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An inconsistency with respect to variable transformations in our previous treatment of the cosine error example with repositioning (Metrolo-
gia, vol. 47, pp. R1–R14) is pointed out. The problem refers to the measurement of the vertical height of a column of liquid in a manometer.
A systematic effect arises because of the possible deviation of the measurement axis from the vertical, which may be different each time
the measurement is taken. A revised procedure for treating this problem is proposed; it consists in straightforward application of Bayesian
statistics using a conditional reference prior with partial information. In most practical applications, the numerical differences between the
two procedures will be negligible, so the interest of the revised one is mainly of conceptual nature. Nevertheless, similar measurement mod-
els may appear in other contexts, for example, in intercomparisons, so the present investigation may serve as a warning to analysts against
applying the same methodology we used in our original approach to the present problem.
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1. INTRODUCTION

One of the examples appearing in a previous paper of ours [1]
was the measurement of the vertical height of a column of
liquid in a manometer, designated as Z. Our model was

Z = X F, (1)

where X is the height indicated by the instrument and F is a
correction factor for a systematic effect caused by a possible
deviation of the measurement axis from the vertical. This
correction factor was in turn modelled as

F = cosY, (2)

where for Y – the misalignment angle – prior information
about the range of its possible values was supposed to be
available.

In a first instance, we assumed that indications xxx =
{x1, . . . ,xn} for X were obtained while keeping the instrument
in a fixed position and that the angle Y was equally likely of
being in the interval between given values −y1 and y2, where
y1 and y2 are both positive and different in general. While
formulae for obtaining the best estimate of the measurand Z
and its associated standard uncertainty under these conditions
are given in the Guide to the Expression of Uncertainty in
Measurement (GUM) [2, subclause F.2.4.4], in [1] we com-
plemented that analysis by deriving the probability density
function (PDF) for Z using the Bayesian methodology.

In a second instance, we assumed – more realistically –
that the data xxx were obtained by repositioning the device after
every observation while keeping it in a fixed vertical plane. In
this case, the measurement model changes to

Z = Xi Fi, i = 1, . . . ,n, (3)

where Fi = cosYi and the Xi’s are the measured heights corre-
sponding to different unknown misalignment angles Yi, which
can again be supposed to assume any value within the interval
[−y1,y2] with equal probability. The data are still the set xxx,
but they are now interpreted as a single datum for each of the
quantities {X1, . . . ,Xn}, which we designate by XXX .

Unfortunately, an inconsistency in our solution to this al-
ternative formulation of the problem went unnoticed. In Sec-
tion 2 of the present paper, a summary of that solution is
given and the origin of the inconsistency is pointed out. In
Section 3, we present an approach that is free from this short-
coming. Examples and discussion follow in Section 4 and
conclusions are given in Section 5.

2. THE ORIGINAL PROCEDURE

In our previous paper, we denoted by fA(α |K ) the PDF for
a generic quantity A with possible values α , where K repre-
sents the given model, data, assumptions and other informa-
tion. Here we shall keep the same notation, using ζ , ξi, φi and
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ηi for the possible values of quantities Z, Xi, Fi and Yi, respec-
tively. However, in [1] we used the delta function approach
for effecting variable transformations; in the present paper we
shall use instead the change-of-variables theorem [3, 4]. For
simplicity, we shall analyse only the symmetrical case and
take both angles y1 and y2 as equal to a given value y. Thus,
our goal is to derive an expression for fZ(ζ |xxx,y).

The original procedure started by considering each of the n
models (3) at a time. The joint PDFs for the input quantities
to these models are of the form

fXi,Fi(ξi,φi |xi,y) = fXi(ξi |xi) fFi(φi |y), (4)

where we used the fact that Xi and Fi are independent a priori.
(This is because, before knowing Z, having only information
about Xi does not yield any information about Fi, and vice
versa.) Change of variables produces

fXi,Z(ξi,ζ |xi,y) = ξ
−1
i fXi(ξi |xi) fFi

(
ζ ξ
−1
i |y

)
(5)

and multiplication of all these PDFs gives

fXXX ,Z(ξξξ ,ζ |xxx,y) ∝ fXXX (ξξξ |xxx)∏ξ
−1
i fFi

(
ζ ξ
−1
i |y

)
, (6)

where
fXXX (ξξξ |xxx) = ∏ fXi(ξi |xi) (7)

with both products running from 1 to n. (The same convention
holds for all other products and summations below.)

