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We present a reliable calibration method using the constraint of 2D projective lines and 3D world points to elaborate the accuracy of the 
camera calibration. Based on the relationship between the 3D points and the projective plane, the constraint equations of the 
transformation matrix are generated from the 3D points and 2D projective lines. The transformation matrix is solved by the singular value 
decomposition. The proposed method is compared with the point-based calibration to verify the measurement validity. The mean values of 
the root-mean-square errors using the proposed method are 7.69×10-4, 6.98×10-4, 2.29×10-4, and 1.09×10-3 while the ones of the original 
method are 8.10×10-4, 1.29×10-2, 2.58×10-2, and 8.12×10-3. Moreover, the average logarithmic errors of the calibration method are 
evaluated and compared with the former method in different Gaussian noises and projective lines. The variances of the average errors 
using the proposed method are 1.70×10-5, 1.39×10-4, 1.13×10-4, and 4.06×10-4, which indicates the stability and accuracy of the method. 
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1.  INTRODUCTION 

Camera calibration is an important source of the 
correspondence information between 3D space and 2D 
image [1]-[3]. The task of a camera calibration method is to 
provide the geometric transformation from the 2D points in 
an image to the 3D coordinates in the space [4], [5]. 
Therefore, the camera calibration is the foundation for the 
optical test and measurement. It has extensive applications 
such as object identification, image measurement, robot 
navigation, vehicle profile reconstruction [6]-[10], etc. 

Traditional camera calibration method establishes the 
constraint relationship between the standard object and the 
image to calculate the parameters of a camera [11], [12]. 
Later in Zhang's work, feature points for the calibration are 
generated from the photos of the calibration object. The 
calibration object is a 1D bar that rotates around a fixed 
point [13]. The shortcoming of the 1D calibration is that the 
1D object should be exactly restrained to perform the 
controlled special motions, such as planar motions or 
rotations around a fixed point [14]. The 2D plane-based 
calibration requires a planar pattern shown at a few different 
orientations. The constraint equations are built by the 
properties of the unit orthogonal matrix to solve the camera 
parameters [15]. It is flexible and easy to implement in the 
laboratory, however, the calibration precision is limited by 
the measurement distance and the number of captured 
images. Although both existing 1D and 2D calibration 

methods are easier to apply than 3D methods, for the 
reconstruction applications the methods require the 
appropriate measurement distance to achieve the higher 
precision [16], [17]. A calibration method is built by the 
geometrical model between the 3D coordinates of the laser 
stripe on the target and the 2D coordinates in the image [18]. 
Cui proposed a precise calibration method for a binocular 
vision system that is devoted to minimizing the distance 
error between the reconstructed point through optimal 
triangulation and the ground truth in a 3D measurement 
coordinate system [19]. The drawback of the above 
point-based methods is the accuracy of the calibration 
method declines when the locations of measured feature 
points are affected by noises. 

It is well-known that in practice it is difficult to accurately 
and reliably extract all the features in all images considering 
the noises, image blur, and different illumination [20]. Large 
noises, outliers, missing features, and mismatches lead to the 
inaccurate calibration result [21]. Therefore, it is important 
to provide a more stable and precise camera calibration 
method. We raise the global calibration method of a camera 
using the constraint of 2D projective lines and 3D world 
points. The Hough transform is adopted to extract the 2D 
projective lines in the image, which provides a high 
robustness even for large occlusions or bad lighting 
conditions [22]. The camera calibration is implemented by 
the relationship of the known 3D points in the real world 
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and the precise lines’ coordinates in the image. In most 
applied measurements, straight line is the attractive object 
because it is little affected by noises. Compared with 
traditional calibration methods with feature points, the 
line-based camera calibration method has better 
noise-immunity and higher accuracy. It provides a stable 
solution of the camera calibration problem in a convenient 
and accurate way. It is also possible to reduce the effect of 
image noises on the accuracy of the inferred camera 
parameters. 

A reliable calibration method is explored in this paper, 
which elaborates the accuracy of the calibration. A 
projective line in the image is determined by the 
corresponding 3D points and the projective plane. 
According to the geometrical relationship between 3D 
points and 2D projective lines, a group of 2D projective 
lines is typically extracted to obtain the constraints of the 
transformation matrix P of the camera. Meanwhile, the 
proposed method is compared with the original method of 
3D points and 2D projective points to verify the 
measurement validity and the noise immunity. 
 
