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Comparison of Two Experiments Based on a Physical and a Torsion
Pendulum to Determine the Mass Moment of Inertia Including
Measurement Uncertainties
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To determine the mass-moment-of-inertia properties of devices under test with particularly small mass moments of inertia (some 10−4 kgm2),
two measurement set-ups based on different measurement principles were developed. One set-up is based on a physical pendulum, the second
set-up incorporates a torsion pendulum. Both measurement set-ups and their measurement principles are described in detail, including the
the chosen data acquisition and analysis. Measurement uncertainty estimations according to the Guide to the Expression of Uncertainty in
Measurement (GUM) were carried out for both set-ups by applying Monte Carlo simulations. Both set-ups were compared using the same
three devices under test. For each measurement result, the measurement uncertainties were estimated. The measurement results are compared
in terms of consistency and the resulting measurement uncertainties. For the given devices under test, the torsion pendulum set-up gave results
with smaller measurement uncertainties compared to the set-up incorporating a physical pendulum.
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1. INTRODUCTION

Determining the mass moment of inertia (MMOI) precisely
can be important in many applications. For simpler mechani-
cal designs, a calculation based on technical drawings might
be sufficient. A measurement is required in the case of a
complex design, various materials or if assigned measurement
uncertainties are needed.

1.1. Measurement principles and realised set-ups
The experimental determination of the mass moment of inertia
based on pendulums is a well-tried method. It is based on
the measurement of the pendulum swing frequency, which is
dependent on the mass moment of inertia of the device under
test (DUT). Approaches based on torsional oscillations feature
linear equations of motion and can be implemented as torsion
pendulums or filar pendulums [1]. Bi-filar to multi-filar pen-
dulum approaches have been used from the 1930s [2, 3] up to
now [4] for the measurement of the mass moment of inertia, es-
pecially for heavy objects. The advantage of these approaches
is that only few modifications to the device under test are
necessary, the set-up is simple, and the added oscillating com-
ponents have a very small additional MMOI. However, the
precision is limited due to the imprecise measurement of the
swing frequency and motion in additional degrees of freedom.
Both disadvantages may be overcome with more advanced
set-ups which cancel out the above-mentioned advantages to
some extent due to the higher complexity [5]. Torsion pendu-

lum set-ups are typically used for DUTs with smaller mass
moments of inertia [6].

Physical pendulums have also been used for the determi-
nation of the mass moment of inertia to a lesser extent [7, 8]
or in conjunction with a filar pendulum for measurements in
multiple axes [2, 3].

1.2. Purpose of the mass moment of inertia measurements
The combination of the aforementioned requirements for the
experimental determination of the mass moment of inertia
was the motivation for the design of the set-ups described in
this contribution. For the development of a model-based ap-
proach for the dynamic calibration of torque transducers [9],
different components of a corresponding measurement device
had to be analysed in terms of their mechanical properties;
amongst other things in terms of the mass moment of iner-
tia. The devices under test have complex mechanical designs,
are consisting of different materials and – most importantly
– the measurement uncertainties need to be assigned to the
measurement results. To this end, two set-ups based on a
physical pendulum and on a torsion pendulum were designed,
manufactured, and commissioned.

Compared to the presented previously realised set-ups, the
specimens for which the mass moment of inertia had to be
determined are comparably small and have a low mass moment
of inertia in the range of some 10−4 kgm2 rising unique design
issues for the set-ups. Typical examples of devices under test
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Fig.1. Typical specimens for which the mass moment of inertia had
to be determined by means of the presented pendulum set-ups.

are shown in Figure 1. A first determination of some mass-
moment-of-inertia properties of the dynamic torque calibration
device was already carried out in 2006 for one part of the
calibration device. The chosen method of a torsion pendulum
showed unsatisfactory non-linear effects. Aside from that, the
results – including measurement accuracies – were good [10].

In the following sections, both set-ups will be described and
compared.

2. PHYSICAL PENDULUM

Additional measurements became necessary after modifica-
tions to the measuring device and for the development of a
model-based calibration approach. To this end, a new set-up
based on a physical pendulum was designed. A short overview
can be found in [11].

2.1. Measurement principle
A physical pendulum oscillates around a horizontal axis of
rotation after being displaced from its vertical equilibrium
position, as depicted in Figure 2.