We then proceeded to derive expressions for PDFs fXXX (ξξξ |xxx)
and fFi(φi |y). The former was easily obtained by assuming
that the indications xi are drawn from Gaussian distributions
centered at those readings and with a common unknown stan-
dard deviation S whose possible values σ range from zero
to infinity. The individual likelihoods must then include this
nuisance parameter, so they become

`(ξi,σ ; xi) ∝ σ
−1 exp

(
−0.5σ

−2(ξi− xi)
2) (8)

and therefore the joint likelihood is

`(ξξξ ,σ ;xxx) ∝ σ
−n exp

(
−0.5σ

−2
ΓX
)
, (9)

where
ΓX = ∑(ξi− xi)

2. (10)

The quantities XXX in this likelihood are of equal inferential
interest, which is higher than that of S. As is well known,
a reasonable non-informative prior in these circumstances is
the two-group reference prior [5], where one group is made
up of the location parameters ξξξ and the other contains only
the scale parameter σ . For the statistical model (9), this prior
reads f o

XXX ,S(ξξξ ,σ) ∝ σ−1. Then, according to Bayes’ theorem,
the joint posterior becomes

fXXX ,S(ξξξ ,σ |xxx) ∝ σ
−(n+1) exp

(
−0.5σ

−2
ΓX
)
, (11)

from which the parameter σ can be integrated out. The result
is

fXXX (ξξξ |xxx) ∝ Γ
−n/2
X . (12)

To derive the PDFs fFi(φi |y), we use the functions
fYi (ηi |y) (which are uniform with support on the interval
[−y,y]) and change variables again. This gives

fFi(φi |y) =
(
1−φ

2
i
)−1/2

fYi (±arccosφi |y) , (13)

or equivalently,

fFi(φi |y) ∝
(
1−φ

2
i
)−1/2

for cosy≤ φi ≤ 1. (14)

Substitution of (12) and (14) into (6) produces

fXXX ,Z(ξξξ ,ζ |xxx,y) ∝ Γ
−n/2
X ∏

(
ξ

2
i −ζ

2)−1/2
, (15)

from which the desired PDF fZ(ζ |xxx,y) can be obtained by
marginalization followed by normalization.

Equivalently, transformation of (15) into the (FFF ,Z) and
(YYY ,Z) parameterizations gives, respectively,

fFFF ,Z(φφφ ,ζ |xxx,y) ∝ Γ
−n/2
F ∏φ

−1
i
(
1−φ

2
i
)−1/2

(16)

and
fYYY ,Z(ηηη ,ζ |xxx,y) ∝ Γ

−n/2
Y ∏(cosηi)

−1 , (17)

where
ΓF = ∑

(
ζ φ
−1
i − xi

)2
(18)

and

ΓY = ∑

(
ζ

cosηi
− xi

)2

. (19)

Note that (17) corresponds with equation (45) in [1].
Is there anything wrong with this analysis? The answer is

yes, but the reason is subtle. Basically, it is perfectly legit-
imate to multiply the PDFs fXi(ξi |xi) to give fXXX (ξξξ |xxx) and
to multiply the PDFs fFi(φi |y) to give fFFF(φφφ |y). This is be-
cause, in the case at hand, the quantities XXX and FFF are all pair-
wise independent a priori, that is, before the measurement
models (3) have been considered. Multiplying fXXX (ξξξ |xxx) and
fFFF(φφφ |y) to give fXXX ,FFF(ξξξ ,φφφ |xxx,y) is also legitimate. But the
latter PDF would not allow deriving the state-of-knowledge
distribution about all input quantities a posteriori. If used
in that sense, an inconsistency known as “Borel’s paradox”
would arise.

In the statistical literature, the circumstances giving rise to
Borel’s paradox have been discussed in [6–11]. Benefiting
from those discussions, in [12] and [13] we showed that, in
the metrological context, the effects of Borel’s paradox are
mainly revealed if further transformations of the quantities in-
volved, designed as consistency checks, are carried out. For
this reason, those inconsistencies were not noticed in our orig-
inal analysis of the cosine error problem.