2.  LINE-BASED CALIBRATION METHOD 

In the camera model in Fig.1., the world coordinate system 
O-XYZ is attached to the 3D calibration board. o-xy is the 
image coordinate system. o-uvw is the camera coordinate 
system. One 3D line Li and two 3D points ( )j

iX  (j = 1, 2) on 
the 3D line Li in the world coordinate system O-XYZ are 
projected to the 2D image plane o-xy. The generated 
geometrical elements are the 2D line li and two 2D points 

( )j
ix , respectively. We choose two 3D points on each line 

because more than two points depend on the two 3D points, 
which means the points can be expressed by the former two 
3D points. The relationship between a 3D point ( )j

iX  and a 
2D point ( )j

ix  from the pinhole camera model is [23], [24] 
 

( ) ( )j j
i i=PX x               (1) 

 
where P=[pm,n]3×4 is the projective matrix of the camera, 

T( ) ( ) ( ) ( )[ , , ,1]j j j j
i i i iZX Y=X  is a 4×1 homogeneous vector of the 

world coordinate of the 3D point, and ( ) ( ) ) T([ , ,1]j j j
i i ix y=x  is a 

3×1 homogeneous vector of the image coordinate of the 3D 
point. 

According to the general equation of a 2D line, a 2D point 
( )j
ix  on a 2D line li satisfies 
 

( T) )( 0j
i i =x l               (2) 

 
where ( ) (1) T(2)[ , ,1]j

i i il l=l  is a 3×1 homogeneous vector 
composed by the equation coefficients of the general 
equation of a 2D line. As the equation coefficients 
determine the position and direction of a 2D line, the vector 
li stands for a 2D line. 

Substituting (1) in (2), then 
 

T( ) T( 0)j
i i =X P l              (3) 

 
According to the general equation of a plane, (3) 

represents a 3D point ( )j
iX  that is located on a 3D plane πi. 

Moreover, the projective plane πi is PTli, which is 
determined by the optical center o of the camera and the 2D 
projective line li. 

For a line and two points on it, j = 1, 2, (3) can 
alternatively be written as 

 
2 1i ×=A p 0                (4) 

 
where
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Fig.1.  The calibration method adopts 2D projective lines li  
and 3D points ( )j

iX . 

 
n lines and 2n points on them are typically extracted to 

obtain the transformation matrix P. It means i = 1, 2, …, n. 
Linear equations can be obtained from the stacking of (4) 
[25] 

 
2 1n×=p 0                (5) 

 
where T T T T

1 2[ , ,..., ]n= A A A ,   is derived from the vectors 
of 2D lines li and the world coordinates of the 3D points 

( )j
iX . 
The singular value decomposition of the matrix   is 

expressed by [26] 
 

T= SΛD                (6) 
 

where S and D are orthogonal matrices, and Λ is a diagonal 
matrix with the singular values. 

From the orthogonal matrix D, we have [26] 
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*=p d                 (7) 

 
where d* is the column vector in the orthogonal matrix D 
related to the smallest singular value in Λ. The block 
diagram of the calibration method is shown in Fig.2. 
 

 Projective matrix P 

2D line li 

3D point          
( )j
ix  2D point ( )j

ix

Homogeneous system 
of linear equations

Linear equations
T( ) T( 0)j

i i =X P l

2 1n×=p 0

Singular value 
decomposition

T= SΛD

Solution of 
projective matrix

*=p d

Projective relationship
 ( ) ( )j j

i i=PX x
Points on the line

( T) )( 0j
i i =x l

 
 

Fig.2.  The block diagram of the calibration method using lines 
and points. 

 
3.  EXPERIMENTS AND DISCUSSIONS 

According to the analysis above, the transformation matrix 
P can be generated from 2n 3D points ( )j

iX  and n 2D 
projective lines li. The original images of a 3D calibration 
board are shown in Fig.3. The dimension of the 3D 
calibration board is 500 mm×500 mm×500 mm. 8×8 squares 
with the dimension of 60 mm×60 mm cover the three planes 
of the calibration board, respectively. 

