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Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide 

applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to 

improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic 

field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. 

Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of 

dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for 

dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal 

samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance 

of sparse representation.  
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1.  INTRODUCTION 

Magnetic Resonance Super-resolution Imaging Measu- 

rement (MRIM) is widely used in physics, chemistry, 

biology, geology, medical and material science, and 

especially in medical diagnosis. In the medical disease 

diagnosis, Magnetic Resonance Imaging (MRI) can image 

the organs and structures of body for clinical diagnosis. It 

performs better than X-ray, ultrasound, or computed 

tomography (CT) in the diagnosis of tumors, bleeding, or 

blood vessel diseases. MRI plays gradually a more 

important role in the diagnosis of various diseases. The 

current method is to improve the resolution through 

increasing free water magnetization of human tissue and 

organs. Accordingly, the method of increasing radiation 

time and radiation intensity of electromagnetic waves is 

widely applied to MR instruments. But the human body can 

be excessively heated by radiation which inactivates 

proteins. So, the hardware super-resolution imaging 

technology has its limitations on the practical clinical 

application. MRI can obtain the high-resolution image for 

the clinical diagnosis, but is limited by SNR, hardware, 

imaging time, and so on. Many methods are proposed to 

reconstruct the high-resolution image through signal 

processing and other machine learning methods. Sparse 

representation-based   super-resolution   reconstruction   is  a 

recently proposed method for image recovery. The sparse 

representation model-based image processing performs well 

on image denoising [1], image deblurring [2], [3], image 

restoration [4]. The sparse representation methods include 

rapid sparse representation [5], dictionary-based learning 

method, for example KSVD [6], MOD [7], pixel selection-

based sparse representation [8], locality constrained sparse 

representation [9], precise dictionary representation [10], 

dictionary selection-based sparse representation [11]. Sparse 

representation methods are applied in many image 

processing techniques, including object detection via hyper 

spectral image [12], image fusion and restoration [13], and 

other image restoration [14], [15], image classification [16], 

and SR-based image classification and face recognition [17] 

techniques. In the previous works, image sparse super-

resolution technologies were widely applied to medical 

image super-resolution, remote hyperspectral imaging, video 

and image super-resolution. The features of edge, texture, 

and structure are applied to image super-resolution [18]. For 

the dictionary training problem, the constraint dictionary 

method is proposed to SR-based image super-resolution [19], 

and the sparse domain based image deblurring is to solve the 

high-resolution image [20]. For SR-based medical image 

analysis, only a few SR-based medical image analysis 

methods were proposed in previous works, for example, 
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sparse representation based MR spectroscopy quantification 

[21], constrained generative regression model-based fMRI 

analysis [21], filter-base machine intelligence [22]-[24], 

sparse coding based super-resolution learning [25], similar 

based  image blocks sparse relations [26].  

Based on the survey of the recent works on sparse 

reconstruction technologies, there are many researches on 

dictionary training, sparse parameters solution, sparse 

reconstruction. But to dictionary-optimized learning, less 

attention was paid in the previous works. They applied the 

traditional methods to training the dictionary with enough 

training samples.  However, in many practical applications, 

i.e., MR, only limited samples are used to train the 

dictionary. MR images have to be used to train the 

dictionary for the excellent performances of super-resolution. 

How to sufficiently use the definite MR samples is a crucial 

issue of improving the MR super-resolution. The 

performance of dictionary learning training directly affects 

the quality of the image reconstruction. Thus, how to 

optimize the training procedure is a crucial problem. We 

have to select optimal samples to ensure the effectiveness of 

training dictionary blocks. In this paper, we present a 

framework of dictionary training method based on 

optimizing the samples from the limited MR training 

samples. Texture-complexity based optimization is to 

choose the training samples from the training samples. The 

texture complexity is measured with the gray-consistency 

method. Based on this dictionary training method, we 

propose a framework of dictionary training samples-

optimized sparse reconstruction-based super-resolution MR 

imaging.  