In our case, avoiding this paradox precludes a distribu-
tion of dimension lower than 2n to be derived uniquely from
fXXX ,FFF(ξξξ ,φφφ |xxx,y), as e.g. PDFs (15), (16) and (17), whose di-
mension is n+ 1. More precisely, the operation above that
causes the trouble is the step from (5) to (6). This represents
the multiplication of PDFs that share the common variable ζ .
As discussed in Appendix 1, such an operation is ad hoc and
leads to ambiguous results.
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Fig. 1: PDFs for the measurand Z given the data set xxxa with a maxi-
mum misalignment angle set to y= 5◦. The solid line corresponds to
figure 2b in [1]. The dashed line was obtained with an improved nu-
merical recalculation of the original procedure; it virtually coincides
with the PDF that we got with the revised procedure.

3. THE REVISED PROCEDURE

Which would then be the proper way of deriving the posterior
for the output quantity Z? To avoid Borel’s paradox we will
use neither (6) nor (11). Instead, we will express the likeli-
hood (9) in the form that results from taking the models (3)
into consideration. Because of the transformation invariance
of the likelihood function – proved e.g. in [14, p. 99] – this is
simply

`(φφφ ,ζ ,σ ;xxx) ∝ σ
−n exp

(
−0.5σ

−2
ΓF
)
. (20)

We now need a prior for FFF , Z and σ . This can be written
as

f o
FFF ,Z,S(φφφ ,ζ ,σ |y) = f o

Z,S|FFF(ζ ,σ |φφφ) fFFF(φφφ |y), (21)

where f o
Z,S|FFF(ζ ,σ |φφφ) is a reference prior conditional on the

partial information represented by

fFFF(φφφ |y) ∝ ∏
(
1−φ

2
i
)−1/2

. (22)

In Appendix 2 we show the derivation of f o
Z,S|FFF(ζ ,σ |φφφ),

which was performed along the lines of [15] and [16]. The
result is

f o
Z,S|FFF(ζ ,σ |φφφ) ∝ (σ µ)−1, (23)

where
µ = min(φ1, . . . ,φn). (24)

From Bayes’ theorem, the joint posterior is then

fFFF ,Z,S(φφφ ,ζ ,σ |xxx,y) ∝ `(φφφ ,ζ ,σ ;xxx) fFFF(φφφ |y) f o
Z,S|FFF(ζ ,σ |φφφ).

Substituting (20), (22) and (23) into (3), and integrating out
the variable σ , we obtain

fFFF ,Z(φφφ ,ζ |xxx,y) ∝ µ
−1

Γ
−n/2
F ∏

(
1−φ

2
i
)−1/2

(25)

or, in the (YYY ,Z) parameterization,

fYYY ,Z(ηηη ,ζ |xxx,y) ∝ Γ
−n/2
Y [min(cosη1, . . . ,cosηn)]

−1 . (26)

4. EXAMPLES AND DISCUSSION

4.1. The example in our previous paper
The simulated data we used in our previous paper was
xxxa / cm = {39.88, 39.93, 40.00, 40.09, 40.12}, with a maxi-
mum misalignment angle set to y= 5◦. The PDF fZ(ζ |xxxa,5◦)
that we obtained using the original procedure was shown in
figure 2b of [1] and is here reproduced by the solid line in
Fig. 1. However, in that article we wrote a disclaimer stating
that the numerical accuracy of our calculations was doubtful,
because at that time we used the approximate quasi-Monte
Carlo numerical integration method [17] as implemented in
the Mathematica software. In the present research we used
instead the more accurate global adaptive strategy [18] in the
same software, and adjusted some of the parameters of the in-
tegration routine to avoid the convergence errors we had en-
countered previously. The result was the dashed line in Fig. 1,
which we believe to be a more accurate representation of the
actual shape of the PDF corresponding to the original proce-
dure.

We then proceeded to marginalize fYYY ,Z(ηηη ,ζ |xxxa,5◦), given
by (26), followed by normalization. The PDF that resulted
was virtually indistinguishable from the dashed line in Fig. 1.
Therefore, this dashed line replaces figure 2b in [1] and rep-
resents the PDF fZ(ζ |xxxa,5◦) obtained with both, the original
and revised procedures. Its mean is 39.951 cm and its stan-
dard deviation is 0.060 cm.