 

 
 

Fig.3.  a), b), c), d) are four original images of the calibration board. 
The views of the camera and the illuminating conditions are 
different in the four images. 

The Hough transform is adopted to extract the precise 
coordinates of the 2D projective lines [27]. The method 
aims to find lines within a parameter space of lines by a 
voting procedure. From the voting procedure, parameter 
candidates are obtained as local maximal value that is 
constructed by the Hough transform. The extraction results 
of the lines on the calibration board are illustrated in 
Fig.4.a) - Fig.4.d). It is obvious that the lines are recognized 
by the Hough transform exactly. 

 
 

 
 
Fig.4.  Line recognition results on the three planes of the 
calibration board. a) the recognized lines of Fig.3.a), b) the 
recognized lines of Fig.3.b), c) the recognized lines of Fig.3.c), d) 
the recognized lines of Fig.3.d). 

 
 
The proposed method is compared with the original 

method of 3D points and 2D projective points to verify the 
measurement validity and noise immunity. First, the above 
transformation matrix Pl of the proposed method is 
experimentally obtained from (7). The transformation matrix 
of the original method is denoted by Pp. Then the 3D point 
Xk is reprojected to the 2D image by [28] 

 
l lk k=x P X                 (8) 

 
p pk k=x P X                 (9) 

 
where xlk, xpk are the projective coordinates of the 3D point 
Xk by the line-based method and point-based method, 
respectively. 

The projective lines coordinates lli, lpi are generated from 
the projective coordinates xlk, xpk and the least square 
method. We define the errors of the two methods by [28] 

 

l li i i∆ = −l l l               (10) 

 
p pi i i∆ = −l l l               (11) 
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We carry out experiments on the 512×384 images to 
compare the calibration precision of the point-based 
calibration and the line-based calibration. The accuracy in 
the calibration is evaluated by the difference between the 2D 
projective lines lli, lpi and the 2D lines li extracted by the 
Hough transform. 48 lines are adopted to the calibration. 
The projective lines lli, lpi are obtained by transformation 
matrices Pp and Pl. The experimental errors using the 
methods are shown in Fig.5.  

 

 
 

Fig.5.  The root-mean-square errors of the projective lines adopting 
the point-based calibration method and the line-based calibration 
method. a) the errors of Fig.3.a), b) the errors of Fig.3.b), c) the 
errors of Fig.3c), d) the errors of Fig.3.d). 

 
 
Table 1.  Results of mean values of root-mean-square errors. 
 

Image Mean values of root-mean-square errors 
Point-based method Line-based method 

a 8.10×10-4 7.69×10-4 
b 1.29×10-2 6.98×10-4 
c 2.58×10-2 2.29×10-4 
d 8.12×10-3 1.09×10-3 

 
 

Table 2.  Results of averages of measurement errors. 
 

Image 
Averages of measurement errors 
Point-based 

method 
Line-based 

method 

a x direction 2.05×10-4 1.86×10-4 
y direction 1.10×10-3 1.05×10-3 

b x direction 1.63×10-3 2.04×10-4 
y direction 1.81×10-2 9.48×10-4 

c x direction 5.21×10-3 8.75×10-5 
y direction 3.60×10-2 2.99×10-4 

d x direction 1.64×10-3 2.54×10-4 
y direction 1.13×10-2 1.49×10-3 

In order to show the experimental results more clearly, we 
analyze the logarithms of the root-mean-square errors in the 
x, y directions for different serial numbers of the projective 
lines. We obtain 48 groups of errors with the two methods 
for each position of the camera, respectively. The results are 
compared in Table 1. and Table 2. 

The mean values of root-mean-square errors using 
point-based method in Fig.5.a) – Fig.5.d) are 8.10×10-4, 
1.29×10-2, 2.58×10-2, and 8.12×10-3, respectively. While the 
mean values using the proposed method are 7.69×10-4, 
6.98×10-4, 2.29×10-4, and 1.09×10-3, respectively. On the 
other hand, the averages of the measurement errors in the x 
direction using the original method are 2.05×10-4, 1.63×10-3, 
5.21×10-3, and 1.64×10-3, respectively. The averages in the y 
direction are 1.10×10-3, 1.81×10-2, 3.60×10-2, and 1.13×10-2, 
respectively. The averages in the direction x using the 
proposed method are 1.86×10-4, 2.04×10-4, 8.75×10-5, and 
2.54×10-4, respectively. The averages in the direction y are 
1.05×10-3, 9.48×10-4, 2.99×10-4, and 1.49×10-3, respectively. 
It indicates that the measurement errors in two directions 
using the method with the constraint of 2D projective lines 
and 3D world points have higher accuracy than the original 
method. 