 

2.  FRAMEWORK AND ALGORITHM  

A.  Framework  

The framework is shown in Fig.1. In this framework, the 

coupled dictionaries are trained with sample selection via 

the image quality representation based on the gray-

consistency method. The MR image training samples are 

selected for training the high-low MR image blocks from the 

training image samples, and these training samples are 

simultaneously trained low-high resolutions of dictionaries. 

The framework applies the machine learning-based 

dictionary block learning. In the definite scale of high 

resolution images, the optimized chosen high resolution 

images are spliced into multiple image blocks to train the 

high-resolution dictionary. Accordingly, the low-resolution 

dictionary is trained by the low image down-sampled high 

resolution image. In the same way, the multiple image 

blocks are achieved through splicing the low resolution 

training images. Under the SR-based super-resolution 

construction framework, the SR coefficients are solved with 

sparse representation constrained optimization equation, 

accordingly, the image can be represented by the 

combinations of the image block from the dictionary under 

the SR parameters. On the SR construction, the high 

resolution of image is computed under the sparse 

coefficients and the high-resolution dictionary.  

As shown in the framework, the crucial issue is to choose 

the optimized training samples for dictionary training. For 

the SR construction-based MR super-resolution, dictionary 

training often depends on a large number of training samples, 

but in the practical applications we can obtain a sufficient 

number of training samples, in other words, among the 

definite number of training samples some training samples 

are not effective for dictionary training, so that the 

dictionary is not ideal for sparse representation of image. In 

the framework, the crucial step is the training sample 

selection, and the complexity-based image quality 

representation is presented for MR image sample selection 

for training the high-low MR image blocks. If the texture 

complexity of MR training images is higher, then the quality 

of super-resolution is better. Not all MR images are 

effective for the dictionary training. We apply the gray 

consistent-based complexity measuring method to 

discriminately classify the MR image sample. On the basis 

of discriminant MR training sample, the optimal training 

images are selected for the training dictionary, the samples 

that are not fitted to the dictionary training of MR images 

are deleted, which improve the training performance of 

dictionary. 

 

 
 

Fig.1.  Framework of Dictionary Training Samples-Optimized 

Sparse Reconstruction-Based Super-resolution MR Imaging. 

 
B.  Algorithm  

Firstly, we describe the algorithm of the sample selection 

for dictionary training. In this algorithm, the complexity of 

MR image depends on the type of object and representation 

method. The description of image complexity is based on 

the angle of the whole, the angle of the region and the angle 

of the target. So, the spatial distribution of gray level is 

unique to the image, and the two-dimensional image will not 

be related to the spatial location. The gray distribution 

reflects the spatial distribution of the image, which describes 

the size and the spatial distribution of the gray patches. The 

distribution of gray space is used to describe the image 

correlation and symmetry. The features include concentrated 
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or dispersed gray consistency, the existence of repetition, 

symmetry and so on. The consistency of gray level is used 

to describe the complexity of the image as follows 

 
1 1

2

2 2

( ( , ) )
m n

a b

U f a b f
− −

= =

= −∑∑                       (1) 

 
1 1

1 1

1
( , ) ( , )

8 i j

f f a i b j f a b
=− =−

 
= + + − 

 
∑∑             (2) 

 

where �(�, �)  is the pixel value in the position, �̅ is the 

mean value of 8 pixels round the center. Gray consistency 

shows the difference of each pixel and the pixel gray value 

accumulation. The greater is the difference in description of 

the image pixel gray value wind speed change, the more 

complex is the performance of the different image texture. 

We implement some experiments on the performance of the 

gray consistency method.   

The algorithm procedure is shown in Table 1. If the image 

samples based on texture complexity, or most of the 

regional images as the invalid area that is adjacent to the 

pixel point gradient value are selected, the human eye 

cannot distinguish between the image patches. So randomly 

selected is invalid area. Based on texture fuzzy region, more 

samples improve the performance of super-resolution 

reconstruction. Therefore, not all training samples are 

necessary for dictionary training, and only the training 

image sample with the complex textures can provide enough 

features of the image blocks for the dictionary training for 

SR. 