Why is the difference between the two procedures so in-
significant? By comparing equations (17) and (26), one sees
that in the former, the factor Γ

−n/2
Y is divided by the prod-

uct of the cosines of the variables representing the unknown
misalignment angles, while in the latter this same factor is
divided solely by the minimum of these cosines. For a maxi-
mum misalignment angle of 5◦, the mean of the product of the
five cosines is 0.9937, whereas the mean of the cosine of the
maximum of the five angles is 0.9973. That is the reason for
the difference between the two procedures being numerically
negligible in this case.

4.2. The effect of the maximum misalignment angle
As a second example, consider another data set in which
the observations deviate from 40 cm by approximately
half as much as in the previous example: xxxb / cm =
{39.94, 39.97, 40.00, 40.05, 40.06}. Because the mean of
the maximum misalignment angle in this second example is
even less than in the first, it was reasonable to find that, again,
there are no appreciable differences between the two proce-
dures. Fig. 2 shows the PDFs for Z corresponding to y = 4◦

(dashed line) and y = 5◦ (solid line). For clarity, the same
PDFs are shown in Fig. 3, but in logarithmic ordinates. For
y = 4◦ the mean is 39.969 cm and the standard deviation is
0.028 cm. For y = 5◦, the mean is 39.934 cm and the stan-
dard deviation is 0.015 cm.

It was surprising to find that these summary characteristics
and the shapes of the two PDFs differ radically. This drastic
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Fig. 2: For both the original and revised procedures, PDFs
fZ(ζ |xxxb,4◦) (dashed line) and fZ(ζ |xxxb,5◦) (solid line). For clar-
ity, the latter is shown clipped at an ordinate value of 30 cm−1.
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Fig. 3: Same as Fig. 2, except for logarithmic ordinate scale and
clipping at 300 cm−1. We found that the spike at ζ = 39.94 cm rises
to about 3 300 cm−1.

change is due to the singularity of fYYY ,Z(ηηη ,ζ |xxx,y) that occurs
in both the original and revised procedures whenever

ζ = x1 cosη1 = · · ·= xn cosηn. (27)

In Appendix 3 we provide details about the way we han-
dled the occurrence of this condition. Evidently, it may only
be fulfilled for values of ζ that are both less than or equal
to xmin and larger than or equal to xmax cosy. Hence, such
singularities may only arise if xmax cosy ≤ xmin, i.e. if the
maximum misalignment angle y is greater than the arc co-
sine of xmin/xmax, which may be designated as the critical
angle yc. Thus, no singularities arise in the first example
(y = 5◦, yc = 6.27◦) and for y = 4◦ in the second example
(yc = 4.44◦), in which case the corresponding PDFs are ap-
proximately bell-shaped. In contrast, by taking y = 5◦ in the
second example, PDF fZ(ζ |xxxb,5◦) exhibits a peculiar central
zone bounded by ζ = xmax cosy = 39.9076 cm at the left and
ζ = xmin = 39.94 cm at the right; it rises abruptly at the for-
mer bound and reaches a maximum at the latter, decreasing
steeply thereafter.

Why does fZ(ζ |xxxb,5◦) exhibit such a sharp spike at ζ =
xmin? Table 1 shows the cosine values φi = cosηi that ful-

fill condition (27) for ζ = 39.9076 cm (second column) and
ζ = 39.94 cm (third column). It can be seen that the for-
mer series of values are farther away from unity than those
for the latter. Consequently, the probability densities ensuing
from (14) are smaller in the case of ζ = 39.9076 cm. Further-
more, the abscissa value ζ = 39.94 cm is the only one where
condition (27) involves a cosine equal to 1 and thus, in addi-
tion to the singularity caused by (18), another singularity due
to (14) becomes effective. The spike at ζ = 39.94 cm arises
because these two singularities coincide at that point.

Table 1: Cosine values that fulfil condition (27) for the two values
that delimit the domain where singularities of the joint PDFs (17)
and (26) arise. The second column corresponds to ζ = xmax cosy =
39.9076 cm and the third column corresponds to ζ = xmin =
39.94 cm.

xi / cm φi
39.94 0.99919 1.00000
39.97 0.99844 0.99925
40.00 0.99769 0.99850
40.05 0.99644 0.99725
40.06 0.99619 0.99700

A tentative physical explanation for the peculiar shape of
fZ(ζ |xxxb,5◦) is that, for xmax cosy < ζ < xmin, it would be
feasible (though perhaps not realistic) to explain the scatter
of the observed data ranging from xmin to xmax solely by the
occurrence of different misalignment angles within the inter-
val (−y,y). In contrast, if ζ < xmax cosy or xmin < ζ the po-
tential variations in misalignment are too small to cause the
scatter observed and therefore the data themselves must be af-
fected by random error. In other words, when y > yc the sup-
port of fZ(ζ |xxx,y) can be divided into two regions: a central
portion where misalignment alone would theoretically suffice
to explain the scatter of the data, delimited at both sides by
portions where the data observed may not have come about
without the occurrence of random measurement errors.