The (ideal) undamped motion of the pendulum is described
by

J · ϑ̈(t)+m ·gloc · l · sinϑ(t) = 0 (1)

with the pendulum’s mass moment of inertia J, the excitation
angle ϑ , the mass of the pendulum m, the distance of the
pendulum’s centre of gravity s to its axis of rotation l and
the local gravitational acceleration gloc. For small angles of
excitation, the latter equation can be linearised applying the
small-angle approximation sinϕ ≈ ϕ giving

J · ϑ̈(t)+m ·gloc · l ·ϑ(t) = 0 . (2)

In the frequency domain, the relation of the mass moment of
inertia and the squared angular pendulum swing frequency ω2

of the linearised equation becomes obvious giving

J =
m ·gloc · l

ω2 . (3)

The simplifying assumption of linear and undamped oscilla-
tions causes deviations, which have to be taken into account
for the measurement uncertainty evaluation.

Fig.2. Schematic diagram of a physical pendulum.

2.2. Realised set-up
To realise oscillations with very low damping, the bearing
of the pendulum was realised using a spherical air bearing
with an aluminium pendulum lever (as depicted in Figure 3).
The friction of the bearing was previously analysed for other
purposes [12]. Although the friction of the chosen bearing
was comparably high compared to other air bearings, it was
assumed to be sufficiently low for the given application in
conjunction with being robust against bending moments.

On one side of the air bearing, the pendulum lever was
mounted by using a centring mechanism, positioning it at a
defined position. Mounted on the other side of the air bearing,
a precise angle measurement system consisting of a radial
grating disk and an incremental scanning head provides time
series data of the pendulum excitation angle with high reso-
lution. The analogue quadrature voltage output signals are
interpolated and converted to digital TTL signals, before being
acquired and analysed using a counter/timer data acquisition
card.

With the bearing and the mounted additional components,
the pendulum itself has an unknown mass moment of inertia,
which is denoted as J0. To be able to carry out measurements,
a known detuning of the pendulum is required for an identifi-
cation of J0, or in the case of a measurement with a mounted
device under test: J0 + JDUT. The detuning was realised by
adding mass bodies at different distances from the axis of rota-
tion at well-defined positions. For this purpose, the pendulum
lever was designed with mounting holes. Each mass body
has a cylindrical shape with known dimensions and mass (cf.
Figure 7). The mass moment of inertia of each mass body
around its cylinder axis can be calculated giving

Jcyl =
m · r2

2
(4)

with the mass m and the radius r. The Huygens-Steiner theo-
rem gives the acting mass moment of inertia for a mass body
at its mounted position at a distance l from the axis of rotation

Jshifted = Jcyl +m · l2 . (5)
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Fig.3. Sketch of the physical pendulum set-up (left) and photograph
of the set-up including two added mass bodies mounted on the pen-
dulum lever (right).

The mounting position is known due to measurements of
the lever dimensions by means of a coordinate measurement
system. However, not only the term of J in Equation (3) will
be affected by the added mass bodies, but also the mass of the
pendulum and the position of the centre of gravity as well.

The measurement of the mass moment of inertia is carried
out with different configurations of added mass bodies, giving
for each configuration i the detuned pendulum’s equation (cf.
(3))

J0 + JDUT +∑Ji =
m0 ·gloc · l0 +∑mi ·gloc · li

ω2
i

. (6)

The devices under test will not contribute to the restoring
torque, because they will be mounted on the axis of rotation.
Due to the known Ji, mi, and li, an approximation of the
unknown J0+JDUT and restoring torque m0 ·gloc · l0 is possible.
The higher the number of measurement configurations with
different mass bodies, the lower the uncertainty of the estimate.

2.3. Data analysis
The identification of the mass moment of inertia was carried
out using a number of measurements with different numbers
of mass bodies at different positions in the pendulum lever.
The swing frequency of each measurement was determined
applying a sine fit algorithm to the time series data set. To this
end, a damped sine function

y(t) = ŷ0 · e−δ t ·sin(ω t +ϕ)+B (7)

with the magnitude ŷ0, offset B, decay rate δ , angular fre-
quency ω , and phase angle ϕ was approximated to the mea-
surement data. The procedure of the data acquisition and
analysis is diagrammed in Figure 4.