 
Table 1.  Algorithm procedure of training images selection. 

 
Step 1. Compute the largest gradient and complexity of the training 

sample. 

For the input image �	, compute the first order and second order  �(�	):                
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where m and n are the number of row and column, and �	(�, �) is the 

pixel gray value of the point (�, �).  

Step 2. Select the center line of two coordinates as the baseline. 

Step 3. Project the center of each class to the baseline, and cluster the 

image data to the center of each class. 

Step 4. Select the sample of the farthest distance from the center as the 

training sample. 

 

Secondly, the algorithm of dictionary-learning super-

resolution method is described as follows. The high-

resolution image block dictionary ��  and the low-resolution 

image block dictionary �  are trained by high-resolution and 

low-resolution of MR images. As the definition of SR 

method, the high-resolution  ��	��   contains many image 

blocks   ��	�� , which is represented as a sparse linear 

combination of the   �� and sparse representation parameter 

vector  � as 

��	�� ≈ ���                                  (3) 

 

The �  is to recover ���  from the low-resolution MR 

image  ��� according to the low and high resolution of   �   

and  ��   with the following optimization equations as 

follows.   
 

1
min a  

2

2
. . l lows t FD a FB ε− ≤                             (4) 

 

where F  denotes the feature extractor for dictionary 

generation, which provides the constraint of similarity of the 

coefficients a  and ��� . �  improves the high prediction 

accuracy through computing coefficients. The high-pass 

filter is to extract the features because of the sensitivity of 

human vision. The high-frequency components of low-

resolution image are to predict the high-frequency parts of 

high-resolution of MR image. Then the optimization 

equation (5) is transferred to the Lagrange problem:  
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where  � is balance sparsity of  ��� ., and � determines the 

construction performance. The super-resolution 

reconstruction ��� of ���  is calculated adjacent ��	��,  so  
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where � extracts the overlapped region between the target 

block and previously reconstructed MR image. Supposed  
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The high-resolution block ��	�� is reconstructed with the 

optimal solution α∗ of optimization equation (5) as follows.  

 
*

high hB D a=                                     (8) 

 

For the noised image,  ����	��   may not satisfy the 

reconstruction constraint of sparse representation-based 

construction. Under the blurring operator ��   and down-

sampling operator �� , ���   is achieved by high-resolution 

� �	��   as follows. 
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We applied gradient descent method to solve the constraint 

optimization equation based on the iteration method as  
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where  �(�)  is nth iteration of high-resolution MR image 

under the gradient step  . Finally, the solution �∗   is the 

high-resolution reconstructed image of MR image  ����	��   . 

So, the high-resolution of MR image  �∗  is reconstructed by  

α∗ under the representations-based reconstructed constrained 

equation as  
 

22

2 0 2
,{ } , ,

* argmin ( )
i j

S B low i j h i j i j
I a i j i j

I F F I I a D a P I Iλ γ τρ
 

= − + + − + 
 

∑ ∑
  

(11) 

 

Under the sparse representation coefficients �	!  in the   

(", #)patch of � , and a penalty function $(�)  of encoding 

additional prior knowledge on the high-resolution and low 

resolution MR image. 

 

3.  RESULTS 

In this section, we implement some experiments to testify 

the feasibility of the algorithm, and have the comprehensive 

evaluation of the performance of the algorithm. We apply 

real medical MR images. Some examples are shown in 

Fig.2. The images include brain, ankle, aorta, carotid artery, 

knee, neck, and foot. The size of the training dictionary is 

125×512, and 512 feature blocks, 5×5 of image blocks, and 

overlap block is 4, balance parameter λ=0.1, and super-

resolution rate is 1:2 and 1:4. The PSNR is to measure the 

super-resolution performance. In the feasibility of the 

dictionary training, in order to analyze each dictionary, we 

randomly choose a few of the training samples for 

dictionary training, and 1, 2, 3, 5, 10, 20, 105, 360 of MR 

images are chosen randomly to construct the training 

dictionary sets. In the performance evaluation, we repeated 

the experiments with the Monte-Carlo simulation method. 