 

 
 

Fig.6.  Line recognition results of Fig.3.a) - d) with noises.  
a) the noise is 0.0005, b) the noise is 0.005, c) the noise is 0.001,  
d) the noise is 0.02, e) the noise is 0.01. 

 
Five levels of Gaussian noises are added to the original 

images to analyze the influence of the noise on the 
experiment results of the point-based calibration and the 
line-based calibration. Based on two calibration methods, 
we reproject 48 lines that are derived from three planes of 
the 3D calibration board. The number of 2D projective lines 
varies from 8 to 48 with an interval of 8 in the experiments. 
The line extraction results are shown in Fig.6., in which the 
variances of the noises are 0.0005, 0.005, 0.001, 0.02, and 
0.01, respectively. The relationship between the noise level, 
the number of lines and the average errors using the 
point-based calibration and the line-based calibration are 

a) 

b) 

c) 

d) 

e) 
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illustrated in Fig.7. The average errors are identified by the 
root-mean-square errors of the adopted lines. In order to 
observe the noise data more conveniently, Gaussian noise 
and average errors are shown by the denary logarithm. In 
Fig.7.a) – Fig.7.d), average logarithmic errors of both 
calibration methods decrease when Gaussian noise is on the 
decline. In the direction of the lines’ number, the average 
logarithmic errors of these two calibration methods 
gradually diminish when the number of adopted lines in the 
experiment increases from 8 to 48. It indicates that the 
calibration is more accurate with the increasing lines’ 
number and decreasing noises. Moreover, it is obvious that 
the average errors generated from the proposed method are 
smaller than the point-based calibration method.  

The results are compared in Table 3. and Table 4. The 
variances of average errors using the proposed method in 
four images are 1.70×10-5, 1.39×10-4, 1.13×10-4, and 
4.06×10-4, respectively. The variances of the original 
method are 9.07×10-4, 1.41×10-3, 5.90×10-4, and 5.10×10-3, 
respectively. As for the entire data using the proposed 
method, the smallest average errors in the images are 
8.10×10-4, 1.70×10-3, 6.93×10-4, and 2.60×10-3, respectively. 
The biggest average errors are 2.14×10-2, 6.07×10-2, 
5.29×10-2, and 8.27×10-2 under the noise level of -3.301 and 
48 projective lines. For the results using the original method, 
the smallest average errors are 1.90×10-3, 2.09×10-2, 
1.42×10-2, and 2.10×10-2, respectively. The biggest average 
errors are 1.34×10-1, 1.42×10-1, 9.88×10-2, and 3.17×10-1, 
respectively. The distributions of the errors show that the 
line-based calibration method is more stable for the noises 
than the original method. 
 
 

Table 3.  Results of variances of average errors. 
 

Image Variances of average errors 
Point-based method Line-based method 

a 9.07×10-4 1.70×10-5 
b 1.41×10-3 1.39×10-4 
c 5.90×10-4 1.13×10-4 
d 5.10×10-3 4.06×10-4 

 
 

Table 4.  Results of average errors under the noise of -3.301. 
 

Image 
Average errors 

Point-based 
method 

Line-based 
method 

a Smallest errors 1.90×10-3 8.10×10-4 
Biggest errors 1.34×10-1 2.14×10-2 

b Smallest errors 2.09×10-2 1.70×10-3 
Biggest errors 1.42×10-1 6.07×10-2 

c Smallest errors 1.42×10-2 6.93×10-4 
Biggest errors 9.88×10-2 5.29×10-2 

d Smallest errors 2.10×10-2 2.60×10-3 
Biggest errors 3.17×10-1 8.27×10-2 

 

 
 
Fig.7.  Average logarithmic errors related to the logarithms of 
noises and the number of lines in the point-based and line-based 
calibrations. a) - d) correspond to the results of Fig.3. and Fig.6. 