The parameter approximation to derive the unknown mass
moment of inertia and the restoring torque is carried out as a
bivariate regression incorporating a non-linear model function
G

y = G(X ,θ) (8)

relating the measured frequencies ωi in the vector of observed

air bearing
scanning head

radial grating 
disk

9000 lines / 
circumference

device under test 
(DUT), JDUT

10xinterpolator
sin/cos 
quadrature 
signal

PXI DAQ
counter/timer

pendulum oscillations

predetermiantion of 
magnitude, phase, 
frequency, damping

non-linear five parameter 
least squares fit

TTL quadrature 
signal

Fig.4. Angle measurement, data acquisition and processing for the
physical pendulum set-up.

values y
y = [ω1,ω2, . . . ,ωn]

T (9)

to the matrix of independent values X consisting of the added
mass moments of inertia and the restoring torque values of the
corresponding configurations

X =


∑J1 ∑(m1 ·gloc · l1)
∑J2 ∑(m2 ·gloc · l2)
. . . . . .

∑Jn ∑(mn ·gloc · ln)

 , (10)

and also to the vector of approximated parameters θ as

θ = [J0 + JDUT,∑(m0 ·gloc · l0)]T . (11)

For the parameter estimation, an iterative least squares estima-
tor was applied to the non-linear model equation. The sum
of the squared errors is minimised in order to estimate the
parameters giving

θ̂ = arg min
θ̂

(y−G(X ,θ))2 . (12)

For the determination of the mass moment of inertia of a DUT,
in a first step the properties of the pendulum itself (J0, m0 ·
gloc · l0) had to be determined. Consecutively, it was possible
to carry out additional measurements with the mounted DUT.
The mass moment of inertia was derived by the subtraction of
the two measurement results as follows

JDUT = (J0 + JDUT)− J0 . (13)

2.4. Deviations due to linearisation
The identification of the mass moment of inertia is based on
the assumption of a linear behaviour of the physical pendulum.
The real pendulum’s swing time is dependent on the pendulum
excitation angle, and will only converge to the linear behaviour
for small pendulum excitation angles. For the measurement
uncertainty evaluation, the influence of the non-linearity had
to be estimated. The pendulum equation (cf. (1)) – although

11



MEASUREMENT SCIENCE REVIEW, 17, (2017), No. 1, 9–18

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 2 4 6 8 10

fr
eq

ue
nc

y 
de

v.
 c

om
pa

re
d 

to
 li

ne
ar

 p
en

du
lu

m
 /

 %

peak pendulum excitation angle / degrees

Fig.5. Deviation of the physical pendulum swing frequency and a
linear model assumption as a function of the peak excitation angle.

apparently simple – is not easy to solve and was investigated in
several publications [7, 13, 14, 15]. The deviations due to the
linearisation were quantised with regard to the peak excitation
angle ϑs of the pendulum.

The pendulum swing time τϑs of the non-linear physical
pendulum is given [7] as

τϑs =
2
π

τ0 K(k) , (14)

with the swing time τ0 of the linear solution (cf. Equation (2))

τ0 = 2π

√
J

m · l ·gloc
, (15)

and the elliptic integral of the first kind K(k) [16, pp. 569]

K(k) =
ˆ π

2

0

dϕ

(1− k2 sin2
ϕ)

1
2

. (16)

For the non-linear pendulum with the excitation angle ϑs, the
expression below follows for k [17, pp. 208]

k = sin(
ϑs

2
) . (17)

Therefore, the ratio of linear and non-linear pendulum swing
time is given as

τϑs

τ0
=

2
π

ˆ π
2

0

dϕ

(1− k2 sin2
ϕ)

1
2

. (18)

Figure 5 depicts the calculated deviations of the pendulum
swing frequencies of the linear and non-linear model. It be-
comes obvious that the deviations are very small for small
pendulum excitation angles. The remaining influences of the
chosen peak excitation angles of less than 2.5◦ are only in a
range of 1×10−4 and are taken into account for the measure-
ment uncertainty estimation.

Fig.6. Schematic diagram of a torsion pendulum with the spring c
and mass moment of inertia J.

3. TORSION PENDULUM

A second approach implemented for the determination of the
mass moment of inertia was a torsion pendulum.

3.1. Measurement principle
A torsion pendulum consists of typically vertically arranged
components which are able to oscillate rotationally. Differently
from a physical pendulum, the energy of the pendulum is
stored in a torsion spring. This spring is fixed at one end,
while the other end can rotate freely. A schematic diagram of
a torsion pendulum is depicted in Figure 6. After an excitation,
oscillations with a natural frequency related to the acting mass
moment of inertia will occur.