 

 
 

Fig.2.  Examples of MRI sequence.  

 

 

Table 2.  Performance on MR super-resolution under the different training number. 

 

 The number of 

training samples 

Dictionary brain ankle aorta carotid 

artery 

knee neck foot 

1:2 of 

super-

resolution 

1 D1 31.77 28.71 35.70 31.72 30.51 30.19 30.42 

2 D2 32.15 28.80 35.97 31.97 30.58 30.25 30.74 

3 D3 32.31 28.84 36.05 32.07 30.60 30.31 30.87 

5 D4 32.25 28.85 36.05 32.02 30.59 30.33 30.78 

10 D5 32.28 28.88 36.05 32.04 30.57 30.33 30.79 

20 D6 32.27 28.87 36.02 32.05 30.59 30.33 30.79 

105 D7 32.31 28.87 36.05 32.04 30.58 30.36 30.81 

360 D8 32.21 28.86 35.98 32.00 30.56 30.29 30.71 

1:4 of 

super-

resolution 

1 D9 29.39 25.20 32.71 29.00 27.08 27.46 27.88 

2 D10 30.05 25.41 32.96 29.23 27.11 27.54 28.23 

3 D11 29.63 25.33 32.84 29.13 27.10 27.53 28.19 

5 D12 29.83 25.39 32.90 29.20 27.09 27.56 28.20 

10 D13 29.92 25.44 32.99 29.28 27.12 27.62 28.28 

20 D14 29.86 25.38 32.94 29.26 27.11 27.59 28.27 

105 D15 29.84 25.40 32.97 29.25 27.10 27.61 28.22 

360 D16 29.95 25.42 32.98 29.34 27.14 27.67 28.26 
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A.  On the dictionary optimization  

In this section, we evaluate the dictionary generation based 

on optimizing the training samples for SR-based 

construction of MR image.  

Secondly, 20 images from different classes are selected as 

training samples of dictionary generation, and a dictionary is 

trained by each image to generate 20 dictionaries for SR-

based MR super-resolution image. In the experiments, the 

procedural parameters include that the size of training 

dictionary is 125×512, the characteristic of block is 512, the 

image block size is 5×5, the number of overlapped block is 

4, the balance parameter is 0.1, and the rate of super-

resolution is 1:2. Table 3. shows the performance of MR 

super-resolution under the different number of training 

samples  for  dictionary  generation.  The  first column is the 

training image ID, the second is the dictionary ID, and the 

remaining columns are the PSNR performance under the 

different MR images. For each test image, the trend of 

PSNR changing corresponding to the number of training 

image is the same. The experiments show that the different 

training sample sets for dictionary generation affect the 

performance of SR-based construction, from the fact that the 

trend of PSNR corresponding to the 7 sets of test images is 

the same. 

Thirdly, further analysis on the relationships between 

complexity of training images and reconstruction 

performance is shown in Table 4. The circle in the figure 

indicates that the PSNR is higher. The complexity of the 

dictionary is higher, better performance of image super-

resolution reconstruction is achieved.  

 

 
Table 3.  Performance on the different number of training samples for dictionary learning (1:4 of MR super-resolution). 

