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In this article the issues related to mapping the route and error correction in automated guided vehicle (AGV) movement have been 
discussed. The nature and size of disruption have been determined using the registered runs in experimental studies. On the basis of the 
analysis a number of numerical runs have been generated, which mapped possible to obtain runs in a real movement of the vehicle. The 
obtained data set has been used for further research. The aim of this paper was to test the selected methods of digital filtering on the same 
data set and determine their effectiveness. The results of simulation studies have been presented in the article. The effectiveness of various 
methods has been determined and on this basis the conclusions have been drawn. 
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1.  INTRODUCTION 

For the conduction and determination of the current 
position of an automated guided vehicle a variety of 
navigation systems are used to move from the starting point 
along a specified route to the destination. The basis for 
determining the current position in the majority of cases is 
odometry – computational navigation. This method of 
determining a vehicle’s position is laden with many errors 
[8]-[11], [14], [16] and requires correction [17]. In the 
process of correction, a range of measurement methods is 
used. Measuring is followed by correction of the course of 
the vehicle. Adjustments can be implemented continually or 
cyclically, after a specified section or passing a specified 
marker – reference point [1], [4], [7], [13].  

The results of the measurements are burdened with 
distortions; therefore, they must be filtered [17]. Currently, 
there are many techniques for data filtering. Each of the 
existing filter algorithms has properties that narrow down 
the area of their application.  

To examine and determine the effectiveness of the 
filtration methods concerned and their algorithms this paper 
analyzes numerically generated runs to reflect actual 
trajectories of an automated guided vehicle. One of the main 
errors of a navigation system such as odometry is the 
adoption of an improper ratio between the radii of the left 
wheel to the right wheel. This error belongs to the group of 

systematic biases and makes the vehicle stray from the 
prescribed direction of the route and make a curved motion 
in an arc of constant radius [2], [15]. The actual runs 
measured are characterized by the presence of additional 
oscillation arising from the control system, and the 
disruption and random error of measurement resulting from 
the measurement sensors.  

The objective of the simulation tests was the choice of the 
appropriate method of filtration which eliminates this 
adverse phenomenon, and enables the designation of the 
radius of the arc which the vehicle moves in. This in turn 
will allow the designation of improvements to the 
computational navigation algorithm and making of ongoing 
course correction. 
 
2.  SUBJECT & METHODS 
A.  Odometry 

The basic method of calculating the position of automated 
guided vehicle is computational navigation – odometry. It 
involves determining the current position of the vehicle on 
the basis of the distance traveled by the marked point on the 
vehicle K. Computational navigation uses the difference in 
speed between the drive wheels vL and vR to determine the 
directional angle θ. The nature of this solution is shown in 
Fig.1. 
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Fig.1.  Coordinate system used in analytical navigation. 
 

This method is a continuous count of the distance traveled 
by the left wheel (WL) and right wheel (WR), and the 
determination in each iteration of the directional angle 
changes with the motion of the vehicle θ. Τhis is applied in 
vehicles in which two independently powered drive wheels 
are used. Appropriate differentiation of the speeds of these 
wheels forces rotation of the vehicle around a vertical axis 
of rotation passing through point O and changes in the 
directional angle θ.  

If the position of a selected point O directed using two 
independently powered wheels WL and WR in the base 
reference system X0O0Y0 (Fig.1.) in iteration k is defined by 
the state vector ( ) ( ) ( )( )kkykx θ,, , the position of the vehicle 
in the iteration k+1 is expressed by: 
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Velocities ( )1O +kv  and ( )1+kω  can be determined from 

the following relations: 
 

 ( ) ( ) ( )( ) 2/111 +++=+ kvkvkv LRO                 (2) 
 

 ( ) ( ) ( )( ) bkvkvk LR 111 +−+=+ω                  (3) 
 

where:  
( )1+kvR

 - speed of the right wheel, 
( )1+kvL

 - speed of the left wheel, 
b - wheelbase of the driven wheels. 

Velocity ( )1+kvR
 and ( )1+kvL

 can be determined from 
the following relations: 

 
 ( ) ( ) rkkv RR ⋅+=+ 11 ω                       (4) 

 
 ( ) ( ) rkkv LL ⋅+=+ 11 ω                        (5) 

 
where:  
r - radius of the steered wheels. 

In the above consideration it was assumed that the wheels 
are rigid and they roll without spin, the contact between the 

wheel and the floor is a point contact and the radii r of the 
driven wheels are the same. 