The implication of the behaviour just described is that, if
the data were believed to be measured with negligible error,
the maximum misalignment angle should be set to a value at
least equal to yc, otherwise the information available would
be inconsistent. Thus, choosing y = 5◦ in the first example
and y = 4◦ in the second would be unacceptable under the as-
sumption of negligible random measurement errors, because
these values are less than the corresponding critical angles
(yc = 6.27◦ and yc = 4.44◦, respectively). However, the cho-
sen maximum misalignment angles are plausible in view of
the potential random errors (in these examples, the meniscus
that forms and perhaps minor temperature variations might
produce random measurement errors of the order of 0.3 cm).
In the second example a value larger than yc was assigned to
y, so the singularity zone of the PDF to the left of the mode
at ζ = xmin dominates. The fact that in this zone observa-
tions devoid of random errors would theoretically be possi-
ble leads to a more focused PDF and therefore explains the
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counter-intuitive but nonetheless logical feature that a larger
maximum misalignment angle (i.e. a less informative prior)
should lead to a narrower posterior.

This is the only scenario known to us where a seemingly
benign physical problem that features a Gaussian statistical
model and simple rectangular input distributions results in a
complex shape of the posterior with a needle-like peak. How-
ever, the scenario seems to be well behaved only when it is
regarded in terms of angles since their informative priors are
rectangular. By contrast, if not the angles but their cosines
are considered, it becomes evident that in fact the situation
is far from benign because the PDFs for the cosines have a
singularity at 1. This causes the most striking feature of the
marginal posterior, viz. the spike at ζ = xmin = 39.94 cm.

5. CONCLUSION

A deficiency in our previous treatment of the cosine error
example with repositioning, given in [1], has been pointed
out and a remedial procedure has been presented. The defi-
ciency is due to our original analysis being affected by Borel’s
paradox, whose consequences are not immediately obvious
but are nonetheless significant in that, as explained in Ap-
pendix 1, they might lead to contradicting outcomes should
the posterior PDF for the measurand be subject to further
transformations.

The revised procedure consists of using Bayesian statis-
tics accompanied by a conditional reference prior derived in
accordance with the principles in [19] for the case of par-
tial information being previously available. In the examples
presented, the numerical differences between the two proce-
dures are negligible, so the interest of the revised one in the
case at hand is only of conceptual nature. Nevertheless, the
models (3) may appear in other contexts, for example, in in-
tercomparison measurements. In that case, the quantities Xi
would be those measured by the laboratories and the quanti-
ties Fi would be correction factors for systematic effects. The
above investigation may serve as a warning to analysts against
the shortcomings of a commonly used procedure of aggregat-
ing probability distributions by multiplication.
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APPENDIX 1: AGGREGATING PROBABILITY DISTRIBU-
TIONS BY MULTIPLICATION

Aggregating PDFs by multiplication brings about ambigui-
ties. To show this, consider just two measurement models of
the form (3):

Z = X1F1 = X2F2. (28)
Then, from (5),

fX1,Z(ξ1,ζ ) = ξ
−1
1 fX1(ξ1) fF1

(
ζ ξ
−1
1
)

fX2,Z(ξ2,ζ ) = ξ
−1
2 fX2(ξ2) fF2

(
ζ ξ
−1
2
)
,

(29)

where we have dropped the ‘given’ part of the arguments of
the functions to simplify notation.