 

Image ID Generated dictionary brain ankle aorta carotid 

artery 

knee neck foot 

1 D30 30.31 27.86 34.68 30.85 30.19 29.61 29.49 

2 D31 31.95 28.57 35.69 31.78 30.40 29.98 30.49 

3 D32 32.43 28.93 36.17 32.15 30.63 30.44 31.05 

4 D33 32.14 28.79 35.98 31.93 30.60 30.37 30.81 

5 D34 31.88 28.53 35.58 31.69 30.38 29.92 30.46 

6 D35 32.23 28.83 36.04 32.02 30.61 30.31 30.79 

7 D36 32.39 28.74 36.03 31.95 30.56 30.31 30.84 

8 D37 30.47 27.94 34.80 30.98 30.21 29.69 29.74 

9 D38 32.12 28.64 35.77 31.78 30.40 29.98 30.61 

10 D39 32.44 28.96 36.17 32.09 30.65 30.46 30.96 

11 D40 32.31 28.96 36.16 32.19 30.63 30.49 30.96 

12 D41 31.88 28.54 35.59 31.68 30.35 29.91 30.49 

13 D42 30.53 28.04 34.79 30.99 30.20 29.68 29.70 

14 D43 30.06 27.65 34.63 30.79 30.18 29.58 29.55 

15 D44 30.41 28.02 34.74 30.91 30.17 29.66 29.57 

16 D45 32.20 28.87 35.96 31.94 30.60 30.33 30.75 

17 D46 32.29 28.91 36.20 32.18 30.59 30.51 30.82 

18 D47 31.94 28.54 35.66 31.70 30.39 29.93 30.48 

19 D48 32.12 28.55 35.73 31.75 30.41 29.93 30.54 

20 D49 32.01 28.64 35.80 31.76 30.42 30.07 30.53 

 

 
Table 4.  Relationship between the complexity and reconstruction performances.  

 

ID Dictionary PSNR Complexity 

(%&') 

ID Dictionary PSNR Complexity (%&') 

1 D30 30.31 0.18 11 D40 32.31 0.89 

2 D31 31.95 3.10 12 D41 31.88 1.18 

3 D32 32.43 2.12 13 D42 30.53 0.19 

4 D33 32.14 0.47 14 D43 30.06 0.25 

5 D34 31.88 0.53 15 D44 30.41 0.19 

6 D35 32.23 3.23 16 D45 32.20 1.54 

7 D36 32.39 0.33 17 D46 32.29 1.60 

8 D37 30.47 0.24 18 D47 31.94 2.09 

9 D38 32.12 2.16 19 D48 32.12 1.44 

10 D39 32.44 1.72 20 D49 32.01 1.24 
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B.  On performance evaluation 

We evaluate the proposed dictionary training samples-

optimized sparse reconstruction-based MR images super-

resolution. We repeated the experiments with the Monte-

Carlo simulation method. In the experiments, we 

implemented 1:2 and 1:4 of image super-resolution MR to 

evaluate the performance of the MR sequence.  The MR 

images are obtained through the down-sampling for 

performance evaluation. In the experimental procedural 

parameters, Overlaps is 4, λ=0.1. For the comparison, we 

implement three MR super-resolution methods including the 

traditional SR-based MR super-resolution, Bicubic 

Interpolation (BI), and the proposed optimal selecting 

training samples-based sparse representation construction of 

MR image. The performance of the super-resolution 

methods is measured by PSNR. The results are shown in 

Table 5. These results show that the proposed method is 

feasible to improve SR-based MR super-resolution. The 

results show that sufficient use of the definite MR samples 

is a crucial issue of improving the MR super-resolution. For 

joint dictionary learning, training samples will directly 

affect the quality of the image reconstruction effect of sparse 

image reconstruction, so the sample selection is one of the 

most  important  research  problems  in  dictionary  learning. 

 

 

 

 
 

Fig.3.  Examples of MR sequence super-resolution.  

 

The traditional training method requires a large number of 

training samples to ensure the effectiveness of training 

dictionary blocks, more training samples possess relatively 

more prior knowledge. The trained dictionary can make the 

reconstruction of the image closer to the actual, but the 

sample is rich to ensure effective training samples. The poor 

quality of the samples not only provides high quality image 

reconstruction, it may also lower the value of the PSNR 

super resolution reconstruction. The proposed textural 

complexity-based image quality representation is feasible to 

select the optimal training images. The simultaneous 

training of low-high resolutions dictionaries is to enhance 

the similarity of sparse representations for sparse 

reconstruction-based super-resolution MR imaging. Some 

1:2 of super-resolution examples are shown in Fig.3.  