The homogeneous equation of motion under the assumption
of undamped oscillations follows as

J · ϑ̈(t)+ c ·ϑ(t) = 0 (19)

with the angle of excitation ϑ , the torsional stiffness of the
spring c, and the mass moment of inertia J. In the frequency
domain, the linear relation of the inverse of the squared angular
swing frequency ω and the mass moment of inertia becomes
obvious

J =
c

ω2 . (20)

Due to the fact that the torsional stiffness of the spring used in
a set-up for the determination of the mass moment of inertia is
usually unknown, an approach comparable to the one chosen
for the physical pendulum had to be applied. Multiple mea-
surements with different added known mass bodies were used
to estimate the mass moment of inertia of a device under test
by applying a linear regression. The mass-moment-of-inertia
elements used were made of brass and are shown in Figure 7.

3.2. Measurement set-up
The measurement set-up of the torsion pendulum is based on
components of the dynamic torque calibration device, whose
mass-moment-of-inertia properties had to be determined. The
set-up is depicted in Figure 8. This approach has numerous
advantages over a dedicated measurement set-up:

12
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Fig.7. Added mass-moment-of-inertia elements for the torsion pen-
dulum (left) and for the physical pendulum (right).

• Only small modifications to the dynamic torque calibra-
tion device are needed for the measurement of the mass
moment of inertia

• Measurements are performed under the same conditions
as in the later dynamic torque calibration application

• Angle measurement components are already existing and
adjusted

• Set-up can be established in a short time.

As already mentioned, a similar approach designed and
commissioned a decade ago showed non-linear behaviour. The
source of the non-linearities was not clearly identified. Several
actions were taken to minimise non-linearities in the actual
set-up:

• Press-fitted upper and lower mounting parts with large
overlap areas to the spring to reduce local stress maxima

• Longer torsion spring to limit strain despite a larger di-
ameter of the spring compared to the first set-up

• Small angles of excitation to reduce strain.

The integration of the torsion pendulum in the dynamic torque
calibration device was carried out so that the pendulum was
detachable. The torsion spring is mounted on the top of the
rotor of an air bearing, and a radial grating disk is mounted
below. An incremental scanning head measures the pendulum
excitation angle utilising the grating disk. The additional mass
bodies are mounted using a coupling element.

To avoid any modifications to the rotating components of
the dynamic torque calibration device, the lower part of the
torsion spring needed to be connected without any permanent
mounting components. Therefore, a disk-shaped lower ending
of the torsion spring was designed, which was connected to
the air bearing’s rotor by means of bonding wax. The applied
Stronghold Blanchard Wax 7036 – typically used for the tem-
porary mounting of semiconductor wafers – is recommended
for the mounting of accelerometers [18]. Being solid at room
temperature, the wax starts to soften if heated to temperatures
above 70 ◦C. It can be removed easily using acetone as a
solvent.

clamping element
counter bearing
torsional spring
air bearing of the 
dynamic torque 
calibration device

Fig.8. Set-up for the determination of the mass moment of inertia
based on a torsion pendulum.

For mounting the torsion spring to the rotor of the air bear-
ing, both parts were heated to temperatures high enough to
make the mounting wax completely liquid. Both components
were pressed together to obtain a thin and stable layer of wax.

3.3. Data analysis
The measurement of the time-varying angle excitation of the
torsion pendulum was carried out similarly to the physical
pendulum by means of an incremental angle measurement
system, and a sine function was applied to the time series
data (cf. Equation (7)). After deriving the swing frequencies,
the actual MMOI of the device under test was determined by
means of a linear regression. From the inverse of Equation (20)
the expression below follows for the squared pendulum swing
time

τ
2 =

4 π2

c
(JDUT + Ji) . (21)

The line equation has a zero at Ji =−JDUT. For a number of
measurements with different known added mass-moment-of-
inertia bodies Ji, a line equation can be approximated to the
measurement data. The intersection of the approximated line
and the x-axis gives the extrapolated mass moment of inertia
of the DUT, as depicted in Figure 9.

measurements
approximated line

extrapolation

Fig.9. Determination of the mass moment of inertia by means of a
line approximation.
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Fig.10. Dependency of the relative deviation of the pendulum swing
frequency on the pendulum excitation angle for each mass body
configuration.