Suppose we were really interested not in the height Z of the
column of liquid in the manometer, but in some other quantity
W related to the former by an arbitrary non-linear measure-
ment model

Z = g(W ). (30)

To obtain the PDF fW (ω) by multiplication of distributions
we can proceed in either of two ways [12, Sect. 3]. The first
consists in multiplying the two PDFs (29) and then transform-
ing the result by means of (30). This procedure yields

fX1,X2,W (ξ1,ξ2,ω) =

∣∣∣∣dg(ω)

dω

∣∣∣∣ 1
ξ1ξ2

× fX1(ξ1) fX2(ξ2) fF1

(
g(ω)

ξ1

)
fF2

(
g(ω)

ξ2

)
. (31)

The alternative method is to transform each of the PDFs (29)
before multiplying them. In this way we get

fX1,X2,W (ξ1,ξ2,ω) =

(
dg(ω)

dω

)2 1
ξ1ξ2

× fX1(ξ1) fX2(ξ2) fF1

(
g(ω)

ξ1

)
fF2

(
g(ω)

ξ2

)
. (32)

Thus, the discrepancy between these results is due to the Jaco-
bian of the transformation entering once in the first approach
but twice in the second.

To make eqs. (31) and (32) compatible, one may use the
‘logarithmic pooling’ technique, which consists in first rais-
ing each distribution to some exponent before multiplying
them. It is easily seen that the inconsistency above disappears
if the exponents are chosen such that they add up to one. We
used this technique in a preliminary version of the present ar-
ticle [20]. However, logarithmic pooling is an ad hoc method,
so we decided not to explore it further here.

APPENDIX 2: DERIVATION OF REFERENCE PRIOR (23)
With θ1 = ζ and θ2 = σ , the Fisher information matrix for
the statistical model (9) becomes

Iθθ (φφφ ,θθθ) = diag
(
θ
−2
2 ∑φ

−2
i ,2nθ

−2
2
)
, (33)

(cf. (4) in [15]). Using the notation of [21], this implies∣∣Iθθ [∼00](φφφ ,θθθ)
∣∣= 2nθ

−4
2 ∑φ

−2
i (34)

∣∣Iθθ [∼11](φφφ ,θθθ)
∣∣= 2nθ

−2
2 (35)

∣∣Iθθ [∼22](φφφ ,θθθ)
∣∣= 1, (36)

so Lemma 2.1 of [21] directly yields

|h1(θθθ)|= θ
−2
2 ∑φ

−2
i (37)

215



MEASUREMENT SCIENCE REVIEW, 16, (2016), No. 4, 211–217

|h2(θθθ)|= 2nθ
−2
2 . (38)

According to the notation of [22] these expressions factorize
as ∣∣h j(θθθ)

∣∣= h j1
(
θθθ ( j)

)
h j2

(
θθθ

C
( j)

)
. (39)

Only h11
(
θθθ (1)

)
and h21

(
θθθ (2)

)
are required to calculate with

the help of Theorem 1 of [22] or Proposition 1 of [23] the
conditional reference prior that results from compact rectan-
gular subsets (i.e. subsets that are products of compact sets in
the two subspaces whose bounds are independent). This prior
is

p∗(θθθ |φφφ) = h1/2
11

(
θθθ (1)

)
h1/2

21

(
θθθ (2)

)
. (40)

It is plausible that the φi’s have to be assigned to the factors
that matter, because otherwise they could never take effect.
However, this is just a supposition, not a reliable remedy for
the ambiguity of the assignment. Since this calls the ensu-
ing simplified calculation into question, it may be checked
by a more cumbersome computation method referenced be-
low. Nonetheless, in order to test the presumption made, let
us proceed with the resulting factorization

h11
(
θθθ (1)

)
= ∑φ

−2
i , (41)

h12

(
θθθ

C
(1)

)
= θ

−2
2 , (42)

h21
(
θθθ (2)

)
= 2nθ

−2
2 , (43)

h22

(
θθθ

C
(2)

)
= 1. (44)

This yields the conditional reference prior

p∗(θθθ |φφφ) = θ
−1
2
(
∑φ

−2
i
)1/2

. (45)

By following the more fundamental procedure in [24] one ob-
tains the same result, which retrospectively proves the above
simplified derivation.

We continue in accordance with Section 3 of [16]. Since
the quantities X , F and Z are all non-negative, the subsets of
the original parameter space can be defined as e.g.