Other experiments are implemented on the real MR 

database from Harbin Medical University (HMU). This MR 

database includes 150 MR images, and we repeated the 

experiments with the Monte-Carlo simulation method. The 

PSNR value is to measure the performance of super-

resolution. For the comparison, other super-resolution 

methods, Sparse Representation Reconstruction (SRR), 

Bicubic Interpolation (BI), and Neighborhood Embedding 

(NE), are used to compare the performance of the 

algorithms. The 1:2 and 1:4 of super-resolution rates are 

selected in the experiments. As results show in Table 6., the 

proposed algorithm achieves the highest performance. 

Learning-based super-resolution method is feasible to 

enhance the performance of image super-resolution. 

 
Table 5.  Performance evaluation of 1:2 and 1:4 of MR super-

resolution. 

 

 Methods 1:4 super-

resolution 

1:2 super-

resolution 

Skull 

Base 

BI 32.54(1.54 34.65(1.26 

SRR 33.65(1.65 35.56(1.32 

Proposed 33.89(1.56 35.90(1.25 

Carotid 

Arteries 

BI 28.65(1.46 30.46 (1.53 

SRR 29.56(1.56 31.65 (1.68 

Proposed 30.25(1.44 32.25 (1.56 

Knee 

BI 27.48(1.85 30.24(1.88 

SRR 28.56(1.65 31.36(1.86 

Proposed 29.86(1.75 32.56(1.36 

Ankle 

BI 27.36(1.66 30.52(1.83 

SRR 28.16(1.57 31.56(1.74 

Proposed 28.86(1.59 32.23(1.53 

Ankle_pd 

BI 27.42(1.58 30.25(1.85 

SRR 28.12(1.45 31.85(1.68 

Proposed 27.42(1.58 32.13(1.62 

Aorta 

BI 33.85(1.64 35.26(1.53 

SRR 34.12(1.56 36.46(1.56 

Proposed 34.97(1.34 36.96(1.63 

Neck 

BI 30.89(1.76 32.36(1.65 

SRR 31.35(1.53 33.12(1.76 

Proposed 32.23(1.86 33.86(1.86 

 
Table 6.  Performance evaluation on Harbin Medical University. 

 

 

Methods 1:2 super-

resolution 

1:4 super-

resolution 

BI 30.26(0.76 27.52(0.64 

NE 31.15(0.53 28.45(0.51 

SRR 32.53(0.56 29.36(0.52 

Proposed 32.86(0.65 29.78(0.56 
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4.  CONCLUSION 

We propose a framework of dictionary block-optimized 

sparse reconstruction-based super-resolution MR imaging. 

The paper aims to overcome the problem that the resolution 

of MR hardware imaging reaches the limitation of resolution 

due to the increasing of radiation intensity and time of 

magnetic exposure. The image quality representation based 

on complex procedures is presented for training the high-

low MR image blocks. Comprehensive evaluations are 

implemented to test the feasibility and performance of the 

SR-MR method on the real database. Texture complexity of 

MR training images is higher, and then the quality of super-

resolution is better. The optimal training images are selected 

for the training dictionary, the samples that are not fitted to 

the dictionary training of MR images are deleted. The super-

resolution performance is improved. The proposed method 

can be applied to images super-resolution, video super-

resolution applications. In the experiments, we use MR 

images of healthy volunteers to train the dictionary. But the 

coverage of all potential pathologies is not testified. The 

proposed algorithm improves the visual quality of MR 

images, but the performance of recovering the hidden 

pathology from the lower resolution of image is not 

testified. The feasibility on recovering the hidden 

information will be studied in the future work.  
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