used to eliminate the effect of baseline drift 

before quantitative analysis. Here, we use the NIOD to 

enhance the signal. Processed result indicates that the result 

enhanced by the OFD is better than that processed by direct 

difference method (DM) and wavelet method (WM). 

 

2.  HAAR WAVELET OPERATIONAL MATRIX OF THE NIOD 

A.  Fractional calculus 

The Riemann-Liouville definition is used in the following 

to generalize the Haar wavelet integral operational matrix 

from the integer order to the non–integer order. 
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where ( )rI x t denotes non–integer order integration (NIOI) 

of signal ( )x t , ( )rΓ  is Gamma function and the order of 

the integration r is an arbitrary real number. 

 

B.  Haar wavelet and Haar wavelet expansion of a signal 

The Haar wavelets are defined as follows: 
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An arbitrary signal 
2( ) [0,1)x t L∈  can be expanded by 

Haar wavelet, i.e., 
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where the Haar coefficients ic , 0,1, 2,i = ⋯ , are 

determined by  
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In practice, only the first N terms of (4) are considered, 

where N is a power of  2. So we have 
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where the superscript T indicates transposition, the Haar 

coefficient vector NC  and the Haar function vector ( )NH t  

are defined as 
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In order to obtain the coefficient vector
N

C , we need N 

equations. So, collocation points are taken as 
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The N-square Haar matrix N N×Ψ  can be defined by  
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C. Block pulse operational matrix of the non–integer order 

N-term block pulse functions are defined as follows 
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where 0,1, 2, , ( 1)i N= −⋯ .  

This can be written in matrix form as 
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According to Ref. [24, 29], we have 

 

( )( ) ( )N NI t F tα αΦ ≈ Φ                   (13) 

 

where Fα
 is block pulse operational matrix for the non–

integer order integration, and 
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with 
1 1 1( 1) 2 ( 1)k k k kα α αξ + + += + − + − . 

Let Dα
 be the block pulse operational matrix for the non–

integer order differentiation. According to the property of 

fractional calculus, we have 

 

D F Iα α =  .                              (15) 

 

From linear algebra we know that the inverse matrix of an 

upper triangular matrix is also upper triangular matrix, i.e., 

 

0 1 2 1

0 1 2
1

0 3

0

0

0 0

0 0 0

0 0 0 0

N

N

N

d d d d

d d d

D F d d

d

α α

−

−
−

−

 
 
 
  = =   
 
  

⋯

⋯

⋯

⋱ ⋮

.    (16) 

 

Where 

   

1

0 1 1 0 1 1

1

1, , ...,
N

N k N k

k

d d d d dξ ξ
−

− − −
=

= = − = −∑ . 

 

D. Haar wavelet operational matrix of the non–integer 

order 

Let 

( ) ( ) ( )N N N NI H t P H tα α
×≈                    (17) 
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where the N-square matrix 
N NPα
×  is called the Haar wavelet 

operational matrix of the non–integer order integration. 

Because the Haar wavelets are piecewise constant, then we 

have 

N N N NH ×= Ψ Φ                           (18) 

 

From (17) and (18), we deduce 
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From (17) and (19), we obtain 
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So, the Haar wavelet operational matrix of the non–integer 

order integration 
N NPα
×  is given by 

 
1

N N N N N NP Fα α −
× × ×= Ψ Ψ  ,                   (21) 

 

and the Haar wavelet operational matrix of the non–integer 

order differentiation 
N NW α
×  is given by 

 
1

N N N N N NW Dα α −
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3. METHOD VALIDATION AND APPLICATION 

The proposed method is very easy. First, a signal is 

expanded with Haar wavelets according to (6). If the signal 

is noisy, we can set the threshold of the wavelet coefficients 

to reduce the noise of a signal. Second, the Haar wavelet 

operational matrix of the non–integer order differentiation 

N NW α
×  is constructed by (22). Finally, the NIOD of a 

signal ( )D x tα
 can be approximated by ( )T

N N N NC W H tα
× , 

i.e. 

( ) ( )T

N N N ND f t C W H tα α
×=  .                (23) 

 

In order to verify the proposed method, signal ( )x t t=  is 

taken as an example to compare the proposed method with 

other methods [19, 23, 25]. This is because its fractional 

calculus can be calculated in theory, i.e. 
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In interval[0,1) , we calculated non–integer order calculus 

of the signal using the proposed method at differentα , 

some results for 0.2α = , 0.5 and 0.8 were shown in 

Fig.1. and Fig.2. We can see our result is in good agreement 

with the real result. Their maximum absolute errors for 

different N were given in Table 1. and Table 2. 
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Fig.1.  NIOI of x(t). 
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Fig.2.  NIOD of x(t). 

 

Table 1.  Maximum absolute errors for NIOI of ( )x t t= at 

different N. 