Presented method is very simple but has got some 
drawbacks connected with errors. We can distinguish 
several sources of errors that have an impact on the accuracy 
of positioning. These sources were divided into two 
categories: systematic errors and non-systematic errors. 
Additional odometry errors can be caused by the odometry 
equations themselves, since they approximate an arbitrary 
motion as a series of short rectilinear segments. The 
precision of this approximation depends on the program 
step. 

Two dominant sources of errors in odometry are unequal 
wheel diameters and uncertainty about the wheelbase. 

By properly determined and set radii rL and rP a vehicle 
carries out straight motion. In the event of a change of these 
radii, for example, as a result of loading of the vehicle with 
transported cargo, the vehicle carries out a curvilinear 
motion. An example run registered during the motion using 
laser rangefinders is shown in Fig.2. [17]. The determination 
on a straight test section of radial motion on the curvature of 
the course will make it possible to determine amendments to 
the calculated algorithm for the correction of the course. 
Measuring errors also overlap with the measurements and 
the shape of the trajectory, which is well illustrated in Fig.2. 
showing the actual run. 

 

 
 

Fig.2.  The real run of automated guided vehicle. 
 

The registered run is curved. We can distinguish an arc of 
large radius, oscillations on the arc and measuring errors in 
the form of noise. The arc of large radius is a result of the 
adoption of an improper ratio of the radius of the left wheel 
to the right wheel. Meanwhile, the presence of oscillation 
results from the regulation set-up used.  

Assuming various errors in relation to the radii of rolling 
wheels, numerical runs were generated to reflect sample 
trajectories of an automatically driven transport vehicle. 
Fig.3.a) shows a sample numerically generated run and its 
components in the form of an arc (Fig.3.b)), its oscillation 
(Fig.3.c)), and measurement noise (Fig.3.d)). 

Since the purpose of simulation tests was to find the most 
appropriate method of filtration in a group of numerically 
generated runs in accordance with the provisions shown in 
Fig.3., it was decided to examine the effectiveness of the 
methods of filtration considered in the latter part of this 
article. 
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Fig.3.  The numerically generated run reflects the exemplary 
trajectory of automated guided vehicle. 

 
B.  Filtration methods  

In the simulation studies, it was decided to examine the 
effectiveness of Gaussian regression filters of zero and 
second order, spline filters, and robust regression filters. 

The designation of the middle line of the Gaussian 
regression filter w(x) of zero order is done using regression. 
The advantage of this filter is that for each point of the 
measured section the value of the mean line of the filter is 
defined. The regression arrangement can be mathematically 
described by the following relationship [3]:  

 
 ( ) ( )( ) ( )

( )∫ →⋅⋅−−
2

1

min2
x

x
xw

dsxwxz ξξξ  (6) 

 
The value of the mean line of the filter w(x) of the filtered 

profile reduces the squared deviation of the measured profile 
z(x-ξ) weighted by s(ξ) and integrated in the range of  
0<(x-ξ)<l (l – measured length). The limits of integration 
are defined in such a way that guarantees analysis of the 
entire section measured.  

The mean line of the filter (x) is described by the 
following formula:  
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In addition, the regression filter performs a weighted 

averaging (shown in equations 7 and 8). Averaging occurs  

in a finite interval. The weight function s0(x) is scalable, so 
its area is always set to 1. The regression filter corresponds 
to the filtration with phase correction in accordance with 
ISO 11562 standard, when the weight of s(x) is replaced 
with a Gaussian probability function and the limits of 
integration are in the range ∞<−<∞− ξx . The Gaussian 
regression filter allows the avoidance of the effects of the 
final profile by changing the weight function for the initial 
and final parts.  

Gaussian regression filter of second order can approximate 
distinct form components since it fits a polynomial curve 
locally.   

The robust filter is a modification of the Gaussian filter 
involving the introduction of an additional weight function: 

 
 ( ) ( ) ( ) ( )∫

∞

∞−

⋅⋅−= ξξρξ dsxxzxw  (9) 

 
The additional function of the weight decreases in 

abnormal places deviating far from the mean. 
The robust filter also responds well to the peaks of the 

profiles. This filter applied to the profiles not containing 
outliers should have the characteristics of a Gaussian filter.  