The mass moment of inertia of the pendulum itself, i.e. of
the top part of the measuring device, needs to be subtracted,
depending on for which device under test the mass moment
of inertia is to be determined. This is similar to the procedure
applied for the physical pendulum set-up (cf. Equation (13)).

3.4. Non-linearities
The linearity of the torsion pendulum is one advantage if
choosing this design. However, the set-up which was first
established experienced significant non-linear behaviour. As
mentioned before, the design of the new torsion pendulum
set-up was optimised in order to minimise non-linearity. The
non-linear behaviour becomes obvious if there is an excitation-
dependent change in the pendulum swing frequency.

After commissioning the new pendulum set-up, dedicated
analyses were carried out to quantise the amount of non-linear
behaviour. For this purpose, time series data of pendulum
swings was divided into segments of about one oscillation.
The frequency of each oscillation was determined by means
of a sine fit. The results are depicted as the swing-frequency
deviation versus excitation in Figure 10.

It becomes obvious from the results that small non-linear
effects still remain. The swing frequency clearly increases
with decreasing swing amplitude. This behaviour is similar for
all measurements and is most likely caused by the mounting
of the torsion spring with wax. The rotor of the air bearing
was modified in the set-up which was first established in order
to mount the torsion spring. This was not possible in the latter
case.

The magnitude of the pendulum frequency change was sig-
nificantly reduced by a factor of 10. While the first set-up
experienced a frequency change of about 1 % relative to the
mean value per an excitation of 1000 arcsec, this non-linear
effect was reduced to 0.1 % in the actual set-up.

4. MEASUREMENT UNCERTAINTY EVALUATION

The measurement uncertainty of both set-ups was estimated
based on the Guide to the Expression of Uncertainty in Mea-
surement (GUM) [19] and its Supplement 1 (GUM S1) [20],
respectively. The evaluation of the measurement uncertainty
according to the GUM is based on a mathematical model of
the measurement itself. Measurement uncertainty contribu-
tions due to different input quantities X1,X2, . . . ,Xn are propa-
gated to the measurement result Y based on the measurement’s
model function giving

Y = f (X1,X2, . . . ,Xn) . (22)

Every single input quantity is characterised by its probability
density function (PDF), leading to a corresponding PDF of the
measurement result.

The classic estimation of measurement uncertainties in the
GUM based on partial derivative calculations is limited in
terms of possible input PDFs and assumes a linear measure-
ment model. The approach proposed in the GUM S1 incor-
porates a repeated simulation of the measurement process by
means of Monte Carlo simulations. The measurement uncer-
tainties of the different input quantities are simulated by their
PDFs. Each simulation is carried out with random samples
drawn from the PDFs.

4.1. Dependency of estimated uncertainty and number of
Monte Carlo runs

The outcome of Monte Carlo simulations may be dependent
on the number of simulation runs. If the number of runs is
too low, the estimated uncertainties may be too high or too
low. To avoid this problem, a sufficiently high number of
simulations have to be carried out. Unfortunately, this number
is dependent on the application and therefore cannot be known
in advance. To overcome this problem, different proposals to
define a stopping criterion have been analysed [21]. For the
given application, the uncertainty calculation was carried out
for different numbers of Monte Carlo runs. After analysing
the results, a significantly high number of runs (conservative
safety margin added) were chosen.

4.2. Damping
The models for the determination of the mass moment of
inertia for both measurement set-ups assume undamped oscil-
lations. Although the damping in both set-ups was minimised
by all measures (mechanical design, use of air bearings), there
still might be influences which have to be taken into account
for the measurement uncertainty evaluation.