 

 0.2α =  0.5α =  0.8α =  

N=32 9.1788e-004 6.0858e-004 2.4794e-004 

N=64 3.9953e-004 2.1517e-004 7.1203e-005 

N=128 1.7391e-004 7.6073e-005 7.6294e-006 

 

Table 2.  Maximum absolute errors for NIOD of ( )x t t= at 

different N. 

 

 0.2α =  0.5α =  0.8α =  

N=32 0.0385 0.1410 0.4741 

N=64 0.0221 0.0997 0.4127 

N=128 0.0127 0.0705 0.3593 

 

From Table 1. and Table 2., one can see that their 

maximum absolute errors decrease with the increase of N.  

Errors of NIOD are bigger than those of NIOI. 

Further, we compared the proposed method with these 

methods in [19, 23, 25]. When 0.5α = , N=32, the 

comparison results for the non–integer order integration and 

differentiation are shown in Fig.3. and Fig.5. For the NIOI, 

one can see our result is in good agreement with the real 

result. From Fig.4. which is amplified parts of Fig.3., we can 

see our result is superior to that obtained with the methods 

in [19, 23, 25]. For the NIOD, one can also see our result is 

in good agreement with the real result. From Fig.6. which is 

amplified parts of Fig.5., we can see our result is superior to 

that obtained with the methods in [19, 23, 25]. 
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Fig.3.  NIOI of x(t) for different methods. 
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Fig.4.  Magnified view of Fig.3. 
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Fig.5.  NIOD of x(t) for different methods. 

 

From (6), one knows if a signal with white noise is 

expanded by the Haar wavelets, we can de-noise by 

thresholding the wavelet coefficients. In the proposed 

method, one only needs to let the corresponding row of the 

Haar matrix be zeros. From [5], one knows that the 

differentiation or integration with fractional order 

(differintegration) is favorable mainly in the form of the 

semiintegral or semiderivative of the original measured 

signal. As a verification of the proposed method, we 

simulate a signal with baseline drift and white noise and 

compute its 0.5 order derivative using the proposed method 

and the G-L definition method. Their results are shown in 

Fig.7.b) and c).  It is obvious that the proposed method has 

greater noise immunity than the G-L definition method. 
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Fig.6.  Magnified view of Fig.5. 
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a). Original signal. 
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b). 0.5 order derivative of original signal obtained by the 

proposed method. 
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c). 0.5 order derivative of original signal directly obtained by the 

G-L definition method. 

 
Fig.7.  Original signal and its 0.5 order derivative. 
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a).  Normal signal. 
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b). Original signal. 
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c). Enhancement results with NIOD. 
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d). Enhancement results with WM and DM. 

 

Fig.8.  NIOD for signal enhancement and its comparison with WM 

and DM 

 

In analytical chemistry and related sciences, because of the 

impact of environmental factors, the output signal is prone 

to drift and lead to an asymmetrical shape of peak, which 

will affect quantitative analysis. To eliminate the effect of 

baseline drift, Ordinary derivative preprocessing technique 

[26, 27] or wavelet transform [28] is the usual method. Here, 

we use the NIOD to enhance the signal.  The signal shown 

in Fig.8.a) is a normal signal, and the signal in Fig.8.b) is an 

abnormal signal that has been drifted due to the impact of 

environmental factors or instrument. To eliminate the effect 

of baseline drift and enhance signal resolution, NIOD of the 

original signal was performed for differentα , and their 

results were shown in Fig.8.c). We can see that 0.5-order 

NIOD of the original signal can eliminate baseline drift and 

amplitude difference between two peaks. The shape of the 

signal enhanced with 0.5-order NIOD is almost consistent 

with the normal signal in Fig.8.a). 

Wavelet method (WM) and difference method (DM) are 

usually used to eliminate the effect of baseline drift and 

enhance signal resolution too. As a comparison, the results 

enhanced with wavelet method (WM) and difference 

method (DM) are shown in Fig.8.d). One can see that the 

enhancement results with WM and DM are consistent. But 

enhancement results with WM or DM are just a special case 

of the proposed method for 1α = . 

It is obvious that using non–integer order differentiation to 

enhance the signal, we can obtain different enhancement 

results (Fig.8.c)). That is to say, non–integer order 

differentiation can provide a more flexible enhancing 

strategy. 

 

4.  CONCLUSION 

The Haar wavelet-based implementation method of non–

integer order differentiation is given and verified by 

comparison of theoretical results and those obtained by 

another non–integer order differential filtering method. 

Results indicate that the proposed method can not only 

implement non–integer order differentiation of a signal, but 

also reduce the effect of noise. In addition, because of the 

extension of differentiation orders from integer numbers to 

the fractional numbers, NIOD provides a more flexible 

enhancing strategy when we use the differential 

enhancement method. However, what are the general criteria 

to set order α is still an open problem. 
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