Spline filter is a special type of discrete linear filter. Spline 
filters are characterized by the spline function to obtain a 
filtered output signal. The function of S(x)=S(x, ∆n ) defined 
on the interval <a, b> is called the function splined to the 
degree of m (m ≥ 1) if: 

1. S(x) is a polynomial of degree at most m in each 
interval (xi, xi+1), i = 0, 1, ..., n-1. 

2. S(x) and its derivative step 1, 2, ..., m-1 are continuous 
in the intervals. 

Any kind of function very often comes close to spline 
functions. This is easily linked to the designation of their 
values and convergence for the numerous classes of 
functions. In practice, functions splined to a third degree 
(cubic) are often used, which for many issues are 
sufficiently smooth and the speed of their convergence is 
satisfactory. 

The current study demonstrated the flexibility and 
usability of spline filters for industrial applications.  

Filters based on spline curves are based on natural cubic 
spline functions. 

The weight function of this type of spline filters cannot be 
specified unambiguously. Therefore, filter equations are 
used instead of weight functions to describe the spline filter. 
However, the numerical calculation of the weight function 
for spline filters is always possible, when necessary. If the 
sampling interval is small enough and the spline filter is 
based on the cubic curve, weight can be approximated by a 
continuous function [12]: 
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Filter equations are based on cubic splines and have the 
following form: 
 
 ( ) zwQ =+ 41 α  (11) 

 
where Q is the n dimensional matrix. 

In a non-periodical case: 
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In a periodical case: 
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However, the parameterα is expressed by the formula: 

 
 

CO

x
λ
π

α
∆

=
sin2

1  (14) 

where:  
 
n – number of measured points in the profile, 
z – vector with a dimension of n that contains the 
coordinates of the profile before filtration, 
w – vector with levels after filtration, dimension of n that 
contains the levels after filtration, 

COλ  – wavelength limit of filtered profile,  
x∆  – sampling interval. 
Filters described above are widely used in surface 

metrology; however, areas of their application are wider [5], 
[6].  
 
3.  SIMULATION STUDIES  
A.  Description of tests 

The simulation studies carried out consisted of two stages. 
In the first stage, the maximum permissible errors are 
specified to ensure a collision-free passage on a given 
stretch of the route with an arc of specified radius. This 
stage includes the different values of the arcs and the 
corresponding allowable measurement errors. In the second 
phase the results of simulation studies were presented in 
which trajectory runs were generated and different methods 
of filtration were used.  
B.  Determination of the maximum permissible errors 

For the determination of the maximum permissible errors 
in the study a case was considered of an AGV vehicle with 
dimensions 0.8 x 1.2 m in a corridor of length s = 20 m and 
the final part of its journey through a gate with a width of 
1.2 m. In real conditions the radii of the wheels change, e.g. 
as a result of the load of transported cargo on the vehicle. 
Therefore, the vehicle carries out a curvilinear motion 
(Fig.2.). The measurement system and calculation algorithm 
applied in the vehicle allow to make a course correction in 
order to implement direct motion along the axis of the 
corridor. The estimated radius of the trajectory differs from 
the real value and is burdened with some error. Wherein, the 
estimated value may be higher or lower than the actual 
value. The determined corrections to the motion control 
algorithm do not allow to maintain a straight trajectory. In 
order to determine the limits of errors to ensure free passage 
for a predetermined corridor, there were specified 
permissible errors in determining radii of curvilinear 
motion. 

Simulation studies have been considered with curvature of 
the track of 50, 100, 150, 200, 250, and 300 m. The results 
of the respective simulation are shown in Fig.4. 

 

 
 

Fig.4.  Errors of radii determination and corresponding deviations 
from assumed tracks. 

 

 
 

Fig.5.  Permissible error values. 
The curves shown in Fig.4., diverging from the point 0, 

show the deviations from the target track at a 20 m distance 
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of motion for different basic radii R in the error estimation 
function. The estimation error ∆ has a value greater than 
zero when the real radius is smaller than the estimated value. 
Otherwise, we are dealing with a negative error. The 
horizontal line in Fig.4. determines the maximum 
permissible deviation from the target trajectory. In the 
considerations it has been assumed that the deviation is 
0.2 m. The values of deviations from a given course, for the 
same basic radii R have different courses for positive and 
negative errors. In order to demonstrate the differences, the 
graph in Fig.5. has been developed.  

The vertical axis defines the maximum value of error 
estimated for the larger radii than the basic one (bottom 
curve), and the absolute values of the errors for the radii 
smaller than the basic one (upper curve). 