The influence of the remaining damping was estimated by
analysing the decay of the pendulum swing over time. To this
end, the pendulum oscillations were acquired and a damped
sine function (cf. Equation (7)) was approximated to the ac-
quired time series data. The parameters of interest are, in this
case, the decay rate δ and the pendulum’s damped angular
frequency ωd. Both relate to the (theoretical) undamped pend-
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Table 1. Uncertainty contributions for the determination of the physi-
cal pendulum set-up.

input quantity
uncertainty
contribution

distribution/
correlated (y/n)

angle deviation grating u = 0.033arcsec Gaussian (n)
angle dev. signal period u = 1.44arcsec rectangular (n)
angle dev. eccentricity u = 0.39arcsec rectangular (n)

frequency deviation
non-linearity

urel = 1×10−4 Gaussian (y)

frequency deviation
damping

urel = 1×10−7 Gaussian (y)

oscillator PXI system urel = 2.5×10−6 rectangular (n)

local gravitational
acceleration gloc

urel = 5×10−8 Gaussian (n)

pendulum tilt urel = 1.25×10−7 Gaussian (y)
determination of mass u = 5×10−8 kg Gaussian (y)
pendulum position u = 2×10−6 m Gaussian (n)
dimensions mass bodies u = 2×10−6 m Gaussian (y)
bevels of mass bodies u = 4×10−9 kgm2 Gaussian (y)

Table 2. Uncertainty contributions for the determination of the torsion
pendulum set-up.

input quantity
uncertainty
contribution

distribution

angle deviation grating u = 0.06arcsec Gaussian
angle dev. signal period u = 0.5arcsec rectangular
angle dev. eccentricity u = 0.06arcsec rectangular

frequency deviation
non-linearity

urel = 1×10−3 Gaussian

frequency deviation
damping

urel = 2.1×10−6 Gaussian

oscillator PXI system urel = 2.5×10−6 rectangular
mass bodies u = 9.48×10−8 kgm2 Gaussian
J torsion spring u = 2.2×10−10 kgm2 Gaussian
J mounting disk u = 7.9×10−9 kgm2 Gaussian
J wax film u = 18.5×10−12 kgm2 Gaussian

ulum oscillation frequency ω0 giving

ω0 =
√

δ 2 +ω2
d . (23)

Data from several measurements derived values of
2.1×10−6 for the torsion pendulum set-up and 1×10−7 for
the physical pendulum set-up for the maximum relative devia-
tion due to the damping.

4.3. Uncertainty contributions for the two set-ups
For each of the set-ups, the different measurement uncertainty
contributions were identified and quantised.
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Fig. 11. Ishikawa diagram of the measurement uncertainty contri-
butions of the set-up based on a physical pendulum. Correlated
uncertainty contributions are marked in orange.
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Fig.12. Ishikawa diagram of the measurement uncertainty contribu-
tions of the set-up based on a torsion pendulum.

The different uncertainty contributions of the physical pen-
dulum are displayed in Figure 11 as an Ishikawa diagram, and
are given in detail in Table 1. The same information for the
torsion pendulum set-up can be found in Figure 12 and Table 2,
respectively.

For each measurement, i.e. each set of different time series
data files of pendulum measurements with varying added mass-
moment-of-inertia elements, Monte Carlo simulations were
carried out in order to estimate the measurement uncertainty.
The calculations were performed using the open source nu-
merical computation software GNU Octave [22]. The Monte
Carlo simulations included the whole data analysis applying
uncertainty contributions of the time series data to the mea-
surement data files, uncertainty contributions corresponding
to fit parameters in the corresponding code for the parameter
estimation, and so on.

The physical pendulum set-up contains correlated uncer-
tainty contributions (marked orange in Figure 11) due to the
subtraction of the mass moment of inertia of the pendulum
itself (J0), which was derived by a second measurement. These
correlated uncertainty contributions were applied by sampling
from the same random number generator. Therefore, the two
measurements of J0+JDUT and J0 were included in one Monte
Carlo simulation.
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Fig.13. Measurement results for the mass moment of inertia of three
DUTs determined by means of the physical pendulum set-up (blue)
and the torsion pendulum set-up (red) including the assigned ex-
panded measurement uncertainties (k = 2).

The torsion pendulum results contain no correlated input
quantities. Although measurement results of different mea-
surements are subtracted, correlated input quantities were not
assumed. Differently to the procedure with the physical pendu-
lum set-up, the torsion spring was removed and remounted for
all measurements; the same applies to the mass bodies and the
coupling elements on which the mass bodies were mounted.

The measurement uncertainties for the local gravitational
acceleration are so small, because the building in which the
measurements were carried out has a narrow grid of measured
values of gloc on different floors [23]. The nearest measure-
ment point of gloc was just a few metres away from the labora-
tory with the pendulum set-ups.