 
4.  CONCLUSIONS 

In this work, we proposed an accurate method using the 
constraint of 2D line features and 3D world points for the 
camera calibration. We illustrate a calibration model 
considering the geometrical relationship among 3D points, 
2D image plane and 2D projective lines. The transformation 
matrix of the camera can be solved by the singular value 
decomposition through the known coordinates of the 3D 
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points and the coordinates of the projective lines extracted 
by the Hough transform. Furthermore, the experiments are 
conducted to compare the calibration precision and the noise 
immunity between the line-based calibration and the 
point-based calibration. We analyze the logarithms of the 
root-mean-square errors in the x, y directions for different 
projective lines. The mean values of the root-mean-square 
errors using the proposed method are 7.69×10-4, 6.98×10-4, 
2.29×10-4, and 1.09×10-3. We also observe that the average 
logarithmic errors vary with the group number of the 
projective lines and different Gaussian noises. The variances 
of average errors using the proposed method are 1.70×10-5, 
1.39×10-4, 1.13×10-4, and 4.06×10-4, which are smaller than 
the original method. The smallest average errors using the 
proposed method are 8.10×10-4, 1.70×10-3, 6.93×10-4, and 
2.60×10-3 in the images, respectively. The experiments 
demonstrate that the line-based calibration is able to 
improve the accuracy and robustness of the camera 
calibration in vision measurement. The 3D calibration board 
has the advantages of high precision and simple relationship 
between 3D points and 2D points. Therefore, we choose 3D 
calibration board and model the calibration process. 
However, the 3D calibration board is difficult to be made 
and preserved. In future work, 2D or 1D based methods 
considering line features are the directions for further 
development. 

 
ACKNOWLEDGMENT 

We gratefully acknowledge the supports of National 
Natural Science Foundation of China under Grant No. 
51205164, Grant No. 51478204, Natural Science 
Foundation of Jilin Province under Grant No. 
20150101027JC, and Jilin Province Science Foundation for 
Youths under Grant No. 20130522154JH. 
 
REFERENCES 
[1] Frollo, I., Krafčík, A., Andris, P., Přibil, J., Dermek, T. 

(2015). Circular samples as objects for magnetic 
resonance imaging-mathematical simulation, 
experimental results. Measurement Science Review, 15 
(6), 313-318. 

[2] Zhang, Y.P., Zimin, L.G., Ji, J., Ikezawa, S., Ueda, T. 
(2012). Real scene capturing using spherical 
single-element lens camera and improved restoration 
algorithm for radially variant blur. Optics Express, 20 
(25), 27569-27588. 

[3] Zhang, Q.S., Kamata, S. (2013). Improved color 
barycenter model and its separation for road sign 
detection. IEICE Transactions on Information and 
Systems, 96 (12), 2839-2849. 

[4] Glowacz, A., Glowacz, A., Glowacz, Z. (2015). 
Recognition of monochrome thermal images of 
synchronous motor with the application of 
skeletonization and glassifier based on words. 
Archives of Metallurgy and Materials, 60 (1), 27-32. 

 

[5] Huang, L., Zhang, Q.C., Asundi, A. (2013). Camera 
calibration with active phase target: Improvement on 
feature detection and optimization. Optics Letters, 38 
(9), 1446-1448.  

[6] Glowacz, A., Glowacz, A., Glowacz, Z. (2015). 
Recognition of thermal images of direct current motor 
with application of area perimeter vector and Bayes 
classifier. Measurement Science Review, 15 (3), 
119-126. 

[7] Cui, J.S., Huo, J., Yang, M. (2015). The circular mark 
projection error compensation in camera calibration. 
Optik, 126 (20), 2458-2463.  

[8] Hong, Y.Z., Ren, G.Q., Liu, E.H. (2015). Non-iterative 
method for camera calibration. Optics Express, 23 
(18), 23992-24003.  

[9] Harding, K. (2008). Industrial metrology: Engineering 
precision. Nature Photonics, 2 (11), 667-669. 

[10] Murawski, K. (2015). New vision sensor to measure 
and monitor gas pressure. Acta Physica Polonica A, 
128 (1), 6-9. 

[11] Kim, J.H., Koo, B.K. (2013). Linear stratified 
approach using full geometric constraints for 3D scene 
reconstruction and camera calibration. Optics Express, 
21 (4), 4456-4474. 