C.  Filtrations and generations of radii 
In simulation, computer generated runs corresponding to 

trajectories of automated guide vehicles were analyzed. 
These trajectories are subjected to various disturbances 
mentioned above. Effectiveness of selected methods of 
digital filtering was analyzed. Regression filters of zero (G0) 
and second order (G2) as well as robust (RO) and spline 
filters (SP) were studied. It was assumed that the analyzed 
profiles are characterized by radii (see Fig.3.) of 50, 100, 
150, 200, 250, and 300 m, respectively. Fig.6. presents an 
example of profile of 20 m length. The results of filtration 
using the selected filter s (mean lines) are also shown. 
Simulation analysis was done for profiles of amplitude A = 
0.05 m and wavelength T = 4 m (Fig.3.). The cut-off 
wavelength changed from 0.4 to 0.9 m with interval of 
0.1 m.  

 
 

 
 

Fig.6.  Results of filtration for profile of the base radius R = 250 m. 
 

4.  RESULTS AND DISCUSSION  
Application of filters commonly used in surface metrology 

to navigation problem is novelty of this research. In order to 
assess behaviors of selected filters, difference between 
assumed base radius and radius after filtering was assumed 
as measure of filter effectiveness. The relative error ∆ was 
calculated as ratio (R-F)/R, where R is assumed base radius 
and F is radius after filtration. In all the presented series of 
results the following succession of filters: robust, regression 

with zero order, regression with second order, and spline 
filter was used. 

Table 1. - Table 6. present relative errors for various base 
radii after application of various filters with different cut-
offs. On the basis of results shown in Fig.5. the maximum 
errors of radius of curvature matching were calculated for 
the base radii of 50, 100, 150, 200, 250, 300 m. They are 
5 %, 9 %, 13 %, 17 %, 20 %, 23 %, respectively. When 
obtained deviations are smaller than limiting errors, the cells 
in Tables are marked in yellow.  
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Table 1.  Relative error Δ for the base radius R = 50 m. 
 

R=50m 
Lp. cut-off, m GO ∆,% R0 ∆,% G2 ∆,% SP ∆,% 
1 0.4 16.0617 16.0798 18.9404 18.4932 
2 0.5 13.7798 13.7842 18.7525 18.3961 
3 0.6 11.0780 11.0724 18.5901 18.3596 
4 0.7 7.9976 7.9839 18.4810 18.3632 
5 0.8 4.5378 4.5171 18.4021 18.3872 
6 0.9 0.6793 0.6519 18.3425 18.4185 

 
 

Table 2.  Relative error Δ for the base radius R = 100 m. 
 

R=100m 
Lp. cut-off, m GO ∆,% R0 ∆,% G2 ∆,% SP ∆,% 
1 0.4 -7.7057 -7.5965 -4.4641 -4.4211 
2 0.5 -10.3958 -10.3048 -3.6530 -4.6373 
3 0.6 -13.9309 -13.8519 -3.6659 -4.7567 
4 0.7 -18.0889 -18.0189 -4.0446 -4.7526 
5 0.8 -22.7811 -22.7184 -4.4373 -4.6803 
6 0.9 -28.0069 -27.9502 -4.7340 -4.5868 

 
 

Table 3.  Relative error Δ for the base radius R = 150 m. 
 

R=150m 
Lp. cut-off, m GO ∆,% R0 ∆,% G2 ∆,% SP ∆,% 
1 0.4 -7.9642 -7.8311 -5.4001 -4.6762 
2 0.5 -10.3022 -10.1901 -3.8021 -4.8310 
3 0.6 -13.6715 -13.5717 -3.5715 -4.9341 
4 0.7 -17.7514 -17.6603 -3.9916 -4.8941 
5 0.8 -22.4008 -22.3165 -4.4974 -4.7715 
6 0.9 -27.5990 -27.5203 -4.8955 -4.6268 

 
 

Table 4.  Relative error Δ for the base radius R = 200 m. 
 

R=200m 
Lp. cut-off, m GO ∆,% R0 ∆,% G2 ∆,% SP ∆,% 
1 0.4 -9.3048 -9.1547 -7.1044 -6.0442 
2 0.5 -11.3747 -11.2479 -4.8761 -6.2413 
3 0.6 -14.6456 -14.5317 -4.5372 -6.3771 
4 0.7 -18.7043 -18.5992 -5.0954 -6.3210 
5 0.8 -23.3619 -23.2638 -5.7787 -6.1539 
6 0.9 -28.5825 -28.4901 -6.3197 -5.9581 

 
 

Table 5.  Relative error Δ for the base radius R = 250 m. 
 