4.4. Additional uncertainty contributions
It is possible that there are additional uncertainty contributions,
which cannot be accounted for in the Monte Carlo simulation.
These contributions may become obvious from repeatability
measurements. For instance, if a remounting alters the prop-
erties of the DUT or if there is a (minor) violation of the
assumption of rotational symmetry due to manufacturing or
bending, these uncertainty contributions have to be taken into
account as well. Therefore, repeatability measurements with
the DUT mounted at different angle positions were carried
out with each of the set-ups for the measurement uncertainty
estimation. The standard uncertainty contributions s from
the Monte Carlo simulation sMC and the contributions from
repeatability measurements srep were added giving

s =
√

s2
MC + s2

rep . (24)

This approach is very conservative, because the measurement
uncertainty contributions already estimated by means of the
Monte Carlo simulation might be taken into account a second

time in the results of the repeatability measurements. Never-
theless, it was a feasible way to include the experimentally
determined contributions.

5. MEASUREMENT RESULTS

Comparison measurements of the same devices under test were
carried out at both measurement set-ups.

5.1. Devices under test
Mass moments of inertia of three different DUTs were deter-
mined as detailed below:

• The rotor of an air bearing with a radial grating disk

• Two identically constructed coupling elements as de-
picted in the top left of Figure 1.

For each device under test, several repetitive measurements
were carried out. For this purpose, the device under test was
dismounted and remounted for the next measurement run.

5.2. Comparison of results
Measurement results including the estimated expanded mea-
surement uncertainties (MU) with an expansion factor k = 2
are shown in Figure 13 and given in detail in Table 3 for the
physical pendulum results and in Table 4 for the torsion pen-
dulum results. It becomes obvious from the results that the
two measurement set-ups agree very well within the estimated
expanded measurement uncertainties. The relative measure-
ment uncertainties of the torsion pendulum are much smaller
compared to the results of the physical pendulum.

The high relative measurement uncertainties of the physical
pendulum can be explained by the disadvantageous ratio of the
mass moment of inertia of the pendulum (J0) and of the device
under test (JDUT), which is caused by the mechanical design.
The relative uncertainties for J0 itself are satisfying. With a
different mechanical design or with DUTs with a higher mass
moment of inertia, this ratio would decrease and therefore the
resulting relative measurement uncertainties would decrease
accordingly.

The significantly higher measurement uncertainty of the
DUT coupling 1 compared to coupling 2 is due to a minor
deformation of coupling 1, which is bent a little. This partial
rotational asymmetry causes higher deviations; much higher
deviations are found in the physical pendulum set-up, because
the returning torque is affected as it depends on the angle
position at which the DUT is mounted. The mounted mass
bodies tend to straighten a bent DUT in the torsion pendulum
set-up as well.

6. SUMMARY

For the determination of the mass moment of inertia of certain
components of a dynamic torque calibration device, two mea-
surement set-ups were designed and commissioned. The two
set-ups incorporate different measurement principles (a phys-
ical pendulum and a torsion pendulum). The measurement
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Table 3. Measurement results for the determination of the mass moment of inertia with the physical pendulum.

DUT
mass moment of inertia /

kgmm2
expanded MU

U(k = 2) / kgmm2
relative exp. MU

Urel(k = 2)

top part and pendulum (5 measurements) 2.25×104 43.14 0.21 %

pendulum (J0) (5 measurements) 2.21×104 35.35 0.17 %

coupling 1 (3 measurements) 272.38 120.18 44.12 %
coupling 2 (4 measurements) 198.83 38.31 19.27 %
top part (5 measurements) 395.60 25.31 6.4 %

Table 4. Measurement results for the determination of the mass moment of inertia with the torsion pendulum.

DUT
mass moment of inertia /

kgmm2
expanded MU

U(k = 2)/kgmm2
relative exp. MU

Urel(k = 2)

coupling 1 (20 measurements) 242.71 21.78 8.97 %
coupling 2 (20 measurements) 231.11 3.19 1.38 %
top part (20 measurements) 395.67 3.77 0.95 %

uncertainties for both set-ups were estimated and the results
are presented.

The measurements show a good agreement of the two in-
dependent measurements. With the given devices under test,
the torsion pendulum set-up has smaller measurement uncer-
tainties. The higher uncertainties of the physical pendulum
are caused by the mechanical design of the set-up and not by
the measurement principle. The relative uncertainties would
be significantly smaller for heavier DUTs or with a different
design of the set-up.
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