[12] Huang, L., Kemao, Q., Pan, B., Asundi, A.K. (2010). 
Comparison of Fourier transform, windowed Fourier 
transform, and wavelet transform methods for phase 
extraction from a single fringe pattern in fringe 
projection profilometry. Optics and Lasers in 
Engineering, 48 (2), 141-148. 

[13] Zhang, Z.Y. (2000). A flexible new technique for 
camera calibration. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 22 (11), 
1330-1334. 

[14] Zhang, Z.Y. (2004). Camera calibration with 
one-dimensional objects. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 26 (7), 
892-899. 

[15] Ma, W.H., Dong, T., Tian, H., Ni, J.P. (2014). 
Line-scan CCD camera calibration in 2D coordinate 
measurement. Optik, 125 (17), 4795-4798. 

[16] Vo, M., Wang, Z.Y., Hoang, T., Nguyen, D. (2010). 
Flexible calibration technique for 
fringe-projection-based three-dimensional imaging. 
Optics Letters, 35 (19), 3192-3194. 

[17] Duan, H.X., Wu, Y.H. (2012). A calibration method 
for paracatadioptric camera from sphere images. 
Pattern Recognition Letters, 33 (6), 677-684. 

[18] Ying, X.H., Zha, H.B. (2008). Identical projective 
geometric properties of central catadioptric line images 
and sphere images with applications to calibration. 
International Journal of Computer Vision, 78 (1), 
89-105. 

 
 
 

http://dict.youdao.com/w/variance/


 
 
 

MEASUREMENT SCIENCE REVIEW, 16, (2016), No. 4, 190-196 
  

 196 

[19] Cui, Y., Zhou, F.Q., Wang, Y.X., Liu, L., Gao, H. 
(2014). Precise calibration of binocular vision system 
used for vision measurement. Optics Express, 22 (8), 
9134-9149. 

[20] Li, K., Wang, Q., Wu, J., Yu, H.Y., Zhang, D.S. 
(2012). Calibration error for dual-camera digital image 
correlation at microscale. Optics and Lasers in 
Engineering, 50 (7), 971-975. 

[21] Li, L.L., Zhao, W.C., Wu, F., Liu, Y., Gu, W. (2014). 
Experimental analysis and improvement on camera 
calibration pattern. Optical Engineering, 53 (1), 
013104. 

[22] Zhang, H.Y., Yang, F., Wu, Y.D., Paindavoine, M. 
(2009). Robust color circle-marker detection algorithm 
based on color information and Hough transformation. 
Optical Engineering, 48 (10), 107202. 

[23] Xu, G., Sun, L.N., Li, X.T., Su, J., Hao, Z.B., Lu, X. 
(2014). Global calibration and equation reconstruction 
methods of a three dimensional curve generated from a 
laser plane in vision measurement. Optics Express, 22 
(18), 22043-22055. 

 
 
 
 
 
 
 

[24] Xu, G., Li, X.T., Su, J., Pan, H.D., Tian, G.D. (2011). 
Precision evaluation of three-dimensional feature 
points measurement by binocular vision. Journal of 
the Optical Society of Korea, 15 (1), 30-37. 

[25] Leon, S.J. (2006). Linear Algebra with Applications 
(7th ed.). Prentice Hall. 

[26] Walton, S., Hassan, O., Morgan, K. (2013). Reduced 
order modelling for unsteady fluid flow using proper 
orthogonal decomposition and radial basis functions. 
Applied Mathematical Modelling, 37 (20-21), 
8930-8945. 

[27] Chakraborty, B., Gonzalez, J., Roca, F.X. (2013). 
Large scale continuous visual event recognition using 
max-margin Hough transformation framework. 
Computer Vision and Image Understanding, 117 (10), 
1356-1368. 

[28] Dodge, Y. (2003). The Oxford Dictionary of Statistical 
Terms. Oxford University Press. 

 
                        

Received February 28, 2016. 
Accepted July 20, 2016. 

 
 
 
 
 
 

 

http://www.sciencedirect.com/science/article/pii/S0307904X13002771
http://www.sciencedirect.com/science/article/pii/S0307904X13002771
http://www.sciencedirect.com/science/article/pii/S0307904X13002771