R=250m 
Lp. cut-off, m GO ∆,% R0 ∆,% G2 ∆,% SP ∆,% 
1 0.4 -10.7725 -10.6084 -8.9340 -7.5491 
2 0.5 -12.5647 -12.4263 -6.0555 -7.8001 
3 0.6 -15.7343 -15.6096 -5.6159 -7.9748 
4 0.7 -19.7703 -19.6548 -6.3267 -7.9034 
5 0.8 -24.4353 -24.3270 -7.2019 -7.6896 
6 0.9 -29.6771 -29.5746 -7.8973 -7.4397 

 
 

Table 6.  Relative error Δ for the base radius R = 300 m. 
 

R=300m 
Lp. cut-off, m GO ∆,% R0 ∆,% G2 ∆,% SP ∆,% 
1 0.4 -12.3092 -12.1323 -10.8486 -9.1293 
2 0.5 -13.8099 -13.6613 -7.2878 -9.4405 
3 0.6 -16.8731 -16.7391 -6.7471 -9.6578 
4 0.7 -20.8844 -20.7600 -7.6201 -9.5707 
5 0.8 -25.5551 -25.4384 -8.6990 -9.3076 
6 0.9 -30.8170 -30.7064 -9.5590 -9.0002 

 
Behavior of Gaussian regression filter G0 of zero order 

was similar to that of robust filter R0, although the analyzed 
profiles contained outliers (individual peaks of valleys). 
Presumably the widths of these valleys of peaks were small, 
therefore robust filter behaved neutrally. The application of 
robust filter RO is more time consuming than that of the 
regression filter G0, therefore, for the analyzed cases the last 
G0 filter should be preferred. For the smallest radius 
R = 50 m the criterion was fulfilled only after application of 
robust filter (RO) and regression filter of zero order (G0) for 
cut-off wavelengths of 0.8 and 0.9 m. The behavior of other 
filters was worse; deviations were larger than 18 %, the 
largest matching error was found for regression filter of the 
second order; about 4 times bigger than permissible error.  
Probably profile with small radius R was similar to surface 
profile, it contained waviness and roughness (without form) 
for this profile type, Gaussian filter G0 was better than 
spline filter SP of not specified weight function. Mean line 
determined by Gaussian regression filter of second order 
contained not only waviness but also form. Therefore, 
behaviors of G2 and SP filters were worse than those of G0 
and RO filters 

Different situation occurred for higher radii R. In those 
cases, contrary to the smallest radius R, radii after filtering 
were larger than assumed. Application of spline filter SP 
and regression filter of the second order assured correct 
results for all the cut-offs applied. Only in one case the 
absolute value of the relative error was higher than 10 % 
(regression filter of the second order, cut-off 0.4 m). The 
tendency was found that absolute relative errors were higher 
for larger radius R. However, after application of robust 
filter and regression filter of zero order the errors were 
higher than after the use of the other filters. Increase of error 
due to growth of cut-off is the characteristic feature of GO 
and R0 filters. After application of these filters, the 
matching criterion was fulfilled only for cut-off of 0.4 m for 
radius R of 100 m. For radius R of 150 m the matching 
criterion was fulfilled for cut-offs of 0.4 and 0.5 m, for 
radius R of 200 m for cut-offs of 0.4, 0.5 and 0.6 m. 
However, for the largest radii R of 250 and 300 m RO and 
G0 filters behaved correctly for cut-offs between 0.4 and 
0.7 m. The absolute value matching error after application of 
robust and Gaussian regression filter of zero order was up to 
31 (for the highest radius R and largest cut-off used). These 
behaviors of the analyzed filter were caused by the fact that 
filtered  profiles  of  radii  R  higher than 50 m contained not 
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only features similar to roughness and waviness of surface 
texture, but also form. Gaussian filter of second order G2 
reacted correctly since it can approximate form components. 
It is also known that spline filter SP can remove form.  
 
5.  CONCLUSION 

In order to make corrections in trajectory of vehicle 
movement the information about course of this trajectory is 
needed. Determined trajectory from the measurement is 
subjected to many errors. Therefore, it should be filtered. It 
was found that filters commonly used in surface texture 
analysis can be applied in vehicle navigation. Behavior of 
different filters depends on the trajectory radius. In practical 
situations movement along a smaller radius is the most 
dangerous. Deviations from assumed trajectory can be high. 
For the smallest radius of 50 m the regression filter of zero 
order and robust filter were the most effective for cut-offs of 
0.8 and 0.9 m. However, for the larger radii of tracks the 
application of regression filter of the second order and spline 
filter assured correct results. Therefore, the authors of the 
present paper recommend selection of the type of filter after 
initial determination of radii of tracks. For the analyzed 
trajectories it is not necessary to use robust filter; the 
Gaussian regression filter is preferred.   
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