Ξ1,m× . . .×Ξn,m×Σm = {(ξξξ ,σ) :

e−m ≤ ξ1 ≤ em, . . . ,e−m ≤ ξn ≤ em,e−m ≤ σ ≤ em}, (46)

where m = 1,2, . . .. (Note that in this expression Σ does not
stand for a summation sign.) In order that none of these
limits is exceeded, the subsets restricted to θθθ take the form
θθθ m = {θθθ : Linf ≤ θ1 ≤ Lsup,e−m ≤ θ2 ≤ em}, where Linf =
e−m max1≤l≤n(φl) and Lsup = em min1≤l≤n(φl). In analogy to
(6) of [16] follows

Km(φφφ) =

[
2m
(
∑φ

−2
i
)1/2

∫ Lsup

Linf

dθ1

]−1

, (47)

hence

lim
m→∞

Km(φφφ)

Km(φφφ
×)

∝

[
min1≤l≤n(φl)

(
∑φ

−2
i
)1/2

]−1
. (48)

Thereby we get (23):

p(θθθ |φφφ) ∝ [θ2×min1≤l≤n(φl)]
−1 . (49)

APPENDIX 3: INTEGRATION DETAILS

To deal with the singularities of fYYY ,Z(ηηη ,ζ |xxx,y), we tried sev-
eral transformations. The one we found most useful is to in-
troduce a new variable for[

±
(

ζ

cosη j
− x j

)]−4

, (50)

where subscript j is such that x j is an intermediate datum (in
our examples we used x j = 40.00 cm).

By this transformation we eliminated the strongest pole of
the integrand. The integration range (0,y) is thus split at the
position of the pole and the latter is mapped to infinity. In
this way, the integral on the finite support (0,y) is replaced
by the sum of two integrals whose supports both extend to
infinity. The integration variables of these two integrals shall
be denoted by ν or ω , respectively, according to whether the
plus or minus sign in (50) applies.

This technique is only applicable if the term (50) has a pole
within the interval (0,y) for η j. By using an intermediate da-
tum for x j, this is the case in an interval that extends at both
sides farther than the domain where the troublesome singu-
larities arise, which would not apply if the smallest or largest
datum were used. Still, this technique is restricted to a limited
portion of the support of the integral to be calculated, whereas
outside of that portion integration of the original form of the
integrand is employed.

With the transformation specified by (50), the joint PDF for
YYY and Z becomes

fV,W,ỸYY ,Z(ν ,ω, η̃ηη ,ζ ) =∣∣∣∣ dg
dν

∣∣∣∣ fY j ,ỸYY ,Z
(g, η̃ηη ,ζ )+

∣∣∣∣ dh
dω

∣∣∣∣ fY j ,ỸYY ,Z
(h, η̃ηη ,ζ ), (51)

where, as in Appendix 1, we have again dropped the ‘given’
part of the arguments of the PDFs for conciseness. Vectors ỸYY
and η̃ηη exclude quantity Yj and its associated dummy variable
η j, respectively. The functions g and h are

g(ν) = arccos
(

ζ

x j +ν−1/4

)
(52)

h(ω) = arccos
(

ζ

x j−ω−1/4

)
. (53)

For the original PDF (17), this gives

fV,W,ỸYY ,Z(ν ,ω, η̃ηη ,ζ ) ∝ (ΛV +ΛW )∏̃(cosηi)
−1, (54)
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where

ΛV =

[
4ν

5/4
√(

x j +ν−1/4
)2−ζ 2

]−1

×

[
ν
−1/2 +∑̃

(
ζ

cosηi
− xi

)2
]−n/2

(55)

ΛW =

[
4ω

5/4
√(

x j−ω−1/4
)2−ζ 2

]−1

×

[
ω
−1/2 +∑̃

(
ζ

cosηi
− xi

)2
]−n/2

. (56)

In these equations, the product and summations are from 1
to n, but excluding j.

Transforming the revised PDF (26) gives similar expres-
sions, except that ΛV and ΛW have to be multiplied by
ζ/(x j + ν−1/4) and ζ/(x j − ω−1/4), respectively, and the
product ∏̃(cosηi)

−1 has to be substituted by the recipro-
cal cosine of the maximum of the deviation angles (substi-
tuting η j by (52) or (53)). The integration over ν is from
(ζ/cosy−x j)

−4 to infinity and that over ω is from (ζ−x j)
−4

to infinity.
Because ordinary numerical integration resulted in artifacts

or error messages, we computed fZ(ζ |xxxb,5◦) at a number
of unequally spaced discrete points in the interval between
ζ = 20 cm and ζ = 60 cm (with a higher concentration of
points in the regions of rapid change of the PDF) and used a
spline interpolating function to establish that posterior.
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